JPH0298146A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0298146A
JPH0298146A JP25108688A JP25108688A JPH0298146A JP H0298146 A JPH0298146 A JP H0298146A JP 25108688 A JP25108688 A JP 25108688A JP 25108688 A JP25108688 A JP 25108688A JP H0298146 A JPH0298146 A JP H0298146A
Authority
JP
Japan
Prior art keywords
recess
electrode
spacer
photoresist
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25108688A
Other languages
Japanese (ja)
Inventor
Kazuo Hayashi
一夫 林
Takuji Sonoda
琢二 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25108688A priority Critical patent/JPH0298146A/en
Publication of JPH0298146A publication Critical patent/JPH0298146A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a sufficiently thick metal electrode in a recess by forming a recess on a semiconductor active layer, then filling the recess with resist except a part directly under the window of a spacer, and electrolytically plating it. CONSTITUTION:After a spacer 5 is formed on a semiconductor active layer 2, the window of a photoresist 3 is formed, and with the resist 3 as a mask a window having the same size as that of the resist 3 is formed at the spacer 5. Thereafter, a recess is formed on the layer 2, and the resist 3 is removed. Further, the whole surface is covered with positive type photoresists 6, 61, and patterned as desired. In this case, the resist 6 remains on the sidewall of the recess. Thereafter, with the layer 2 as a negative electrode an electrolytic plating is conducted. After the plating is formed in a desired thickness, the spacer 5, the resists 6, 61 are removed. According to the method, since a plating electrode 7 having a T-sectional shape can be easily formed in the recess, a gate resistance can be remarkably reduced.

Description

【発明の詳細な説明】 [産業上の利用分野j この発明は、半導体装置の製造方法、特にくぼみ部(1
1下、リセスという)内に電極を形成する方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Field of Application j This invention relates to a method of manufacturing a semiconductor device, particularly a recessed portion (1
1 below, relates to a method of forming an electrode within a recess (referred to as a recess).

〔従来の技術j 第3図は従来のリセス内に電極をリフトオフ法により形
成する場合の製造フローを示す断面図である。図におい
て、半絶縁性基板α)上に、半導体活性層(2)を有す
るウェハに、写真製版によりリャスを形成すべき所に窓
があくようにフォトレジスト(3) ラパターニングす
る。その後、所望のリセス形状が得られるように、フォ
トレジスト(3)ヲマスクにしてリセスを形成する(第
3図(a))。その後、所望の金属を極(4)を蒸着に
より形成しく第3図(b))、更に、フォトレジスト(
3)を有機溶剤等で除去することにより、リセス内のみ
に金属電極(4)を形成する(第3図(C))。第3図
(b)から(c)のフローをリフトオフ法と呼ぶ。(4
1)は金属電極(4)を蒸着する際にフォトレジスト(
3)に付着する蒸着金属である。
[Prior Art j] Fig. 3 is a sectional view showing a manufacturing flow in the case of forming an electrode in a conventional recess by a lift-off method. In the figure, on a wafer having a semiconductor active layer (2) on a semi-insulating substrate α), a photoresist (3) is patterned by photolithography so that a window is formed where a rear layer is to be formed. Thereafter, a recess is formed using the photoresist (3) as a mask so that a desired recess shape is obtained (FIG. 3(a)). Thereafter, the desired metal is formed by vapor deposition to form the electrode (4) (Fig. 3(b)), and then a photoresist (
By removing 3) with an organic solvent or the like, a metal electrode (4) is formed only within the recess (FIG. 3(C)). The flow shown in FIGS. 3(b) to 3(c) is called the lift-off method. (4
1) is a photoresist (
3) is the vapor deposited metal that adheres to the surface.

次に動作について説明する。Next, the operation will be explained.

従来法では第3図(b) K示す蒸着に際し、フォトレ
ジスト(3)上面の蒸着金属(41)とリセス内の金属
電極(4)とがA部で接触しないよう蒸着を制御する必
要がある。接触すると蒸着金属(41)と金g電極(4
)が切れないため、リフトオフ性が極めて悪くなる。ま
た蒸着に際し、フォトレジスト(3)の側壁にも蒸着金
属(41)が蒸着し、フォトレジスト(3)の窓幅は蒸
着金属(41)の成長に応じ狭まること、及び蒸着ビー
ムが必ずしも垂直でないことにより金属電極(4)の断
面の側面形状が垂直ではなく、第3図(c)に示すとと
くθ〈90°の角をなす。フォトレジスト(3)窓の開
口部が狭まい場合、θ〈9o0であると、金属t 4M
 (4)断面は先の細い台形となり、それ以上厚く金属
を形成することはできなくなる。
In the conventional method, during the vapor deposition shown in Fig. 3(b) K, it is necessary to control the vapor deposition so that the vapor-deposited metal (41) on the top surface of the photoresist (3) and the metal electrode (4) in the recess do not come into contact at part A. . When in contact, the vapor deposited metal (41) and the gold g electrode (4
) cannot be cut, resulting in extremely poor lift-off performance. Furthermore, during vapor deposition, the vapor-deposited metal (41) is also vapor-deposited on the side walls of the photoresist (3), and the window width of the photo-resist (3) narrows as the vapor-deposited metal (41) grows, and the vapor deposition beam is not necessarily vertical. As a result, the side shape of the cross section of the metal electrode (4) is not vertical, but forms an angle of θ<90°, as shown in FIG. 3(c). Photoresist (3) If the window opening is narrow, if θ〈9o0, the metal t 4M
(4) The cross section becomes a tapered trapezoid, and it is no longer possible to form metal thicker than that.

「発明が解決しようとする課題1 従来の製造方法は、以上のように行われていたので、リ
セス内に金属電極を厚く形成することができず、金属電
極の配線抵抗を低減することができないという問題があ
った。
“Problem to be Solved by the Invention 1 The conventional manufacturing method, which was performed as described above, cannot form a thick metal electrode in the recess and cannot reduce the wiring resistance of the metal electrode. There was a problem.

この発明は、上記のような問題点を解消するためになさ
れたもので、リセス内に上針に厚い金属電極を形成する
方法を提供することを目的とする。
The present invention was made to solve the above problems, and an object of the present invention is to provide a method for forming a thick metal electrode on the upper needle within a recess.

〔課題を解決するための手段j この発明による半導体装置の製造方法は、スペーサをマ
スクにして半導体活性層上にリセスを設けた後、スペー
サの窓の直下以外のリセス内をレジストで埋めた後、半
導体活性層を電極にして電解めっきを行い、リセス内に
膜厚の厚い!極を形成するものである。
[Means for Solving the Problems j] The method for manufacturing a semiconductor device according to the present invention includes forming a recess on a semiconductor active layer using a spacer as a mask, filling the inside of the recess except directly under the window of the spacer with resist, and then filling the recess with a resist. , electrolytic plating is performed using the semiconductor active layer as an electrode, resulting in a thick film within the recess! It forms the pole.

〔作用) この発明によれば、リセス内に膜厚の厚い電極を形成す
ることができるので、リセス内の電極の配線抵抗を低減
できる。
[Function] According to the present invention, a thick electrode can be formed within the recess, so that the wiring resistance of the electrode within the recess can be reduced.

〔実施例1 以下、この発明の一実施例を第1図で説明する。[Example 1 An embodiment of the present invention will be described below with reference to FIG.

第1図はリセス内に電極を形成する場合の製造フローを
示す断面図、第2図はリセス内に電極を形成する他の実
施例による製造フローを示す断面図である。図において
、(1)〜(3)は第3図の従来例に示したものと同等
であるので説明を省略する。半導体活性層(2)上にS
i 02やSiNといった誘電体膜(以下、スペーサと
呼ぶ)(5)を形成した後、写真製版によりフォトレジ
スト(3)の窓を形成し、フォトレジスト(3)をマス
クにしてリアクティブイオンエツチング(RIE)等に
より、スペーサ(5)を異方性エツチングし、フォトレ
ジスト(3)と同一寸法ノ窓をスペーサ(5)に形成す
る。その後 所望の形状のリセスを形成(第1図(a)
 ) L、次にフォトレジスト(3)を除去する(第1
図(b))。更にポジ型フォトレジスト(6)、(61
)を全面に塗布し、次に行うめっきの際に、めっきの横
方向の成長で隣接it極が接しないようにポジ型フォト
レジスト(61) ;li ルようなマスク合せを行う
。この際リセス内のスペーサ(5)がオーバーハングに
なっている箇所では露光不足となるため、リセスの側壁
にポジ型フォトレジスト(6)が残る(第1図(C))
。この後、半導体活性層(2)をマイナス側電極として
電解めっきを行う(第1図(d))。めっきを所望の厚
さに形成後、スペーサ(5)をウェットエッチ等で除去
しく第1図(e))、その後ポジ型フォトレジスト(6
)、(61)を除去する(第1図(f))。
FIG. 1 is a cross-sectional view showing a manufacturing flow in which an electrode is formed in a recess, and FIG. 2 is a cross-sectional view showing a manufacturing flow in another embodiment in which an electrode is formed in a recess. In the figure, (1) to (3) are the same as those shown in the conventional example of FIG. 3, so their explanation will be omitted. S on the semiconductor active layer (2)
After forming a dielectric film (hereinafter referred to as a spacer) (5) such as i02 or SiN, a window of photoresist (3) is formed by photolithography, and reactive ion etching is performed using the photoresist (3) as a mask. The spacer (5) is anisotropically etched by (RIE) or the like to form a window with the same dimensions as the photoresist (3) in the spacer (5). After that, a recess of the desired shape is formed (Fig. 1(a)).
) L, then remove the photoresist (3) (first
Figure (b)). Furthermore, positive photoresists (6), (61
) is applied to the entire surface, and during the next plating, a positive photoresist (61) is used to prevent adjacent IT electrodes from coming into contact with each other due to the lateral growth of the plating. At this time, the area where the spacer (5) in the recess overhangs will be underexposed, so the positive photoresist (6) will remain on the side wall of the recess (Figure 1 (C)).
. Thereafter, electrolytic plating is performed using the semiconductor active layer (2) as a negative electrode (FIG. 1(d)). After forming the plating to the desired thickness, the spacer (5) is removed by wet etching (Fig. 1(e)), and then the positive photoresist (6) is removed.
), (61) are removed (FIG. 1(f)).

次に動作について説明する。Next, the operation will be explained.

この発明によれば、リセス内にめっき電極(7)を形成
するに際し、リフトオフ法のような膜厚の制約はなく、
例えばリセス構造のGaAsFETのゲートにこの方法
を適用した場合、ゲート長が0.3μmで、リセス深さ
が0.2μ田とすると、リフトオフ法によれば、上記の
ような制約により、膜厚は0.3〜0.5μ田程度が製
造的限界であり、しかも断面形状は三角形に近い、上細
りの台形となった。したがってゲート長短縮と共にゲル
ト抵抗が増すので、ゲート長(Lg)短縮によるL’E
Tの性能向上をゲート抵抗の増大が阻害し、結果として
、Lg短縮効果で期待したほどのFETの性能向上が望
めなかった。しかしこの発明によれば、電極の膜厚は容
易に1μの以上にすることができ、しかも断面形状はめ
っきの性質上、T型になるので、ゲート抵抗を著しく、
低減できる。また第1図(c)に示したようにリセス内
のスペーサ(5)直下にはポジ型フォトレジスト(6)
が残っているので、めっきt極(7)はリセス側壁等に
つくことはなく、リフトオフ法と同等の面積で形成でき
る。したがってゲート長も同一にできるので、他の特性
を変えることなく、配線抵抗(Rg)のみを低減できる
。またこのめっきの際、めつき膜厚がスペーサ(5)の
高さを越えると、上方向とほぼ同等の速さで、横方向に
もめつきは成長する。その結果、めっきt極(7)の断
面はT型となる。この際ポジ型フォトレジスト(61)
は必ずしも必要ではないが、ポジ型フォトレジスト(6
1)によってめっきの横方向成長による隣接電極との接
触を防げる効果がある。
According to this invention, when forming the plating electrode (7) in the recess, there is no restriction on film thickness as in the lift-off method, and
For example, when this method is applied to the gate of a GaAsFET with a recessed structure, and the gate length is 0.3 μm and the recess depth is 0.2 μm, the film thickness will be The manufacturing limit was about 0.3 to 0.5 μm, and the cross-sectional shape was a trapezoid with a tapered top, close to a triangle. Therefore, the gel resistance increases as the gate length decreases, so L'E due to the decrease in gate length (Lg)
The increase in gate resistance impeded the improvement in T performance, and as a result, the FET performance could not be improved to the extent expected due to the Lg shortening effect. However, according to this invention, the thickness of the electrode can be easily increased to 1μ or more, and the cross-sectional shape is T-shaped due to the nature of the plating, so the gate resistance can be significantly reduced.
Can be reduced. Also, as shown in Figure 1(c), there is a positive photoresist (6) directly below the spacer (5) in the recess.
remains, so the plated t-pole (7) does not stick to the recess side walls, etc., and can be formed in the same area as the lift-off method. Therefore, since the gate length can be made the same, only the wiring resistance (Rg) can be reduced without changing other characteristics. Further, during this plating, if the thickness of the plating film exceeds the height of the spacer (5), the plating will grow in the lateral direction at almost the same speed as in the upward direction. As a result, the plated t-pole (7) has a T-shaped cross section. At this time, positive photoresist (61)
is not necessarily required, but a positive photoresist (6
1) has the effect of preventing contact with adjacent electrodes due to lateral growth of plating.

上記の実施例では、半導体上に直接めつきwL極を形成
することKなる。例えばGaAs Ii’ IE Tの
ゲート[極にこの方法を適用した場合、このめっき電極
(7)と半導体はLi’ETの性能を大きく左右する。
In the above embodiment, the wL pole is formed by plating directly on the semiconductor. For example, when this method is applied to the gate [pole] of GaAs Ii' IET, the plating electrode (7) and the semiconductor greatly influence the performance of Li'ET.

ショットキー接合を形成するので、従来まで蒸着により
形成したものをめっきによる接合に変えることは、FE
Tの性能や信頼性を変化させる恐れがあり必ずしも好ま
しくないつこの場合の解決策を与える実施例が第2図で
ある。第2図はスペーサリフトオフ法で従来のショット
キー電極(42)を形成(第2図(a)〜ω))シた後
、上記実施例と同様のフローでショットキー電極(42
)上にめっきt極(7)を形成する(第2図(c)〜<
r> >。この際、ショットキー電極(42)の厚さは
リセスの深さ以下であることが好ましい。第2図の方法
によれば、ショットキー特性を変化させることなくゲー
ト抵抗のみを低減できる。
Since a Schottky junction is formed, it is important to change the bond formed by vapor deposition to a plating bond.
FIG. 2 shows an embodiment that provides a solution for this case, which is not necessarily preferable since it may change the performance and reliability of the T. FIG. 2 shows a conventional Schottky electrode (42) formed by the spacer lift-off method (FIG. 2(a) to ω)), and then a Schottky electrode (42)
) to form a plating t-pole (7) (Fig. 2(c)~<
r>>. At this time, the thickness of the Schottky electrode (42) is preferably equal to or less than the depth of the recess. According to the method shown in FIG. 2, only the gate resistance can be reduced without changing the Schottky characteristics.

[発明の効果1 以上のようにこの発明によれば、リセス内にT型断面形
状を有する厚膜電極を容易に形成できる効果がある。ま
た従来の半導体−金属接合の性質を変えることなく、上
記のことが達成できる効果がある。
[Advantageous Effects of the Invention 1] As described above, according to the present invention, a thick film electrode having a T-shaped cross section can be easily formed in a recess. Furthermore, there is an effect that the above can be achieved without changing the properties of the conventional semiconductor-metal junction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)はこの発明に係る半導体装置の製
造方法の一実施例でリセス内に電極を形成する場合の製
造フローを示す断面図、v、2図(8)〜(f)はこの
発明の他の実施例の製造フローを示す断面図、第3図G
)〜(c)は従来の製造フローを示す断面図である。 図において、(1)は半絶縁性基板、(2)は半導体活
性層、(3)はフォトレジスト、(5)はスペーサ、(
6)。 (61)はポジ型フォトレジスト、(7)はめつき1に
極、(42)Hショットキー電極である。 なお、図中、同一符号は同一、又は相当部分を示す。 第1図 (a)
FIGS. 1(a) to (f) are cross-sectional views showing the manufacturing flow when electrodes are formed in recesses in an embodiment of the semiconductor device manufacturing method according to the present invention; f) is a sectional view showing the manufacturing flow of another embodiment of the present invention, FIG. 3G
) to (c) are cross-sectional views showing a conventional manufacturing flow. In the figure, (1) is a semi-insulating substrate, (2) is a semiconductor active layer, (3) is a photoresist, (5) is a spacer, (
6). (61) is a positive photoresist, (7) is a fitted 1 pole, and (42) is an H Schottky electrode. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Figure 1(a)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体活性層上に誘電体のスペーサを形成し、こ
れをフォトレジストをマスクにしてパターニングした後
、上記スペーサをマスクにして上記半導体活性層の一部
に所望の形状のくぼみ部を形成する工程、この工程の後
にポジ型フォトレジストを塗布し、所望のパターニング
を写真製版により行い、この時くぼみ部内のスペーサの
直下に上記ポジ型フォトレジストを残す工程、上記フォ
トレジスト及びスペーサをマスクにして半導体活性層を
電極に電解めつきによりくぼみ部内に電極を形成する工
程、最後に不要なスペーサ及びフォトレジストを除去す
る工程からなることを特徴とする半導体装置の製造方法
(1) Form a dielectric spacer on the semiconductor active layer, pattern it using a photoresist as a mask, and then form a recessed portion of a desired shape in a part of the semiconductor active layer using the spacer as a mask. After this step, a positive photoresist is applied, and the desired patterning is performed by photolithography, and at this time, the positive photoresist is left directly under the spacer in the recess, and the photoresist and spacer are used as a mask. 1. A method for manufacturing a semiconductor device, comprising the steps of: forming an electrode in the recess by electroplating the semiconductor active layer as an electrode; and finally removing unnecessary spacers and photoresist.
(2)スペーサソフトオフ法により所望の電極をくぼみ
部内にくぼみ部の深さよりうすい膜厚で形成した後、上
記(1)項と同様の方法で、このあらかじ、め形成され
たうすいくぼみ部内の電極上のみにめつき電極を形成す
ることを特徴とする 請求項1記載の半導体装置の製造方法。
(2) After forming the desired electrode in the recess with a film thickness thinner than the depth of the recess by the spacer soft-off method, the electrode is formed inside the thin recess formed using the same method as in (1) above. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the plated electrode is formed only on the electrode.
JP25108688A 1988-10-04 1988-10-04 Manufacture of semiconductor device Pending JPH0298146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25108688A JPH0298146A (en) 1988-10-04 1988-10-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25108688A JPH0298146A (en) 1988-10-04 1988-10-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0298146A true JPH0298146A (en) 1990-04-10

Family

ID=17217432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25108688A Pending JPH0298146A (en) 1988-10-04 1988-10-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0298146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115689B2 (en) 2017-02-10 2018-10-30 Toshiba Memory Corporation Semiconductor device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115689B2 (en) 2017-02-10 2018-10-30 Toshiba Memory Corporation Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH03270022A (en) Manufacture of semiconductor device
US4843024A (en) Method of producing a Schottky gate field effect transistor
JPH0298146A (en) Manufacture of semiconductor device
US6383853B2 (en) Method of fabricating semiconductor device
JP3144089B2 (en) Method for manufacturing field effect transistor
JPH0828380B2 (en) Method for manufacturing semiconductor device
JP3035994B2 (en) Method for manufacturing semiconductor device
JPS6237890B2 (en)
JPH08274118A (en) Field-effect semiconductor device and its manufacture
JPH06333955A (en) Field effect transistor and its manufacture
JP2798041B2 (en) Method for manufacturing semiconductor device
JPS61121367A (en) Manufacture of semiconductor device
JP2776053B2 (en) Method for manufacturing semiconductor device
JP4072248B2 (en) Manufacturing method of semiconductor device
JP2550715B2 (en) Semiconductor device
JPH06104284A (en) Semiconductor device and manufacture thereof
JPH01194475A (en) Field effect transistor and manufacture thereof
JPH07183312A (en) Forming method of gate electrode for field-effect transistor
JPH01243476A (en) Formation of electrode
JPS63137481A (en) Manufacture of semiconductor device
JPS63198376A (en) Manufacture of semiconductor device
JP2607310B2 (en) Method for manufacturing field effect transistor
JPS617667A (en) Manufacture of field-effect transistor
JPH0684951A (en) Manufacture of semiconductor device
JPH04162635A (en) Manufacture of semiconductor device