JPH0297854A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH0297854A
JPH0297854A JP24958188A JP24958188A JPH0297854A JP H0297854 A JPH0297854 A JP H0297854A JP 24958188 A JP24958188 A JP 24958188A JP 24958188 A JP24958188 A JP 24958188A JP H0297854 A JPH0297854 A JP H0297854A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
heat exchanger
way valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24958188A
Other languages
Japanese (ja)
Other versions
JP2646704B2 (en
Inventor
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63249581A priority Critical patent/JP2646704B2/en
Publication of JPH0297854A publication Critical patent/JPH0297854A/en
Application granted granted Critical
Publication of JP2646704B2 publication Critical patent/JP2646704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve a startup performance of heating operation by preventing refrigerant from being melted into refrigerating machine oil. CONSTITUTION:During heating operation, a refrigerant which is adapted to close an on/off valve 12 and control a throttle means 7 in conformity with operating status, returns to a compressor 1 by way of a check valve 3, a four way valve 2, an indoor heat exchanger 5, a throttle means 7, an outdoor heat exchanger 6, a suction pipe 10, and an accumulator 9. When the operation is suspended, the throttle means 7 is closed, the both ends of the indoor heat exchanger 5 are closed with a check valve 2 and the throttle means 7 so that high pressure refrigerant may be stored in the indoor heat exchanger 5, thereby preventing its counter flow to the side of the compressor 1. During a start up time in heating operation, a four way valve 2 is positioned to heating service, an on/off valve 12 is opened, and a throttle means 7 is closed, thereby heating refrigerating machine oil in order to inhibit the melting of refrigerant and hence increasing a circulation of flow rate of the refrigerant in a refrigerant circuit. The on/off valve 12 is closed while the throttle means 7 is controlled to an opening in conformity with the operating status.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はヒートポンプ式空気調和機に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pump type air conditioner.

[従来の技術] 従来のこの種のヒートポンプ式空気調和機として、特開
昭63−32261号公報に掲載の技術を挙げることが
できる。
[Prior Art] As a conventional heat pump type air conditioner of this type, the technology disclosed in Japanese Patent Application Laid-Open No. 63-32261 can be mentioned.

第7図は従来のヒートポンプ式空気調和機を示す冷媒回
路図である。
FIG. 7 is a refrigerant circuit diagram showing a conventional heat pump type air conditioner.

図において、(51)は圧縮機、(52)は暖房位置ま
たは冷房位置に切替え可能な四方弁、(53)は室内熱
交換器、(54)は開度制御可能な膨張弁等よりなる絞
り手段、(55)は室外熱交換器、(56)はバイパス
配管であり、その一端は前記絞り手段(54)と室外熱
交換器(55)との間の冷媒配管(57)に接続される
とともに、他端は圧縮機(51)の吸入配管(58)に
接続されている。(59)は前記バイパス配管(56)
上に配設された開閉弁、(60)は圧縮機(51)の温
度を検出するセンサ、(61)は圧縮機(51)に吸入
される冷媒ガスの温度を検出するセンサである。
In the figure, (51) is a compressor, (52) is a four-way valve that can be switched to heating or cooling position, (53) is an indoor heat exchanger, and (54) is a throttle consisting of an expansion valve whose opening can be controlled. Means (55) is an outdoor heat exchanger, (56) is a bypass pipe, one end of which is connected to a refrigerant pipe (57) between the throttle means (54) and the outdoor heat exchanger (55). At the same time, the other end is connected to the suction pipe (58) of the compressor (51). (59) is the bypass pipe (56)
The on-off valve disposed above, (60) is a sensor that detects the temperature of the compressor (51), and (61) is a sensor that detects the temperature of the refrigerant gas sucked into the compressor (51).

次に、上記のように構成された従来のヒートポンプ式空
気調和機の動作につい、で説明する。
Next, the operation of the conventional heat pump air conditioner configured as described above will be explained.

通常の暖房運転時には、四方弁(52)は暖房位置、開
閉弁(59)は閉、絞り手段(54)は運転状況に応じ
た開度に制御されるように切換えられる。そして、圧縮
機(51)から吐出された冷媒は、実線矢印で示すよう
に、四方弁(52)を通って室内熱交換器(53)に流
入し、そこで放熱により室内空気を加熱したのち、絞り
手段(54)及び冷媒配管(57)を通って室外熱交換
器(55)に入り、そこで外気からの吸熱により蒸発気
化して冷却され、その後、四方弁(52)及び吸入配管
(58)を経て圧縮1(51)に戻る。
During normal heating operation, the four-way valve (52) is switched to the heating position, the on-off valve (59) is closed, and the throttle means (54) is controlled to an opening degree according to the operating situation. The refrigerant discharged from the compressor (51) passes through the four-way valve (52) and flows into the indoor heat exchanger (53) as shown by the solid arrow, where it heats the indoor air by heat radiation. It enters the outdoor heat exchanger (55) through the throttle means (54) and the refrigerant pipe (57), where it is evaporated and cooled by heat absorption from the outside air, and then the four-way valve (52) and the suction pipe (58) The process then returns to compression 1 (51).

通常の冷房運転時には、四方弁(52)が冷房位置、開
閉弁(59)は閉、絞り手段(54)は運転状況に応じ
た開度に制御されるように切換えられる。そして、圧縮
機(51)から吐出された冷媒は、破線矢印で示すよう
に、四方弁(52)、室外熱交換器(55L冷媒配管(
57)、絞り手段(54)、室内熱交換器(53)、四
方弁(52)、吸入配管(58)を経て圧縮機(51)
に戻る。
During normal cooling operation, the four-way valve (52) is switched to the cooling position, the on-off valve (59) is closed, and the throttle means (54) is controlled to an opening degree depending on the operating situation. The refrigerant discharged from the compressor (51) is then transferred to the four-way valve (52), the outdoor heat exchanger (55L refrigerant piping (
57), throttle means (54), indoor heat exchanger (53), four-way valve (52), and suction pipe (58) to the compressor (51).
Return to

ところで、暖房運転の停止中には、特に外気温が低い場
合、圧縮機(51)の冷凍機油中に冷媒が溶は込む。し
たがって、この状態で暖房運転を開始すると、冷媒の循
環量が少ないため、室内熱交換器(53)における放熱
間が少なくなり、室内空気の昇温スピードが低下する。
By the way, when the heating operation is stopped, particularly when the outside temperature is low, the refrigerant dissolves into the refrigerating machine oil of the compressor (51). Therefore, when heating operation is started in this state, the amount of refrigerant circulated is small, so the heat radiation period in the indoor heat exchanger (53) is reduced, and the speed of temperature rise of the indoor air is reduced.

そこで、前述した通常の暖房運転に先立ち、次のように
して立上り運転が行なわれる。
Therefore, prior to the above-mentioned normal heating operation, a start-up operation is performed as follows.

外気温が一5°C程度の場合は、四方弁(52)を暖房
位置(図の実線位置)、開閉弁(59)を開、絞り手段
(54)の開度を大にして立上り運転が行われる。する
と、圧縮tl(51)から吐出された冷媒は、四方弁(
52)、室内熱交換器(53)及び絞り手段(54)を
通って冷媒配管(57)に至り、そこで分岐されて、大
部分はバイパス配管(56〉及び開閉弁(59)を経て
吸入管(58)に流入するとともに、残部は室外熱交換
器(55)、四方弁(52)及び吸入配管(58)を通
り、先に分岐した冷媒と合流して圧縮機(51)に戻る
When the outside temperature is about 15°C, start-up operation is performed by setting the four-way valve (52) to the heating position (solid line position in the figure), opening the on-off valve (59), and widening the opening of the throttle means (54). It will be done. Then, the refrigerant discharged from the compression tl (51) passes through the four-way valve (
52), passes through the indoor heat exchanger (53) and the throttle means (54) to reach the refrigerant pipe (57), which is branched off and mostly passes through the bypass pipe (56) and the on-off valve (59) to the suction pipe. (58), the remainder passes through the outdoor heat exchanger (55), four-way valve (52), and suction pipe (58), joins with the previously branched refrigerant, and returns to the compressor (51).

この場合、絞り手段(54)の開度が大きいので、冷媒
は殆ど絞り込まれることなく、その大部分が流動抵抗の
小さいバイパス配管(56)を通って圧縮機(51)に
流入する。したがって、圧縮機(51)に吸入された冷
媒の比体積が小さくなり、圧縮機(51)の吐出量及び
吐出圧力が増加する。その結果、圧縮機(51)の温度
が上昇して、圧縮機(51)内の冷凍機油中に溶は込ん
でいた冷媒がガス化して、冷凍機油と分離される。
In this case, since the opening degree of the throttle means (54) is large, the refrigerant is hardly throttled and most of it flows into the compressor (51) through the bypass pipe (56) with low flow resistance. Therefore, the specific volume of the refrigerant sucked into the compressor (51) decreases, and the discharge amount and discharge pressure of the compressor (51) increase. As a result, the temperature of the compressor (51) rises, and the refrigerant dissolved in the refrigerating machine oil in the compressor (51) is gasified and separated from the refrigerating machine oil.

そして、この立上り運転の結果、圧縮機(51)の温度
が予め定められた温度に到達すると、センサ(60)が
これを検出して、開閉弁(59)が閉成され、かつ、絞
り手段(54)が運転状況に応じた開度に制御され、前
述した通常の暖房運転が開始される。
As a result of this start-up operation, when the temperature of the compressor (51) reaches a predetermined temperature, the sensor (60) detects this, the on-off valve (59) is closed, and the throttle means (54) is controlled to an opening degree according to the operating situation, and the above-mentioned normal heating operation is started.

一方、外気温が一10℃程度の場合には、四方弁(52
)を冷房位置(図の破線位置)、開閉弁(59)を開、
絞り手段(54)を全開にして立上り運転が行われる。
On the other hand, when the outside temperature is around 110 degrees Celsius, the four-way valve (52
) to the cooling position (dotted line position in the figure), open the on-off valve (59),
Start-up operation is performed with the throttle means (54) fully open.

この場合は、圧縮IN(51)から吐出された冷媒は、
四方弁(52)、室外熱交換器(55)、バイパス配管
(56)、開閉弁(59)及び吸入配管(58)を通っ
てガス冷媒の状態で圧縮II(51)に戻る。したがっ
て、圧縮機(51)から吐出される冷媒の温度及び圧力
が上昇し、圧縮機(51)の冷凍機油中に溶は込んでい
た冷媒がガス化されて冷凍機油から分離され、冷媒回路
中の冷媒の循環量が増大する。そして、この立上り運転
の結果、圧縮機(51)の温度が予め定められた温度に
到達すると、センサ(60)がこれを検出して、四方弁
(52)が暖房位置に切換えられるとともに、開閉弁(
59)が閉成され、かつ、絞り手段(54)が運転状況
に応じた開度に制御されて、前述した通常の暖房運転に
移行する。
In this case, the refrigerant discharged from the compression IN (51) is
It passes through the four-way valve (52), the outdoor heat exchanger (55), the bypass pipe (56), the on-off valve (59) and the suction pipe (58) and returns to the compression II (51) in the form of a gas refrigerant. Therefore, the temperature and pressure of the refrigerant discharged from the compressor (51) rise, and the refrigerant dissolved in the refrigerating machine oil of the compressor (51) is gasified and separated from the refrigerating machine oil, and the refrigerant enters the refrigerant circuit. The amount of refrigerant circulated increases. As a result of this start-up operation, when the temperature of the compressor (51) reaches a predetermined temperature, the sensor (60) detects this and the four-way valve (52) is switched to the heating position and opened/closed. valve(
59) is closed, and the throttle means (54) is controlled to an opening degree according to the operating conditions, and the above-mentioned normal heating operation begins.

[発明が解決しようとする課題] ところが、従来のヒートポンプ式空気調和機は、上記の
ように、圧縮II(51)の停止時における冷凍機油中
への冷媒の溶は込みを抑制する手段を備えないため、圧
縮機(51)の停止中に冷凍機油に大量の冷媒が溶は込
む。したがって、通常の暖房運転を開始するに先立ち、
冷凍機油を加熱してそこから冷媒を追い出すための立上
り運転を長FJ&間かけて行う必要があった。その結果
、室内の温度を急速に上昇させることができなかった。
[Problem to be Solved by the Invention] However, as described above, the conventional heat pump type air conditioner is not equipped with a means for suppressing refrigerant from penetrating into the refrigerating machine oil when compression II (51) is stopped. Therefore, a large amount of refrigerant dissolves into the refrigerating machine oil while the compressor (51) is stopped. Therefore, before starting normal heating operation,
It was necessary to perform a long FJ & short start-up operation to heat the refrigerating machine oil and expel the refrigerant from it. As a result, the indoor temperature could not be raised rapidly.

また、従来のヒートポンプ式空気調和機においてデフロ
ス1〜運転を行った場合、そのデフロスト運転の終了後
に前記した外気温−10℃程度の場合の立上り運転を行
う必要があり、圧縮II(51)に吸入される冷媒が液
化して、冷凍機油が低温に冷却される。その結果、冷媒
の冷凍機油に対する溶解度が増加し、大量の冷媒が溜ま
った状態で圧縮1(51)が起動されるという、いわゆ
る寝込み起動が発生することがあった。
In addition, when a conventional heat pump air conditioner is operated from defrost 1, it is necessary to perform the start-up operation when the outside temperature is about -10°C after the defrost operation is completed, and compression II (51) is required. The sucked refrigerant liquefies and the refrigerating machine oil is cooled to a low temperature. As a result, the solubility of the refrigerant in the refrigerating machine oil increases, and compression 1 (51) is started with a large amount of refrigerant accumulated, which is what is called a sleep start.

そこで、本発明は、冷凍機油中への冷媒の溶は込みを効
率よく抑制して、暖房運転の立上り性能を向上すること
ができるヒートポンプ式空気調和機の提供を課題とする
ものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a heat pump air conditioner that can efficiently suppress the infiltration of refrigerant into refrigerating machine oil and improve the start-up performance of heating operation.

[課題を解決するための手段] 請求項1に記載された本発明のヒートポンプ式空気調和
機は、圧縮機と、暖房位置及び冷房位置に切換え可能な
四方弁と、四方弁から圧縮機に向かう冷媒の逆流を阻止
する逆止弁と、室内熱交換器と室外熱交換器との間に配
設された開度制御可能な絞り手段と、圧縮機の吸入側に
配設されたアキュムレータと、アキュムレータと圧縮機
の吐出側とを接続するバイパス配管上に配設された開閉
弁とから構成されている。
[Means for Solving the Problems] The heat pump type air conditioner of the present invention as set forth in claim 1 includes a compressor, a four-way valve that can be switched between a heating position and a cooling position, and a four-way valve that flows toward the compressor from the four-way valve. A check valve that prevents backflow of refrigerant, a throttle means that can control the opening and is located between the indoor heat exchanger and the outdoor heat exchanger, and an accumulator that is located on the suction side of the compressor; It consists of an on-off valve disposed on a bypass pipe connecting the accumulator and the discharge side of the compressor.

請求項2に記載された本発明のヒートポンプ式空気調和
機は、圧縮機と、暖房位置及び冷房位置に切換え可能な
四方弁と、四方弁から圧縮機に向かう冷媒の逆流を阻止
する逆止弁と、室内熱交換器と室外熱交換器との間に配
設された開度制御可能な絞り手段と、圧縮機の吸入側に
配設されたアキュムレータと、圧縮機内の冷凍機油を加
熱するヒータとから構成されている。
The heat pump air conditioner of the present invention as set forth in claim 2 includes a compressor, a four-way valve that can be switched between a heating position and a cooling position, and a check valve that prevents the refrigerant from flowing backward from the four-way valve toward the compressor. , a throttle means that can control the opening degree arranged between the indoor heat exchanger and the outdoor heat exchanger, an accumulator arranged on the suction side of the compressor, and a heater that heats the refrigerating machine oil in the compressor. It is composed of.

請求項3に記載された本発明のヒートポンプ式空気調和
機は、圧縮機と、暖房位置及び冷房位置に切換え可能な
四方弁と、四方弁から圧縮機に向かう冷媒の逆流を阻止
する逆止弁と、室内熱交換器と室外熱交換器との間に配
設された開度制御可能な絞り手段と、圧縮機の吸入側に
配設されたアキュムレータと、圧縮機内の冷凍機油を加
熱するヒータと、デフロスト配管上に配設されたデフロ
スト開閉弁と、減圧配管上に配設されたキャピラリチュ
ーブとから構成されている。
The heat pump type air conditioner of the present invention as set forth in claim 3 includes a compressor, a four-way valve that can be switched between a heating position and a cooling position, and a check valve that prevents backflow of refrigerant from the four-way valve toward the compressor. , a throttle means that can control the opening degree arranged between the indoor heat exchanger and the outdoor heat exchanger, an accumulator arranged on the suction side of the compressor, and a heater that heats the refrigerating machine oil in the compressor. , a defrost on-off valve disposed on the defrost piping, and a capillary tube disposed on the pressure reducing piping.

請求項4に記載された本発明のヒートポンプ式空気調和
機は、モータを内蔵した圧縮機と、モータの周波数を変
更するインバータと、暖房位置及び冷房位置に切換え可
能な四方弁と、四方弁から圧縮機に向かう冷媒の逆流を
阻止する逆止弁と、室内熱交換器と室外熱交換器との間
に配設された開度制御可能な絞り手段と、圧縮機の吸入
側に配設されたアキュムレータと、デフロスト配管上に
配設されたデフロスト開閉弁と、減圧配管上に配設され
たキャピラリチューブとから構成されている。
The heat pump type air conditioner of the present invention described in claim 4 includes a compressor with a built-in motor, an inverter that changes the frequency of the motor, a four-way valve that can be switched to a heating position and a cooling position, and a four-way valve. A check valve that prevents the backflow of refrigerant toward the compressor, a throttle means that can control the opening and is located between the indoor heat exchanger and the outdoor heat exchanger, and a throttle means that is located on the suction side of the compressor. It consists of an accumulator, a defrost on-off valve disposed on the defrost piping, and a capillary tube disposed on the pressure reducing piping.

[作用] 請求項1のヒートポンプ式空気調和機においては、暖房
運転の停止時に絞り手段が閉成される。
[Function] In the heat pump air conditioner according to the first aspect, the throttling means is closed when the heating operation is stopped.

したがって、冷媒は逆止弁と絞り手段との間の苗内熱交
換器内に封じ込められ、圧縮機内における冷凍機油中へ
の冷媒の溶は込みが抑制される。立上り運転時には、四
方弁が暖房位置、開閉弁が開、絞り手段が閉に切換えら
れる。このため、冷媒は圧縮機からバイパス配管を介し
てアキュムレータに至る回路で循環され、圧縮機内の冷
凍機油が高温に保持される。したがって、冷媒の冷凍機
油に対する溶解度が低下して冷媒が溶けにくくなる。
Therefore, the refrigerant is confined within the seedling heat exchanger between the check valve and the throttling means, and dissolution of the refrigerant into the refrigerating machine oil in the compressor is suppressed. During start-up operation, the four-way valve is switched to the heating position, the on-off valve is opened, and the throttle means is switched to closed. Therefore, the refrigerant is circulated in a circuit from the compressor to the accumulator via the bypass pipe, and the refrigerating machine oil in the compressor is maintained at a high temperature. Therefore, the solubility of the refrigerant in the refrigerating machine oil decreases, making it difficult for the refrigerant to dissolve.

そして、通常の暖房運転時には、開閉弁が閉、絞り手段
が運転状況に応じた開度に制御されるように切換えられ
る。
During normal heating operation, the on-off valve is closed and the throttle means is switched to an opening degree that corresponds to the operating situation.

請求項2のヒートポンプ式空気調和機においては、暖房
運転の停止時に絞り手段が閉成される。
In the heat pump air conditioner according to the second aspect of the invention, the throttle means is closed when the heating operation is stopped.

したがって、上記発明と同様に、冷凍機油中への冷媒の
溶は込みが抑制される。また、暖房運転を開始する所定
時間前にヒータが作動され、冷凍機油が高温に加熱され
て、冷媒の冷凍機油に対する溶解度が低下する。そして
、通常の暖房運転時には、ヒータが停止され、絞り手段
が運転状況に応じた開度に制御されるように切換えられ
る。
Therefore, similarly to the above-mentioned invention, dissolution of the refrigerant into the refrigerating machine oil is suppressed. Further, the heater is activated a predetermined time before starting the heating operation, and the refrigerating machine oil is heated to a high temperature, thereby reducing the solubility of the refrigerant in the refrigerating machine oil. During normal heating operation, the heater is stopped, and the throttle means is switched to an opening degree that corresponds to the operating conditions.

請求項3のヒートポンプ式空気調和機においては、暖房
運転の停止時に絞り手段が閉成されて、冷凍機油中への
冷媒の溶は込みが抑制される。また、デフロスト運転を
開始する所定時間前にヒータが作動される。したがって
、冷媒の冷凍機油に対する溶解度が低下する。この状態
で、四方弁を暖房位置、絞り手段を開、デフロスト開閉
弁を開にしてデフロスト運転が開始される。そして、ヒ
ータを停止、デフロスト開閉弁を閉、絞り手段を運転状
況に応じた開度に制御されるように切換えて通常の暖房
運転に移行する。
In the heat pump type air conditioner according to the third aspect of the present invention, the throttling means is closed when the heating operation is stopped, thereby suppressing the infiltration of the refrigerant into the refrigerating machine oil. Further, the heater is activated a predetermined time before starting the defrost operation. Therefore, the solubility of the refrigerant in the refrigerating machine oil decreases. In this state, the four-way valve is set to the heating position, the throttling means is opened, and the defrost opening/closing valve is opened to start defrosting operation. Then, the heater is stopped, the defrost opening/closing valve is closed, and the throttle means is switched to be controlled to an opening degree that corresponds to the operating conditions, thereby transitioning to normal heating operation.

請求項4のヒートポンプ式空気調和機においては、暖房
運転の停止時に絞り手段が閉成されて、冷凍機油中への
冷媒の溶は込みが抑制される。デフロス1ル運転時には
、四方弁が暖房位置、絞り手段が閉、デフロスト開閉弁
が開、圧縮機のモータがインバータにより設定された熱
ロスの大きな周波数で駆動される。このため、モータの
発熱で冷凍機油が加熱され、冷媒の冷凍機油に対する溶
解度が低下する。そして、モータの周波数を通常値に戻
し、デフロスト開閉弁を閉、絞り手段を運転状況に応じ
た開度に制御されるように切換えて通常の暖房運転が開
始される。
In the heat pump air conditioner according to the fourth aspect of the present invention, the throttling means is closed when the heating operation is stopped, thereby suppressing the refrigerant from entering the refrigerating machine oil. During defrost single operation, the four-way valve is placed in the heating position, the throttling means is closed, the defrost opening/closing valve is opened, and the compressor motor is driven by the inverter at a frequency with large heat loss. Therefore, the refrigerating machine oil is heated by the heat generated by the motor, and the solubility of the refrigerant in the refrigerating machine oil decreases. Then, the frequency of the motor is returned to the normal value, the defrost opening/closing valve is closed, and the throttle means is switched to be controlled to an opening degree according to the operating conditions, and normal heating operation is started.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

第1図は本発明の第一実施例のヒートポンプ式空気調和
機の冷媒回路図、第2図は第1図の冷媒回路中の圧縮機
の吐出圧力と吸入圧力との時間的変化を示す特性図、第
3図は本発明の第二実施例のヒートポンプ式空気調和機
の冷媒回路図、第4図は第3図の冷媒回路中の圧縮機の
吐出圧力と吸入圧力との時間的変化を示す特性図、第5
図は本発明の第三実施例のヒートポンプ式空気調和機の
冷媒回路図、第6図は本発明の第四実施例のヒートポン
プ式空気調和機の冷媒回路図である。なお、図中、同一
の符合及び記号は同一または相当部分を示すものである
FIG. 1 is a refrigerant circuit diagram of a heat pump air conditioner according to the first embodiment of the present invention, and FIG. 2 is a characteristic showing temporal changes in the discharge pressure and suction pressure of the compressor in the refrigerant circuit of FIG. 1. 3 is a refrigerant circuit diagram of a heat pump type air conditioner according to the second embodiment of the present invention, and FIG. 4 shows temporal changes in the discharge pressure and suction pressure of the compressor in the refrigerant circuit of FIG. 3. Characteristic diagram shown, No. 5
The figure is a refrigerant circuit diagram of a heat pump type air conditioner according to a third embodiment of the present invention, and FIG. 6 is a refrigerant circuit diagram of a heat pump type air conditioner according to a fourth embodiment of the present invention. Note that in the figures, the same reference numerals and symbols indicate the same or equivalent parts.

く第一実施例〉 第1図において、(1)は外部からの動力を(qて冷媒
を圧縮する圧縮機、(2)は前記圧縮機(1)の吐出側
に接続され暖房位置及び冷房位置に切換え可能な四方弁
、(3)は前記四方弁(2)と圧縮機(1)との間の吐
出配管(4)上に配設された逆止弁であり、四方弁(2
)から圧縮機(1)に向かう冷媒の逆流を阻止する。
First Embodiment> In Fig. 1, (1) is a compressor that compresses refrigerant using external power (q), and (2) is connected to the discharge side of the compressor (1) and is connected to the heating position and the cooling position. The four-way valve (3) is a check valve disposed on the discharge pipe (4) between the four-way valve (2) and the compressor (1);
) to the compressor (1).

(5)は圧縮機(1)から逆止弁(3)及び暖房位置の
四方弁(2)を介して高温の冷媒が供給される室内熱交
換器、(6)は圧縮1(1)から逆止弁(3)及び冷房
位置の四方弁(2)を介して高温の冷媒が供給される室
外熱交換器、(7)は前記室内熱交換器(5)と室外熱
交換器(6)との間の冷媒配管(8)上に配設された開
度制御可能な膨張弁等の絞り手段である。
(5) is an indoor heat exchanger to which high temperature refrigerant is supplied from the compressor (1) via the check valve (3) and the four-way valve (2) in the heating position, and (6) is from the compressor 1 (1). An outdoor heat exchanger to which high-temperature refrigerant is supplied via a check valve (3) and a four-way valve (2) in the cooling position, and (7) are the indoor heat exchanger (5) and the outdoor heat exchanger (6). This is a throttling means such as an expansion valve whose opening degree can be controlled and which is disposed on the refrigerant pipe (8) between the refrigerant pipe and the refrigerant pipe (8).

(9)は圧縮機(1)の吸入側に配設されたアキュムレ
ータ、(11)は前記アキュムレータ(9)の吸入側及
び四方弁(2)間の吸入配管(10)と前記逆止弁(3
)の吸入側における前記吐出配管(4)とを接続するバ
イパス配管、(12)は前記バイパス配管(11)上に
配設された開閉弁、(13)は圧縮機(1)の温度を検
出するセンサである。
(9) is an accumulator disposed on the suction side of the compressor (1), and (11) is a suction pipe (10) between the suction side of the accumulator (9) and the four-way valve (2) and the check valve ( 3
), (12) is an on-off valve disposed on the bypass pipe (11), and (13) detects the temperature of the compressor (1). It is a sensor that

次に、上記のように構成された第一実施例のヒートポン
プ式空気調和機の動作を説明する。
Next, the operation of the heat pump air conditioner of the first embodiment configured as described above will be explained.

通常の冷房運転時には、四方弁(2)が冷房位置、開閉
弁(12)は閉、絞り手段(7)は運転状況に応じた開
度に制御されるように切換えられる。そして、圧縮機(
1)から吐出された冷媒は、四方弁(2)、室外熱交換
器(6)、冷媒配管(8)、絞り手段(7)、室内熱交
換器(5)、四方弁(2)、吸入配管(10)及びアキ
ュムレータ(9)を経て圧縮機(1)に戻る。
During normal cooling operation, the four-way valve (2) is switched to the cooling position, the on-off valve (12) is closed, and the throttle means (7) is controlled to an opening degree depending on the operating situation. And the compressor (
1) The refrigerant discharged from the four-way valve (2), the outdoor heat exchanger (6), the refrigerant pipe (8), the throttle means (7), the indoor heat exchanger (5), the four-way valve (2), and the suction It returns to the compressor (1) via the pipe (10) and the accumulator (9).

通常の暖房運転時には、四方弁(2)が暖房位置に切換
えられ、開閉弁(12)が閉成され、絞り手段(7)は
運転状況に応じた開度に制御されるように切換えられる
。そして、圧縮機(1)から吐出された冷媒は、図の実
線矢印で示すように、逆止弁(3)、四方弁(2)、室
内熱交換器(5)、絞り手段(7)、室外熱交換器(6
)、四方弁(2)、吸入配管(10)及びアキュムレー
タ(9)を経て圧縮機(1)に戻る。
During normal heating operation, the four-way valve (2) is switched to the heating position, the on-off valve (12) is closed, and the throttle means (7) is switched to be controlled to an opening degree depending on the operating situation. The refrigerant discharged from the compressor (1) is transferred to the check valve (3), the four-way valve (2), the indoor heat exchanger (5), the throttle means (7), as shown by the solid arrow in the figure. Outdoor heat exchanger (6
), the four-way valve (2), the suction pipe (10) and the accumulator (9) before returning to the compressor (1).

暖房運転の停止時には、絞り手段(7)が閉成される。When the heating operation is stopped, the throttle means (7) is closed.

このため、室内熱交換器(5)の両端が逆止弁(2)と
絞り手段(7)とで閉成され、高圧冷媒が運転中のまま
の冷媒分布で室内熱交換器(5)内に蓄えられる。した
がって、高圧冷媒の圧縮機(1)側への逆流が防止され
、圧縮機(1)内における冷凍機油中への冷媒の溶は込
みが抑制される。
Therefore, both ends of the indoor heat exchanger (5) are closed by the check valve (2) and the throttle means (7), and the high-pressure refrigerant is distributed within the indoor heat exchanger (5) as it is during operation. is stored in Therefore, backflow of the high-pressure refrigerant toward the compressor (1) is prevented, and dissolution of the refrigerant into the refrigerating machine oil in the compressor (1) is suppressed.

暖房運転の開始時には、四方弁(2)を暖房位置、開閉
弁(12)を開、絞り手段(7)を閉にして所定時間立
上がり運転が行われる。すると、圧縮機(1)から吐出
された高温、高圧の冷媒ガスは、点線矢印で示すように
、バイパス配管(11)及びアキュムレータ(9)を通
って圧縮機(1)に戻る。この場合、室内熱交換器(5
)及び室外熱交換器(6)で凝縮熱交換が行われないた
め、圧縮機(1)の吸入温度と吐出温度とが急激に上昇
して、圧縮機(1)内のシリンダ及び冷凍機油が高温に
加熱される。したがって、冷凍機油の溶解度がその温度
に反比例的に減少し、冷凍機油中に溶は込んでいた冷媒
がガス化して分離されるとともに、圧縮@(1)に吸入
された冷媒が冷凍機油中に溶は込みにくくなる。その結
果、冷媒回路中を循環する冷媒の流量が増加する。
At the start of the heating operation, the four-way valve (2) is placed in the heating position, the on-off valve (12) is opened, and the throttle means (7) is closed, and a start-up operation is performed for a predetermined period of time. Then, the high temperature, high pressure refrigerant gas discharged from the compressor (1) returns to the compressor (1) through the bypass pipe (11) and the accumulator (9), as shown by the dotted arrow. In this case, an indoor heat exchanger (5
) and the outdoor heat exchanger (6), the suction temperature and discharge temperature of the compressor (1) rise rapidly, causing the cylinder and refrigerating machine oil in the compressor (1) to Heated to high temperatures. Therefore, the solubility of the refrigerating machine oil decreases in inverse proportion to its temperature, the refrigerant dissolved in the refrigerating machine oil is gasified and separated, and the refrigerant sucked into the compressor @ (1) is dissolved in the refrigerating machine oil. It becomes difficult to melt. As a result, the flow rate of refrigerant circulating in the refrigerant circuit increases.

そして、圧縮機(1)の温度が予め定められた温度に到
達すると、センサ(13)がそれを検出し、これに基づ
き開閉弁(12)が開成され、かつ、絞り手段(7)が
運転状況に応じた開度に制御されて、前述した通常の暖
房運転に移行する。
When the temperature of the compressor (1) reaches a predetermined temperature, the sensor (13) detects it, and based on this, the on-off valve (12) is opened and the throttle means (7) is operated. The opening degree is controlled according to the situation, and the operation shifts to the normal heating operation described above.

このように、上記第一実施例のピー1−ポンプ式空気調
和機は、圧縮機(1)、四方弁(2)、逆止弁(3)、
室内熱交換器(5)、室外熱交換器(6)、絞り手段(
7)、アキュムレータ(9)、バイパス配管(11)及
び開閉弁(12)から構成したものである。
In this way, the P1-pump air conditioner of the first embodiment has a compressor (1), a four-way valve (2), a check valve (3),
Indoor heat exchanger (5), outdoor heat exchanger (6), throttling means (
7), an accumulator (9), a bypass pipe (11), and an on-off valve (12).

したがって、上記第一実施例のヒートポンプ式空気調和
機においては、暖房運転の停止時に絞り手段(7)を閉
成することにより、冷凍機油中への冷媒の溶は込みを抑
制できる。また、暖房運転の立上り時には、四方弁(2
)を暖房位置、開閉弁(12)を開、絞り手段(7)を
閉にして所定時間の立上り運転を行うことにより、冷凍
機油を加熱して冷媒を溶けに一りクシ、冷媒回路中の冷
媒の循環流量を増加することができる。そして、開閉弁
(12)を閉、絞り手段(7)を運転状況に応じた開度
に制御されるように切換えることにより、通常の暖房運
転を早期に開始することができる。
Therefore, in the heat pump type air conditioner of the first embodiment, by closing the throttle means (7) when the heating operation is stopped, it is possible to suppress the refrigerant from entering the refrigerating machine oil. Also, at the start of heating operation, a four-way valve (2
) is placed in the heating position, the on-off valve (12) is opened, and the throttling means (7) is closed to perform start-up operation for a predetermined period of time, thereby heating the refrigerating machine oil and melting the refrigerant. The circulation flow rate of refrigerant can be increased. Then, by closing the on-off valve (12) and switching the throttle means (7) so that the opening degree is controlled according to the operating conditions, normal heating operation can be started early.

この結果、第2図において、圧縮機(1)の吐出圧力は
Ha、吸入圧力はIbに示すように変化する。即ち、吐
出圧力Iaと吸入圧力Ibとは暖房運転の開始時点で既
に圧力差が生じている。そして、吸入圧力Ibは、立上
り運転の初期に緩やかに低下するが、安定運転時の圧力
以下とならないため、低圧の引き込み現象が発生しない
。また、吐出圧力Haは逆止弁(3)により立上り運転
の初期は変化せず、開閉弁(12)を閉に切換えた時点
から急上昇する。
As a result, in FIG. 2, the discharge pressure of the compressor (1) changes as shown by Ha, and the suction pressure changes as shown by Ib. That is, there is already a pressure difference between the discharge pressure Ia and the suction pressure Ib at the start of the heating operation. Although the suction pressure Ib gradually decreases at the beginning of the start-up operation, it does not fall below the pressure during stable operation, so a low pressure pull-in phenomenon does not occur. Further, the discharge pressure Ha does not change at the beginning of the start-up operation due to the check valve (3), but increases rapidly from the time when the on-off valve (12) is switched to close.

なお、第2図において、[a及びnbは第7図に示した
従来のヒートポンプ式空気調和機における圧縮機の吐出
圧力及び吸入圧力を示すものであり、これと比較して明
らかなように、上記第一実施例のヒートポンプ式空気調
和機によれば、暖房運転の立上りに要する時間が従来と
比較して大幅に短縮され、室内の温度を急速に暖めるこ
とができる。
In addition, in FIG. 2, [a and nb indicate the discharge pressure and suction pressure of the compressor in the conventional heat pump air conditioner shown in FIG. 7, and as is clear from comparison with this, According to the heat pump type air conditioner of the first embodiment, the time required for starting the heating operation is significantly shortened compared to the conventional one, and the indoor temperature can be rapidly raised.

く第2実施例〉 次に、本発明の第二実施例を第3図及び第4図に従って
説明する。なお、図中、第一実施例と同−符号及び記号
は第一実施例の構成部分と同一または相当する構成部分
を示すものであり、ここでは重複する説明を省略する。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIGS. 3 and 4. In the drawings, the same reference numerals and symbols as in the first embodiment indicate the same or corresponding components as in the first embodiment, and redundant explanation will be omitted here.

この第二実施例のヒートポンプ式空気調和機においては
、暖房運転の立上り時に圧縮1(1)の冷凍機油を加熱
する手段が前記第一実施例と相違している。即ち、この
第二実施例においては、第一実施例のバイパス配管(1
1)及び開閉弁(12)が省略され、これに代え、第3
図に示すように、圧縮機(1)に冷凍機油加熱用のヒー
タ(15)が付設されている。(16)は前記ヒータ(
15)に接続された電源である。
The heat pump type air conditioner of this second embodiment is different from the first embodiment in the means for heating compressed 1(1) refrigerating machine oil at the start of heating operation. That is, in this second embodiment, the bypass piping (1
1) and the on-off valve (12) are omitted, and instead of the third
As shown in the figure, a heater (15) for heating refrigerating machine oil is attached to the compressor (1). (16) is the heater (
15).

次に、上記のように構成された第二実施例のヒートポン
プ式空気調和機の動作を説明する。
Next, the operation of the heat pump type air conditioner of the second embodiment configured as described above will be explained.

通常の暖房運転時には、四方弁(2)が暖房位置に切換
えられるととも(、絞り手段(7)は運転状況に応じた
開度に制御されるように切換えられる。したがって、圧
縮機(1)から吐出された冷媒は、逆止弁(3)、四方
弁(2)、室内熱交換器(5)、絞り手段(7)、室外
熱交換器(6)、四方弁(2)及びアキュムレータ(9
)を経て圧縮機(1)に戻る。
During normal heating operation, the four-way valve (2) is switched to the heating position (and the throttle means (7) is switched to be controlled to an opening degree depending on the operating situation. Therefore, the compressor (1) The refrigerant discharged from the check valve (3), four-way valve (2), indoor heat exchanger (5), throttling means (7), outdoor heat exchanger (6), four-way valve (2), and accumulator ( 9
) and returns to the compressor (1).

また、l!!房運転の停止時には、第一実施例と同様に
、絞り手段(7)が開成される。このため、高圧冷媒が
運転中のままの冷媒分布で室内熱交換器(5)内に封じ
込められて、圧縮機(1)内における冷凍機油中への冷
媒の溶は込みが抑制される。
Also, l! ! When the chamber operation is stopped, the throttle means (7) is opened as in the first embodiment. Therefore, the high-pressure refrigerant is confined within the indoor heat exchanger (5) with the same refrigerant distribution during operation, and the refrigerant is prevented from dissolving into the refrigerating machine oil in the compressor (1).

一方、暖房運転を開始する所定時間前には、ヒータ(1
5)への通電が開始され、圧縮機(1)内のシリンダ及
び冷凍機油が高温に加熱される。
On the other hand, the heater (1
5) is started, and the cylinder and refrigerating machine oil in the compressor (1) are heated to a high temperature.

したがって、冷媒の冷凍機油に対する溶解度が温度に反
比例的(減少し、冷凍機油中に溶は込んでいた冷媒がガ
ス化して分離されるとともに、圧縮機(1)の運転開始
後において、圧縮機(1)内に吸入される冷媒が冷凍機
油中に溶は込みにくくなる。
Therefore, the solubility of the refrigerant in the refrigerating machine oil decreases inversely proportional to the temperature, and the refrigerant dissolved in the refrigerating machine oil is gasified and separated. 1) It becomes difficult for the refrigerant sucked into the refrigerator to dissolve into the refrigerating machine oil.

そして、圧縮!I!(1)の温度が予め定められた温度
に到達すると、センサ(13)がそれを検出し、絞り手
段(7)が運転状況に応じた開度に制御されるように切
換えら、れて、前記した通常の暖房運転に移行する。
And compression! I! When the temperature of (1) reaches a predetermined temperature, the sensor (13) detects it, and the throttle means (7) is switched to be controlled to an opening degree according to the operating situation. The operation shifts to the normal heating operation described above.

このように、上記第二実施例のヒートポンプ式空気調和
機は、圧縮機(1)、四方弁(2)、逆止弁(3)、室
内熱交換器(5)、室外熱交換器(6)、絞り手段(7
)、アキュムレータ(9)、及び冷凍機油加熱用のヒー
タ(15)から構成したものである。
As described above, the heat pump air conditioner of the second embodiment includes a compressor (1), a four-way valve (2), a check valve (3), an indoor heat exchanger (5), and an outdoor heat exchanger (6). ), aperture means (7
), an accumulator (9), and a heater (15) for heating refrigerating machine oil.

したがって、上記第二実施例のヒートポンプ式空気調和
機においては、暖房運転の停止時に絞り手段(7)を閉
成することにより、冷凍機油中への冷媒の溶は込みを抑
制できる。また、暖房運転を開始する所定時間前にヒー
タ(15)を作動させることにより、冷凍機油を加熱し
て冷媒を溶けにククシ、冷媒回路中の冷媒の循環流量を
増加することができる。
Therefore, in the heat pump type air conditioner of the second embodiment, by closing the throttle means (7) when the heating operation is stopped, it is possible to suppress the refrigerant from entering the refrigerating machine oil. Moreover, by operating the heater (15) a predetermined time before starting the heating operation, it is possible to heat the refrigerating machine oil and melt the refrigerant, thereby increasing the circulating flow rate of the refrigerant in the refrigerant circuit.

この結果、第4図において、圧縮機(1)の吐出圧力は
工a、吸入圧力はIbに示すように変化する。即ち、吐
出圧力Iaと吸入圧力Ibとは暖房運転の開始時点で既
に圧力差が生じている。そして、吸入圧力Ibは、立上
り運転の初期に緩やかに低下するが、安定運転時の圧力
以下とならないため、低圧の引き込み現象が発生しない
。また、吐出圧力Haは、第一実施例の場合とは異なり
、ヒータ(15)の作動により暖房運転の開始と同時に
急上昇する。したがって、第一実施例と比較して、通常
の暖房運転をより早期に開始することができる。
As a result, in FIG. 4, the discharge pressure of the compressor (1) changes as shown by E and the suction pressure changes as shown by Ib. That is, there is already a pressure difference between the discharge pressure Ia and the suction pressure Ib at the start of the heating operation. Although the suction pressure Ib gradually decreases at the beginning of the start-up operation, it does not fall below the pressure during stable operation, so a low pressure pull-in phenomenon does not occur. Moreover, unlike the case of the first embodiment, the discharge pressure Ha rises rapidly at the same time as the heating operation starts due to the operation of the heater (15). Therefore, compared to the first embodiment, normal heating operation can be started earlier.

〈第三実施例〉 次に、本発明の第三実施例を第5図に従って説明する。<Third Example> Next, a third embodiment of the present invention will be described with reference to FIG.

なお、図中、第二実施例と同一の符号は第二実施例の構
成部分と同一または相当する構成部分を示すものであり
、ここでは重複する説明を省略する。
In addition, in the figures, the same reference numerals as in the second embodiment indicate the same or corresponding components as those in the second embodiment, and redundant explanation will be omitted here.

この第三実施例のヒートポンプ式空気調和機は、前記第
二実施例の構成に加え、寒冷時にデフロスト運転を行う
ための冷媒回路を備えている。即ち、第5図において、
(17)は圧縮機(1)及び逆止弁(3)間の吐出配管
(4)と室外熱交換器(6)及び絞り手段(7)間の冷
媒配管(8)とを接続するデフロスト配管、(18)は
前記デフロスト配管(17)上に配設されたデフロスト
開閉弁、(19)は前記デフロスト開閉弁(18)の吐
出側と吸入配管(10)とを接続する減圧配管、(20
)は前記減圧配管(19)上に配設されたキャピラリチ
ューブである。
In addition to the configuration of the second embodiment, the heat pump type air conditioner of this third embodiment includes a refrigerant circuit for performing defrost operation in cold weather. That is, in FIG.
(17) is a defrost pipe that connects the discharge pipe (4) between the compressor (1) and the check valve (3) and the refrigerant pipe (8) between the outdoor heat exchanger (6) and the throttle means (7). , (18) is a defrost on-off valve disposed on the defrost pipe (17), (19) is a pressure reducing pipe connecting the discharge side of the defrost on-off valve (18) and the suction pipe (10), (20)
) is a capillary tube disposed on the vacuum pipe (19).

次に、上記のよう(構成された第三実施例のヒートポン
プ式空気調和機の動作を説明する。
Next, the operation of the heat pump type air conditioner of the third embodiment configured as described above will be explained.

通常のl!J房運転時には、デフロスト開閉弁(18)
が閉成され、四方弁(2)が暖房位置に切換えられると
ともに、絞り手段(7)は運転状況に応じた開度に制御
されるように切換えられる。したがって、圧縮機(1)
から吐出された冷媒は、逆止弁(3)、四方弁(2>、
室内熱交換器(5)、絞り手段(7)、室外熱交換器(
6)、四方弁(2)、及びアキュムレータ(9)を経て
圧縮機(1)に戻る。
Normal l! When operating the J chamber, the defrost on/off valve (18)
is closed, the four-way valve (2) is switched to the heating position, and the throttle means (7) is switched to be controlled to an opening degree depending on the operating situation. Therefore, the compressor (1)
The refrigerant discharged from the check valve (3), four-way valve (2>,
Indoor heat exchanger (5), throttling means (7), outdoor heat exchanger (
6), the four-way valve (2), and the accumulator (9) before returning to the compressor (1).

また、暖房運転の停止時には、前記各実施例と同様、絞
り手段(7)が開成される。このため、高圧冷媒が運転
中のままの冷媒分布で室内熱交換器(5)内に封じ込め
られて、圧縮機(1)内における冷凍機油中への冷媒の
溶は込みが抑制される。
Further, when the heating operation is stopped, the throttle means (7) is opened as in each of the above embodiments. Therefore, the high-pressure refrigerant is confined within the indoor heat exchanger (5) with the same refrigerant distribution during operation, and the refrigerant is prevented from dissolving into the refrigerating machine oil in the compressor (1).

一方、デフロスト運転を開始する所定時間前には、ヒー
タ(15)への通電が開始され、圧縮機(1)内のシリ
ンダ及び冷凍機油が高温に加熱される。したがって、冷
凍機油中への冷媒の溶解度が温度に反比例的に減少し、
冷凍機油中に溶は込んでいた冷媒がガス化して分離され
、その結果、冷媒回路中を循環する冷媒の流量が増加す
る。
On the other hand, at a predetermined time before the start of the defrost operation, power supply to the heater (15) is started, and the cylinder and refrigerating machine oil in the compressor (1) are heated to a high temperature. Therefore, the solubility of refrigerant in refrigeration oil decreases inversely with temperature,
The refrigerant dissolved in the refrigerating machine oil is gasified and separated, and as a result, the flow rate of refrigerant circulating in the refrigerant circuit increases.

次いで、ヒータ(15)を通電状態に保持し、四方弁(
2)を暖房位置、絞り手段(7)を閉、デフロスト開閉
弁(18)を開としてデフロスト運転が開始される。す
ると、圧縮機(1)から吐出された大部分のデフロスト
用熱源としての高温冷媒ガスは、デフロスト開閉弁(1
8)が開放されているため、実線矢印で示すように、圧
縮機(1)、デフロスト開閉弁(18)、室外熱交換器
(6)、四方弁(2)、吸入配管(10)及びアキュム
レータ(9)を経て圧縮機(1)に戻る回路内で循環す
る。また、一部の高温冷媒ガスは、破線矢印で示すよう
に、デフロスト開閉弁(18)から減圧配管(19)、
キャピラリチューブ(20)を通って減圧されたのち、
吸入配管(10)に流入してデフロスト用に使用された
冷媒と合流し、アキュムレータ(9)を介して圧縮機(
1)に戻る。
Next, the heater (15) is kept energized and the four-way valve (
Defrost operation is started by setting 2) to the heating position, closing the throttle means (7), and opening the defrost on-off valve (18). Then, most of the high temperature refrigerant gas discharged from the compressor (1), which serves as a heat source for defrosting, passes through the defrost on-off valve (1).
8) is open, the compressor (1), defrost on-off valve (18), outdoor heat exchanger (6), four-way valve (2), suction pipe (10), and accumulator are opened, as shown by the solid arrows. (9) and then circulates within the circuit returning to the compressor (1). In addition, some high-temperature refrigerant gas flows from the defrost on-off valve (18) to the pressure reduction pipe (19), as shown by the broken line arrow.
After being depressurized through the capillary tube (20),
It flows into the suction pipe (10), joins with the refrigerant used for defrosting, and flows through the accumulator (9) to the compressor (
Return to 1).

このデフロスト運転期間中は、ヒータ(15)への通電
が継続するとともに、キャピラリチューブ(20)側に
分岐した高温冷媒によりデフロスト侵の冷媒温度の低下
が抑制されるため、圧縮機(1)の冷凍機油が高温に保
持される。また、デフロスト運転期間中は、室内熱交換
器(5)の両端が逆止弁(2)と絞り手段(7)とで閉
成されているので、高圧冷媒の圧縮機(1)側への逆流
が防止される。
During this defrost operation period, the heater (15) continues to be energized, and the high-temperature refrigerant branched to the capillary tube (20) suppresses the drop in refrigerant temperature during defrost attack, so the compressor (1) Refrigerating machine oil is kept at a high temperature. Also, during the defrost operation period, both ends of the indoor heat exchanger (5) are closed by the check valve (2) and the throttling means (7), so that high-pressure refrigerant is not transferred to the compressor (1) side. Backflow is prevented.

こうして、デフロスト運転が終了すると、デフロスト開
閉弁(18)が開成されるとともに、絞り手段(7)が
運転状況に応じた開度に制御されるように切換えられ、
かつ、ヒータ(15)への通電が停止されて、前述した
通常の暖房運転に移行する。
In this way, when the defrost operation is completed, the defrost on-off valve (18) is opened and the throttle means (7) is switched to be controlled to an opening degree according to the operating situation.
Then, the power supply to the heater (15) is stopped, and the normal heating operation described above is started.

このように、上記第三実施例のヒートポンプ式空気調和
機は、圧縮機(1)、四方弁(2)、逆止弁(3)、室
内熱交換器(5)、室外熱交換器(6)、絞り手段(7
)、アキュムレータ(9)、冷凍機油加熱用のヒータ(
15)、デフロスト配管(17)上に配設されたデフロ
スト開閉弁(18)、及び減圧配管(19)上に配設さ
れたキャピラリチューブ(20)から構成したものであ
る。
As described above, the heat pump air conditioner of the third embodiment includes a compressor (1), a four-way valve (2), a check valve (3), an indoor heat exchanger (5), and an outdoor heat exchanger (6). ), aperture means (7
), accumulator (9), heater for refrigerating machine oil (
15), a defrost on-off valve (18) disposed on the defrost pipe (17), and a capillary tube (20) disposed on the pressure reduction pipe (19).

したがって、上記第三実施例のヒートポンプ式空気調和
機においては、暖房運転の停止時に絞り手段(7)を閉
成することにより、冷凍機油中への冷媒の溶は込みを抑
制できる。また、デフロスト運転を開始する所定時間前
からデフロスト運転を終了するまでの期間中、ヒータ(
15)を作動させることにより、この期間中における冷
媒の溶解損失量を低下させ、豊富な冷媒流量をもってデ
フロスト運転を効率よく行うことができる。その結果、
圧縮機(1)のいわゆる寝込み起動が防止されるととも
に、暖房運転の立上りに要する時間が大幅に短縮され、
室内の温度を急速に上昇させることができる。なお、圧
縮機(1)の吐出圧力及び吸入圧力は、前記第二実施例
の場合と同様、第4図に示すように変化する。
Therefore, in the heat pump type air conditioner of the third embodiment, by closing the throttle means (7) when the heating operation is stopped, it is possible to suppress the refrigerant from entering the refrigerating machine oil. In addition, the heater (
By operating 15), the amount of refrigerant dissolution loss during this period can be reduced, and the defrost operation can be performed efficiently with an abundant refrigerant flow rate. the result,
This prevents the compressor (1) from starting during a sleep period, and significantly reduces the time required to start up heating operation.
It can quickly raise the temperature inside the room. Note that the discharge pressure and suction pressure of the compressor (1) change as shown in FIG. 4, as in the second embodiment.

〈第四実施例〉 次に、本発明の第四実施例を第6図に従って説明する。<Fourth Example> Next, a fourth embodiment of the present invention will be described with reference to FIG.

なお、図中、第三実施例と同一の符号は第三実施例の構
成部分と同一または相当する構成部分を示すものであり
、ここでは重複する説明を省略する。
In addition, in the drawings, the same reference numerals as those in the third embodiment indicate constituent parts that are the same as or correspond to those in the third embodiment, and redundant explanation will be omitted here.

この第四実施例のヒートポンプ式空気調和機は、デフロ
スト運転時に圧縮機(1)の冷凍機油を加熱する手段が
前記第三実施例と相違している。即ち、第6図において
、(23)は圧縮機(1)に内蔵し、そこから動力を得
るモータ、(24)は前記モータ(23)の周波数を変
更するインバータであり、圧縮機(1)と電源(16)
との間の電気回路に配設されている。そして、この第四
実施例の加熱手段は、デフロスト運転時にモータ(23
)がインバータ(24)により設定された熱ロスの大き
い周波数で駆動され、そのモータ(23)が発生する熱
で圧縮機(1)の冷凍機油が加熱されるように構成され
ている。なお、(25)は室外熱交換器(6)から吐出
された冷媒の温度を検出するセンサであり、リード線(
26)を介して温度式自動膨張弁よりなる絞り手段(7
)に接続されている。
The heat pump type air conditioner of this fourth embodiment is different from the third embodiment in the means for heating the refrigerating machine oil of the compressor (1) during defrost operation. That is, in FIG. 6, (23) is a motor that is built in the compressor (1) and receives power from it, and (24) is an inverter that changes the frequency of the motor (23). and power supply (16)
installed in the electrical circuit between the The heating means of this fourth embodiment is a motor (23) during defrost operation.
) is driven by an inverter (24) at a set frequency with a large heat loss, and the refrigerating machine oil of the compressor (1) is heated by the heat generated by the motor (23). Note that (25) is a sensor that detects the temperature of the refrigerant discharged from the outdoor heat exchanger (6), and the lead wire (
through the throttle means (7) consisting of a temperature-type automatic expansion valve.
)It is connected to the.

次に、上記のように構成された第四実施例のヒートポン
プ式空気調和機の動作を説明する。
Next, the operation of the heat pump type air conditioner of the fourth embodiment configured as described above will be explained.

通常の暖房運転時及び暖房運転停止時には、この第四実
施例のヒートポンプ式空気調和機は第三実施例と同様に
動作する。
During normal heating operation and when heating operation is stopped, the heat pump air conditioner of the fourth embodiment operates in the same manner as the third embodiment.

デフロスト運転の開始時には、四方弁(2)が暖房位置
に切換えられ、絞り手段(7)が閉成され、デフロスト
開閉弁(18)が開放されるとともに、インバータ(2
4)がモータ(23)に熱ロスが大きくモータ効率が悪
い周波数を設定する。
At the start of defrost operation, the four-way valve (2) is switched to the heating position, the throttle means (7) is closed, the defrost on-off valve (18) is opened, and the inverter (2)
4) sets a frequency for the motor (23) that causes large heat loss and poor motor efficiency.

この状態で圧縮機(1)が起動されると、圧縮機(1)
から吐出された大部分のデフロスト用熱源としての高温
冷媒ガスは、デフロスト開閉弁(18)が開放されてい
るため、実線矢印で示すように、圧縮機(1)、デフロ
スト開閉弁(18)、室外熱交換器(6)、四方弁(2
)、吸入配管(10)及びアキュムレータ(9)を経て
圧縮機(1)に戻る回路内で循環する。また、一部の高
温冷媒ガスは、破線矢印で示すように、デフロスト開閉
弁(18)から減圧配管(19)、キャピラリチューブ
(20)を通って減圧されたのち、吸入配管(10)に
流入してデフロスト用に使用された冷媒と合流し、アキ
ュムレータ(9)を介して圧縮機(1)に戻る。
When the compressor (1) is started in this state, the compressor (1)
Since the defrost on-off valve (18) is open, most of the high-temperature refrigerant gas discharged from the compressor (1), the defrost on-off valve (18), and Outdoor heat exchanger (6), four-way valve (2
), is circulated in a circuit that returns to the compressor (1) via the suction pipe (10) and the accumulator (9). In addition, some high-temperature refrigerant gas is depressurized from the defrost on-off valve (18) through the pressure reduction pipe (19) and the capillary tube (20), and then flows into the suction pipe (10), as shown by the dashed arrow. It joins with the refrigerant used for defrosting, and returns to the compressor (1) via the accumulator (9).

このデフロスト運転期間中は、モータ(23)がインバ
ータ(24)により設定された熱ロスの大きい周波数で
駆動されるため、そのモータ(23)の発熱で圧縮機(
1)内のシリンダ及び冷凍機油が高温に加熱される。こ
れに加え、キャピラリチューブ(20)側に分岐した高
温冷媒によりデフロスト俊の冷媒温度の低下が抑制され
るため、圧縮機(1)の冷凍機油が高温に保持される。
During this defrost operation period, the motor (23) is driven by the inverter (24) at a frequency with large heat loss, so the heat generated by the motor (23) causes the compressor (
1) The cylinder and refrigerating machine oil inside are heated to a high temperature. In addition, the high-temperature refrigerant branched to the capillary tube (20) side suppresses a drop in the refrigerant temperature during defrost, so the refrigerating machine oil in the compressor (1) is maintained at a high temperature.

したがって、冷凍機油中への冷媒の溶解度がその温度に
反比例的に減少し、冷凍機油中に溶は込んでいた冷媒が
ガス化して分離され、その結果、冷媒回路中を循環する
冷媒の流量が増加する。また、デフロスト運転期間中は
、室内熱交換器(5)の両端が逆止弁(2)と絞り手段
(7)とで閉成されているので、高圧冷媒の圧縮機(1
)側への逆流が防止される。
Therefore, the solubility of the refrigerant in the refrigerant oil decreases in inverse proportion to its temperature, and the refrigerant dissolved in the refrigerant oil is gasified and separated, and as a result, the flow rate of the refrigerant circulating in the refrigerant circuit is reduced. To increase. Also, during the defrost operation period, both ends of the indoor heat exchanger (5) are closed by the check valve (2) and the throttling means (7), so the high-pressure refrigerant compressor (1
) side is prevented.

このデフロスト運転の結果、室外熱交換器(6)の吐出
冷媒の温度が所定の温度に達すると、それをセンサ(2
5)が検出して、絞り手段(7)が運転状況に応じた開
度に制御されるように切換えられるとともに、デフロス
ト開閉弁(18)が閉成され、かつ、インバータ(24
)がモータ(23)に熱ロスの少い通常の周波数を設定
して、前記した通常の暖房運転に移行する。
As a result of this defrost operation, when the temperature of the refrigerant discharged from the outdoor heat exchanger (6) reaches a predetermined temperature, it is detected by the sensor (2).
5) is detected, the throttle means (7) is switched to be controlled to an opening degree according to the operating situation, the defrost on-off valve (18) is closed, and the inverter (24
) sets the motor (23) to a normal frequency with less heat loss, and shifts to the above-described normal heating operation.

このように、上記第四実施例のヒートポンプ式空気調和
機は、モータ(23)を内蔵した圧縮機(1)、モータ
(23)の周波数を変更するインバータ(24)、西方
弁(2)、逆止弁(3)、室内熱交換器(5)、室、外
熱交換器(6)、絞り手段(7)、アキュムレータ(9
)、デフロスト配管(17)上に配設されたデフロスト
開閉弁(18)、及び減圧配管(19)上に配設された
キャピラリチューブ(20)から構成したものである。
As described above, the heat pump type air conditioner of the fourth embodiment includes a compressor (1) with a built-in motor (23), an inverter (24) for changing the frequency of the motor (23), a western valve (2), Check valve (3), indoor heat exchanger (5), chamber, external heat exchanger (6), throttling means (7), accumulator (9)
), a defrost on-off valve (18) disposed on the defrost pipe (17), and a capillary tube (20) disposed on the pressure reduction pipe (19).

したがって、上記第四実施例のビートポンプ式空気調和
機においては、暖房運転の停止時に絞り手段(7)を閉
成することにより、冷凍機油中への冷媒の溶は込みを抑
制できる。また、デフロスト運転期間中には、インバー
タ(24)によりモータ(23)に熱ロスの大きい周波
数が設定されて、モータ(23)の発熱で冷凍機油が加
熱されるため、冷凍機油中への冷媒の溶は込みを抑制し
てζデフロスト運転を効率よく行うことができる。
Therefore, in the beat pump type air conditioner of the fourth embodiment, by closing the throttle means (7) when the heating operation is stopped, it is possible to suppress the refrigerant from entering the refrigerating machine oil. In addition, during the defrost operation period, the inverter (24) sets the motor (23) to a frequency with large heat loss, and the refrigerating machine oil is heated by the heat generated by the motor (23), so the refrigerant flows into the refrigerating machine oil. The zeta defrost operation can be carried out efficiently by suppressing melt penetration.

その結果、寝込み起動を防止できるとともに、室内の温
度を急速に暖めることができる。なお、この第四実施例
においても、圧縮1ll(1)の吐出圧力及び吸入圧力
は、前記第二実施例の場合と同様、第4図に示すように
変化する。
As a result, it is possible to prevent the device from starting up while asleep, and it is also possible to rapidly increase the temperature in the room. In this fourth embodiment as well, the discharge pressure and suction pressure of the compression 1 liter (1) change as shown in FIG. 4, as in the second embodiment.

[発明の効果] 以上に詳述したように、請求項1に記載された本発明の
ヒートポンプ式空気調和機は、圧縮機と、暖房位置及び
冷房位置に切換え可能な四方弁と、四方弁から圧縮機に
向かう冷媒の逆流を阻止する逆止弁と、室内熱交換器と
室外熱交換器との間に配設された開度制御可能な絞り手
段と、圧縮機の吸入側に配設されたアキュムレータと、
アキュムレータと圧縮機の吐出側とを接続するバイパス
配管上に配設された開閉弁とから構成したものである。
[Effects of the Invention] As detailed above, the heat pump air conditioner of the present invention described in claim 1 includes a compressor, a four-way valve that can be switched to a heating position and a cooling position, and a four-way valve that can be switched between a heating position and a cooling position. A check valve that prevents the backflow of refrigerant toward the compressor, a throttle means that can control the opening and is located between the indoor heat exchanger and the outdoor heat exchanger, and a throttle means that is located on the suction side of the compressor. an accumulator,
It consists of an on-off valve disposed on a bypass pipe connecting the accumulator and the discharge side of the compressor.

したがって、暖房運転の停止時に、逆止弁と絞り手段と
の間の室内熱交換器中に冷媒を封じ込めて、逆流による
冷凍機油中への冷媒の溶は込みを抑制できる。また、暖
房運転の立上り時には、圧縮機から吐出された冷媒がバ
イパス配管及びアキュムレータを介して循環するため、
圧縮機内の冷凍機油を効率よく加熱して、冷媒の循環流
量を増加でき、その結果、室内の温度を急速に暖めるこ
とができる。
Therefore, when the heating operation is stopped, the refrigerant is confined in the indoor heat exchanger between the check valve and the throttle means, and it is possible to prevent the refrigerant from entering the refrigerating machine oil due to backflow. In addition, at the start of heating operation, the refrigerant discharged from the compressor circulates through the bypass piping and the accumulator.
The refrigerating machine oil in the compressor can be efficiently heated to increase the circulation flow rate of refrigerant, and as a result, the indoor temperature can be rapidly warmed.

また、請求項2に記載されたヒートポンプ式空気調和機
は、圧縮機と、暖房位置及び冷房位置に切換え可能な四
方弁と、四方弁から圧縮機に向かう冷媒の逆流を阻止す
る逆止弁と、室内熱交換器と室外熱交換器との間に配設
された開度制御可能な絞り手段と、圧縮機の吸入側に配
設されたアキュムレータと、圧縮機内の冷凍機油を加熱
するヒータとから構成したものである。したがって、請
求項1の発明と同様、暖房運転停止時に冷媒の溶は込み
を抑制することができる。また、暖房運転を開始する所
定時間前にヒータを作動することにより、圧縮機内の冷
凍機油を短時間に加熱でき、その結果、登高な冷媒の循
環流量をもって室内の温度を急速に上昇させることがで
きる。
The heat pump air conditioner according to claim 2 further includes a compressor, a four-way valve that can be switched between a heating position and a cooling position, and a check valve that prevents the refrigerant from flowing backward from the four-way valve toward the compressor. , a throttle means that can control the opening degree arranged between the indoor heat exchanger and the outdoor heat exchanger, an accumulator arranged on the suction side of the compressor, and a heater that heats the refrigerating machine oil in the compressor. It is composed of Therefore, similarly to the invention of claim 1, it is possible to suppress the refrigerant from entering the solution when the heating operation is stopped. In addition, by activating the heater a predetermined time before starting heating operation, the refrigerating machine oil in the compressor can be heated in a short time, and as a result, the indoor temperature can be rapidly raised with a high circulating flow rate of refrigerant. can.

更に、請求項3に記載されたヒートポンプ式空気調和機
は、圧縮機と、暖房位置及び冷房位置に切換え可能な四
方弁と、四方弁から圧縮機に向かう冷媒の逆流を阻止す
る逆止弁と、室内熱交換器と室外熱交換器との間に配設
された開度制御可能な絞り手段と、圧縮機の吸入側に配
設されたアキュムレータと、圧縮機内の冷凍機油を加熱
するヒータと、デフロスト配管上に配設されたデフロス
ト開閉弁と、減圧配管上に配設されたキャピラリチュー
ブとから構成したものである。したがって、請求項1と
同様、暖房運転停止時に冷媒の溶は込みを抑制すること
ができる。また、デフロスト運転を開始する所定時間前
からデフロスト運転を終了するまでの期間中、ヒータが
作動されるため、デフロスト運転を短時間に効率よく行
うことができる。その結果、暖房運転の立上り性能がよ
くなり、室内を急速に暖めることができる。
Furthermore, the heat pump air conditioner according to claim 3 includes a compressor, a four-way valve that can be switched between a heating position and a cooling position, and a check valve that prevents refrigerant from flowing backward from the four-way valve toward the compressor. , a throttle means that can control the opening degree arranged between the indoor heat exchanger and the outdoor heat exchanger, an accumulator arranged on the suction side of the compressor, and a heater that heats the refrigerating machine oil in the compressor. , a defrost on-off valve disposed on the defrost piping, and a capillary tube disposed on the pressure reducing piping. Therefore, similarly to the first aspect, it is possible to suppress the refrigerant from entering the solution when the heating operation is stopped. Further, since the heater is operated during a period from a predetermined time before the start of the defrost operation until the end of the defrost operation, the defrost operation can be performed efficiently in a short time. As a result, the start-up performance of the heating operation is improved, and the room can be rapidly heated.

そして、請求項4に記載されたヒートポンプ式空気調和
機は、モータを内蔵した圧縮機と、モータの周波数を変
更するインバータと、暖房位置及び冷房位置に切換え可
能な四方弁と、四方弁から圧縮機に向かう冷媒の逆流を
阻止する逆止弁と、室内熱交換器と室外熱交換器との間
に配設された開度制御可能な絞り手段と、圧縮機の吸入
側に配設されたアキュムレータと、デフロスト配管上に
配設されたデフロスト開閉弁と、減圧配管上に配設され
たキャピラリチューブとから構成したものである。した
がって、請求項1と同様、暖房運転停止時に冷媒の溶は
込みを抑制することができる。
The heat pump type air conditioner according to claim 4 includes a compressor with a built-in motor, an inverter that changes the frequency of the motor, a four-way valve that can be switched to a heating position and a cooling position, and a compressor that compresses air from the four-way valve. A check valve that prevents the backflow of refrigerant toward the compressor, a throttle means that can control the opening and is located between the indoor heat exchanger and the outdoor heat exchanger, and a throttle means that is located on the suction side of the compressor. It consists of an accumulator, a defrost on-off valve disposed on the defrost piping, and a capillary tube disposed on the pressure reducing piping. Therefore, similarly to the first aspect, it is possible to suppress the refrigerant from entering the solution when the heating operation is stopped.

また、デフロスト運転期間中には、モータがインバータ
により設定された熱ロスの大きい周波数で駆動されて、
そのモータの発熱で冷凍機油が加熱されるため、簡単な
構成で効率のよいデフロスト運転を行うことができる。
Also, during the defrost operation period, the motor is driven by the inverter at a frequency with a large heat loss.
Since the refrigerating machine oil is heated by the heat generated by the motor, efficient defrost operation can be performed with a simple configuration.

その結果、暖房運転の立上り性能をよくして、室内を急
速に暖めることができる。
As a result, the start-up performance of the heating operation can be improved and the room can be rapidly heated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例のヒートポンプ式空気調和
機の冷媒回路図、第2図は第1図の冷媒回路中の圧縮機
の吐出圧力と吸入圧力との時間的変化を従来との関係に
おいて示す特性図、第3図は本発明の第二実施例のヒー
トポンプ式空気調和機の冷媒回路図、第4図は第3図の
冷媒回路中の圧縮機の吐出圧力と吸入圧力との時間的変
化を従来との関係において示す特性図、第5図は本発明
の第三実施例のヒートポンプ式空気調和機の冷媒回路図
、第6図は本発明の第四実施例のヒートポンプ式空気調
和機の冷媒回路図、第7図は従来のヒートポンプ式空気
調和機を示す冷媒回路図である。 図において、 1:圧縮機 3:逆止弁 5:室内熱交換器 7:絞り手段 9:アキュムレータ 11:バイパス配管 15:ヒータ 2:四方弁 4:吐出配管 6:室外熱交換器 8:冷媒配管 10:吸入配管 12:開閉弁 17:デフロスト配管 18:デフロスト開閉弁  19:減圧配管20:キャ
ピラリチューブ 23:モータ24:インバータ である。 なお、図中、同−符号及び同一記号は同一または相当部
分を示すものである。 代理人 弁理士 大台 増雄 外2名 に圧縮機 4:吐出配管 7:絞り手段 第5図 17:デフロスト配管 第6図 23:モータ
Fig. 1 is a refrigerant circuit diagram of a heat pump air conditioner according to the first embodiment of the present invention, and Fig. 2 shows the temporal changes in the discharge pressure and suction pressure of the compressor in the refrigerant circuit of Fig. 1 compared to the conventional one. FIG. 3 is a refrigerant circuit diagram of a heat pump air conditioner according to the second embodiment of the present invention, and FIG. 4 is a characteristic diagram showing the relationship between the discharge pressure and suction pressure of the compressor in the refrigerant circuit of FIG. Fig. 5 is a refrigerant circuit diagram of a heat pump type air conditioner according to the third embodiment of the present invention, and Fig. 6 is a refrigerant circuit diagram of a heat pump type air conditioner according to the fourth embodiment of the present invention. Refrigerant circuit diagram of air conditioner FIG. 7 is a refrigerant circuit diagram showing a conventional heat pump type air conditioner. In the figure: 1: Compressor 3: Check valve 5: Indoor heat exchanger 7: Throttling means 9: Accumulator 11: Bypass piping 15: Heater 2: Four-way valve 4: Discharge piping 6: Outdoor heat exchanger 8: Refrigerant piping 10: Suction piping 12: On-off valve 17: Defrost piping 18: Defrost on-off valve 19: Depressurization piping 20: Capillary tube 23: Motor 24: Inverter. In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts. Agent: Patent attorney Masuo Odai and two others: Compressor 4: Discharge piping 7: Throttle means 5 Figure 17: Defrost piping Figure 6 23: Motor

Claims (4)

【特許請求の範囲】[Claims] (1)外部からの動力を得て冷媒を圧縮する圧縮機と、 前記圧縮機の吐出側に接続され暖房位置及び冷房位置に
切換え可能な四方弁と、 前記四方弁から圧縮機に向かう冷媒の逆流を阻止する逆
止弁と、 前記圧縮機から暖房位置の四方弁を介して冷媒が供給さ
れる室内熱交換器と、 前記圧縮機から冷房位置の四方弁を介して冷媒が供給さ
れる室外熱交換器と、 前記室内熱交換器と室外熱交換器との間に配設された開
度制御可能な絞り手段と、 前記圧縮機の吸入側に配設されたアキュムレータと、 前記アキュムレータの吸入側と圧縮機の吐出側とを接続
するバイパス配管上に配設された開閉弁と を具備することを特徴とするヒートポンプ式空気調和機
(1) A compressor that receives external power to compress refrigerant; a four-way valve that is connected to the discharge side of the compressor and can be switched between a heating position and a cooling position; and a compressor that compresses refrigerant from the four-way valve to the compressor. a check valve that prevents backflow; an indoor heat exchanger to which refrigerant is supplied from the compressor through a four-way valve in a heating position; and an outdoor heat exchanger to which refrigerant is supplied from the compressor through a four-way valve in a cooling position. a heat exchanger; an opening controllable throttle means disposed between the indoor heat exchanger and the outdoor heat exchanger; an accumulator disposed on the suction side of the compressor; and a suction side of the accumulator. 1. A heat pump air conditioner characterized by comprising an on-off valve disposed on bypass piping connecting the side and the discharge side of the compressor.
(2)外部からの動力を得て冷媒を圧縮する圧縮機と、 前記圧縮機の吐出側に接続され暖房位置及び冷房位置に
切換え可能な四方弁と、 前記四方弁から圧縮機に向かう冷媒の逆流を阻止する逆
止弁と、 前記圧縮機から暖房位置の四方弁を介して冷媒が供給さ
れる室内熱交換器と、 前記圧縮機から冷房位置の四方弁を介して冷媒が供給さ
れる室外熱交換器と、 前記室内熱交換器と室外熱交換器との間に配設された開
度制御可能な絞り手段と、 前記圧縮機の吸入側に配設されたアキュムレータと、 前記圧縮機内の冷凍機油を加熱するヒータとを具備する
ことを特徴とするヒートポンプ式空気調和機。
(2) a compressor that compresses refrigerant using external power; a four-way valve that is connected to the discharge side of the compressor and can be switched between a heating position and a cooling position; and a compressor that compresses refrigerant from the four-way valve to the compressor. a check valve that prevents backflow; an indoor heat exchanger to which refrigerant is supplied from the compressor through a four-way valve in a heating position; and an outdoor heat exchanger to which refrigerant is supplied from the compressor through a four-way valve in a cooling position. a heat exchanger; an opening-controllable throttle means disposed between the indoor heat exchanger and the outdoor heat exchanger; an accumulator disposed on the suction side of the compressor; A heat pump air conditioner characterized by comprising a heater that heats refrigerating machine oil.
(3)外部からの動力を得て冷媒を圧縮する圧縮機と、 前記圧縮機の吐出側に接続され暖房位置及び冷房位置に
切換え可能な四方弁と、 前記四方弁から圧縮機に向かう冷媒の逆流を阻止する逆
止弁と、 前記圧縮機から暖房位置の四方弁を介して冷媒が供給さ
れる室内熱交換器と、 前記圧縮機から冷房位置の四方弁を介して冷媒が供給さ
れる室外熱交換器と、 前記室内熱交換器と室外熱交換器との間に配設された開
度制御可能な絞り手段と、 前記圧縮機の吸入側に配設されたアキュムレータと、 前記圧縮機内の冷凍機油を加熱するヒータと、前記圧縮
機の吐出側と前記室外熱交換器及び絞り手段間の冷媒配
管とを接続するデフロスト配管上に配設された開閉弁と
、 前記開閉弁の吐出側と前記アキュムレータとを接続する
減圧配管上に配設されたキャピラリチューブと を具備することを特徴とするヒートポンプ式空気調和機
(3) a compressor that compresses refrigerant using external power; a four-way valve that is connected to the discharge side of the compressor and can be switched between a heating position and a cooling position; and a compressor that compresses refrigerant from the four-way valve to the compressor. a check valve that prevents backflow; an indoor heat exchanger to which refrigerant is supplied from the compressor through a four-way valve in a heating position; and an outdoor heat exchanger to which refrigerant is supplied from the compressor through a four-way valve in a cooling position. a heat exchanger; an opening-controllable throttle means disposed between the indoor heat exchanger and the outdoor heat exchanger; an accumulator disposed on the suction side of the compressor; a heater that heats refrigerating machine oil; an on-off valve disposed on a defrost pipe that connects the discharge side of the compressor and the refrigerant pipe between the outdoor heat exchanger and the throttling means; a discharge side of the on-off valve; A heat pump air conditioner comprising: a capillary tube disposed on a decompression pipe connecting the accumulator.
(4)動力を得るモータを内蔵した圧縮機と、前記モー
タの周波数を変更するインバータと、前記圧縮機の吐出
側に接続され暖房位置及び冷房位置に切換え可能な四方
弁と、 前記四方弁から圧縮機に向かう冷媒の逆流を阻止する逆
止弁と、 前記圧縮機から暖房位置の四方弁を介して冷媒が供給さ
れる室内熱交換器と、 前記圧縮機から冷房位置の四方弁を介して冷媒が供給さ
れる室外熱交換器と、 前記室内熱交換器と室外熱交換器との間に配設された開
度制御可能な絞り手段と、 前記圧縮機の吸入側に配設されたアキュムレータと、 前記圧縮機の吐出側と前記室外熱交換器及び絞り手段間
の冷媒配管とを接続するデフロスト配管上に配設された
デフロスト開閉弁と、 前記デフロスト開閉弁の吐出側と前記アキュムレータと
を接続する減圧配管上に配設されたキャピラリチューブ
と を具備することを特徴とするヒートポンプ式空気調和機
(4) a compressor with a built-in motor that obtains power, an inverter that changes the frequency of the motor, a four-way valve that is connected to the discharge side of the compressor and can be switched between a heating position and a cooling position; and from the four-way valve. a check valve that prevents refrigerant from flowing backwards toward the compressor; an indoor heat exchanger to which refrigerant is supplied from the compressor through the four-way valve in the heating position; and an indoor heat exchanger to which the refrigerant is supplied from the compressor through the four-way valve in the cooling position. an outdoor heat exchanger to which refrigerant is supplied; a throttle means that can control the opening degree and is disposed between the indoor heat exchanger and the outdoor heat exchanger; and an accumulator that is disposed on the suction side of the compressor. and a defrost on-off valve disposed on a defrost pipe connecting the discharge side of the compressor and the refrigerant pipe between the outdoor heat exchanger and the throttling means, and a discharge side of the defrost on-off valve and the accumulator. A heat pump type air conditioner characterized by comprising a capillary tube arranged on a connected decompression pipe.
JP63249581A 1988-10-03 1988-10-03 Heat pump type air conditioner Expired - Lifetime JP2646704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249581A JP2646704B2 (en) 1988-10-03 1988-10-03 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249581A JP2646704B2 (en) 1988-10-03 1988-10-03 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPH0297854A true JPH0297854A (en) 1990-04-10
JP2646704B2 JP2646704B2 (en) 1997-08-27

Family

ID=17195136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249581A Expired - Lifetime JP2646704B2 (en) 1988-10-03 1988-10-03 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2646704B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195876A (en) * 1989-12-26 1991-08-27 Takenaka Komuten Co Ltd Heat pump
CN102538134A (en) * 2010-12-09 2012-07-04 三菱电机株式会社 Air-conditioning apparatus
CN106949679A (en) * 2017-03-29 2017-07-14 广东美的制冷设备有限公司 Air-conditioner and its defrosting control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634682B2 (en) * 2009-04-24 2014-12-03 日立アプライアンス株式会社 Air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121251A (en) * 1974-08-16 1976-02-20 Hitachi Ltd Kukichowakino sosakairo
JPS52165457U (en) * 1976-06-09 1977-12-15
JPS5575749U (en) * 1978-11-17 1980-05-24
JPS5971960A (en) * 1982-10-18 1984-04-23 シャープ株式会社 Heat pump type refrigeration cycle
JPS60113463U (en) * 1983-12-30 1985-07-31 株式会社日立製作所 air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121251A (en) * 1974-08-16 1976-02-20 Hitachi Ltd Kukichowakino sosakairo
JPS52165457U (en) * 1976-06-09 1977-12-15
JPS5575749U (en) * 1978-11-17 1980-05-24
JPS5971960A (en) * 1982-10-18 1984-04-23 シャープ株式会社 Heat pump type refrigeration cycle
JPS60113463U (en) * 1983-12-30 1985-07-31 株式会社日立製作所 air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195876A (en) * 1989-12-26 1991-08-27 Takenaka Komuten Co Ltd Heat pump
CN102538134A (en) * 2010-12-09 2012-07-04 三菱电机株式会社 Air-conditioning apparatus
CN102538134B (en) * 2010-12-09 2014-11-19 三菱电机株式会社 Air-conditioning apparatus
CN106949679A (en) * 2017-03-29 2017-07-14 广东美的制冷设备有限公司 Air-conditioner and its defrosting control method

Also Published As

Publication number Publication date
JP2646704B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
JP2002107014A (en) Air conditioner
JPWO2017061010A1 (en) Refrigeration cycle equipment
JP2008096033A (en) Refrigerating device
CN107356006A (en) A kind of air-conditioning system and air conditioner
JPH0529830B2 (en)
JP3341404B2 (en) Operation control device for air conditioner
JP2015064169A (en) Hot water generation device
JP4178646B2 (en) refrigerator
JPH0297854A (en) Heat pump type air conditioner
JP3240811B2 (en) Dual cooling system
JP2956584B2 (en) Heat recovery type air conditioner
JPH0333992B2 (en)
JP3416897B2 (en) Air conditioner
JPS59197764A (en) Refrigerator
JPS59217463A (en) Refrigeration cycle of air conditioner
JPH0320571A (en) Air conditioner
JP2002071254A (en) Refrigerator and its controlling method
JP3633897B2 (en) Freezer refrigerator
JPH0217370A (en) Operation control device for air conditioning device
JP2024078026A (en) Vapor compression refrigeration cycle equipment
JPS6252381A (en) Heat pump type air conditioner
JP2927230B2 (en) Binary refrigeration equipment
JP3448897B2 (en) Heat pump type heating and cooling water heater
JPS60245967A (en) Air conditioner
JPS5971960A (en) Heat pump type refrigeration cycle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12