JPH0333992B2 - - Google Patents

Info

Publication number
JPH0333992B2
JPH0333992B2 JP59139995A JP13999584A JPH0333992B2 JP H0333992 B2 JPH0333992 B2 JP H0333992B2 JP 59139995 A JP59139995 A JP 59139995A JP 13999584 A JP13999584 A JP 13999584A JP H0333992 B2 JPH0333992 B2 JP H0333992B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
heat exchanger
refrigerant
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59139995A
Other languages
Japanese (ja)
Other versions
JPS6122161A (en
Inventor
Yukihiro Matsuzono
Haruo Ishikawa
Keiichi Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13999584A priority Critical patent/JPS6122161A/en
Publication of JPS6122161A publication Critical patent/JPS6122161A/en
Publication of JPH0333992B2 publication Critical patent/JPH0333992B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ヒートポンプ式冷凍サイクルを備
え、暖房運転時、定期的または必要に応じて室外
熱交換器に対する除霜運転を行なう空気調和機に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air conditioner that is equipped with a heat pump refrigeration cycle and performs defrosting operation on an outdoor heat exchanger periodically or as needed during heating operation.

〔発明の技術的背景〕[Technical background of the invention]

従来、この種の空気調和機にあつては、暖房運
転時、予め定めた除霜タイミングにおいて室外熱
交換器の温度が一定値以下になると、四方弁を復
帰作動せしめることにより暖房サイクルを解除し
て除霜サイクル(冷房サイクル)を形成し、室外
熱交換器に高温、高圧冷媒を供給してその室外熱
交換器の除霜を行なうようにしている。
Conventionally, in this type of air conditioner, during heating operation, if the temperature of the outdoor heat exchanger falls below a certain value at a predetermined defrosting timing, the heating cycle is canceled by returning the four-way valve. A defrosting cycle (cooling cycle) is formed by supplying high-temperature, high-pressure refrigerant to the outdoor heat exchanger to defrost the outdoor heat exchanger.

〔背景技術の問題点〕[Problems with background technology]

ところで、このような空気調和機においては、
除霜運転時、室内フアンの運転を停止して室内へ
の冷風の吹出しを防ぐようにしており、このため
圧縮機の温度が低下するようになる。すなわち、
第7図に示すように、除霜運転が進行するにつれ
て圧縮機の温度が低下し、それに伴つて吐出冷媒
温度が低下する。このような状態で四方弁を切換
作動して暖房運転を再開すると、室外熱交換器に
滞留した液冷媒が圧縮機に戻つてくる液バツクを
生じ、圧縮機に悪影響を与える。
By the way, in such an air conditioner,
During defrosting operation, the operation of the indoor fan is stopped to prevent cold air from blowing into the room, which causes the temperature of the compressor to drop. That is,
As shown in FIG. 7, as the defrosting operation progresses, the temperature of the compressor decreases, and the temperature of the discharged refrigerant decreases accordingly. If the four-way valve is switched and the heating operation is resumed in such a state, the liquid refrigerant that has accumulated in the outdoor heat exchanger will return to the compressor, creating a liquid backlash, which will have an adverse effect on the compressor.

一般に、液バツクが発生すると、圧縮機内で冷
媒が蒸発し、このため第7図に示すように圧縮機
温度が50℃以下まで低下し、圧縮機内の潤滑油へ
冷媒が溶け込む。この溶け込みにより、潤滑油の
粘土低下を引き起こすとともに、冷媒の溶け込ん
だ潤滑油が圧縮機から冷媒サイクルへ吐出されて
圧縮機内の潤滑油が減少し、圧縮機の摺動部が潤
滑不足となり、圧縮機に損傷を与える。
Generally, when a liquid backlash occurs, the refrigerant evaporates within the compressor, and as a result, the compressor temperature drops to below 50°C, as shown in Figure 7, and the refrigerant dissolves into the lubricating oil within the compressor. This melting causes the lubricating oil to become sticky, and the lubricating oil with the dissolved refrigerant is discharged from the compressor to the refrigerant cycle, reducing the lubricating oil in the compressor, causing insufficient lubrication of the sliding parts of the compressor, and compressing damage the machine.

また、圧縮機温度の低下により、暖房能力の立
上がりに遅れを生じてしまう。
Furthermore, the decrease in compressor temperature causes a delay in the rise of heating capacity.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような事情に鑑みてなされた
もので、その目的とするところは、除霜運転終了
後の暖房運転再開に際し、たとえ液バツクが生じ
ても、それによる圧縮機温度の低下を極力防ぐこ
とができ、これにより圧縮機の損傷を回避し、さ
らには暖房能力の立上がりを速めることができる
信頼性にすぐれた空気調和機を提供することにあ
る。
This invention was made in view of the above-mentioned circumstances, and its purpose is to prevent the compressor temperature from decreasing even if liquid back-up occurs when restarting heating operation after defrosting operation. It is an object of the present invention to provide an air conditioner with excellent reliability, which can avoid damage to a compressor as much as possible, thereby speeding up the start-up of heating capacity.

〔発明の概要〕[Summary of the invention]

この発明は、除霜運転の終了前、所定時間だけ
減圧装置の絞りを増して冷凍サイクルの冷媒流量
を低減することにより、除霜運転の終了時に圧縮
機の温度を高い状態に保持しておくものである。
This invention maintains the temperature of the compressor at a high state at the end of the defrosting operation by increasing the throttle of the pressure reducing device for a predetermined period of time before the end of the defrosting operation to reduce the refrigerant flow rate in the refrigeration cycle. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照
して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図に示すように、能力可変圧縮機1、四方
弁2、室外熱交換器3、減圧装置たとえば電気式
膨張弁4、および室内熱交換器5などが順次連通
され、ヒートポンプ式冷凍サイクルが構成されて
いる。すなわち、冷房運転時は図示実線矢印の方
向に冷媒が流れ、暖房運転時は四方弁2が切換作
動することにより図示破線矢印の方向に冷媒が流
れるようになつている。しかして、室外熱交換器
3の近傍には室外フアン6が配設され、室内熱交
換器5の近傍には室内フアン7が配設されてい
る。
As shown in FIG. 1, a variable capacity compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing device such as an electric expansion valve 4, an indoor heat exchanger 5, etc. are connected in sequence to form a heat pump type refrigeration cycle. It is configured. That is, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure, and during heating operation, the four-way valve 2 is operated to cause the refrigerant to flow in the direction of the broken line arrow. An outdoor fan 6 is disposed near the outdoor heat exchanger 3, and an indoor fan 7 is disposed near the indoor heat exchanger 5.

第2図は制御回路である。11は商用交流電源
で、この電源11には室内制御部20が接続され
ている。そして、室内制御部20から室外制御部
30に対して電源ライン41が設けられている。
さらに、室内制御部20と室外制御部30との間
には情報ライン(シリアル信号ライン等)42が
設けられている。ここで、室内制御部20はマイ
クロコンピユータ21およびその周辺回路などか
ら成り、また室外制御部30はマイクロコンピユ
ータ31およびその周辺回路などから成り、これ
ら制御部20,30によつて各種運転制御が行な
われるようになつている。
FIG. 2 shows the control circuit. 11 is a commercial AC power supply, and an indoor control unit 20 is connected to this power supply 11. A power line 41 is provided from the indoor control section 20 to the outdoor control section 30.
Further, an information line (such as a serial signal line) 42 is provided between the indoor control section 20 and the outdoor control section 30. Here, the indoor control section 20 consists of a microcomputer 21 and its peripheral circuits, etc., and the outdoor control section 30 consists of a microcomputer 31 and its peripheral circuits, etc., and various operational controls are performed by these control sections 20, 30. It's starting to become easier.

しかして、室内制御部20には、運転操作部4
3、室内温度センサ44、室内熱交換器5の温度
を検知する熱交温度センサ45、表示部46、お
よび室内フアンモータ7Mが接続されている。室
外制御部30には、室外熱交換器3の温度を検知
する室外温度センサ47、圧縮機モータ電流を検
知する電流センサ48、圧縮機モータ1Mに所定
周波数および電圧の交流電力を供給するインバー
タ回路49、室外フアンモータ6M、四方弁2、
および電気式膨張弁4が接続されている。
Therefore, the indoor control section 20 includes a driving operation section 4.
3. An indoor temperature sensor 44, a heat exchanger temperature sensor 45 that detects the temperature of the indoor heat exchanger 5, a display section 46, and an indoor fan motor 7M are connected. The outdoor control unit 30 includes an outdoor temperature sensor 47 that detects the temperature of the outdoor heat exchanger 3, a current sensor 48 that detects the compressor motor current, and an inverter circuit that supplies AC power at a predetermined frequency and voltage to the compressor motor 1M. 49, outdoor fan motor 6M, four-way valve 2,
and an electric expansion valve 4 are connected.

そして、室内制御部20および室外制御部30
は、次の機能手段を備えている。
Then, the indoor control section 20 and the outdoor control section 30
has the following functional means:

圧縮機1の運転、室外フアン6の運転、およ
び室内フアン7の運転を設定し、冷房運転を実
行する手段。
Means for setting the operation of the compressor 1, the operation of the outdoor fan 6, and the operation of the indoor fan 7, and executing the cooling operation.

圧縮機1の運転、四方弁2の切換作動、室外
フアン6の運転、および室内フアン7の運転を
設定し、暖房運転を実行する手段。
Means for setting the operation of the compressor 1, the switching operation of the four-way valve 2, the operation of the outdoor fan 6, and the operation of the indoor fan 7, and executing the heating operation.

冷房運転時および暖房運転時、運転操作部4
3による設定室内温度と室内温度センサ44で
検知される室内温度との差を求め、求めた差に
応じてインバータ回路49の出力周波数(およ
び電圧)を制御する手段。
During cooling operation and heating operation, operation control section 4
Means for determining the difference between the indoor temperature set by No. 3 and the indoor temperature detected by the indoor temperature sensor 44, and controlling the output frequency (and voltage) of the inverter circuit 49 according to the obtained difference.

暖房運転時、図示していない温度センサによ
り検知される室外熱交換器3のスーパヒート量
(冷媒過熱度)に応じて電気式膨張弁4の開度
を制御する手段。
Means for controlling the opening degree of the electric expansion valve 4 according to the amount of superheat (degree of refrigerant superheating) of the outdoor heat exchanger 3 detected by a temperature sensor (not shown) during heating operation.

暖房運転時、定期的たとえば60分ごとに、熱
交温度センサ47によつて検知される室外熱交
換器3の温度Teを取込み、その温度Teが10℃
以下ならば四方弁2の復帰作動、室内フアン7
の運転停止、および室外フアン6の運転停止を
設定し、室外熱交換器3に対する除霜運転を実
行する手段。
During heating operation, the temperature Te of the outdoor heat exchanger 3 detected by the heat exchanger temperature sensor 47 is taken periodically, for example, every 60 minutes, and the temperature Te is 10°C.
If below, return operation of four-way valve 2, indoor fan 7
means to set the operation stoppage of the outdoor fan 6 and the operation stoppage of the outdoor fan 6, and execute a defrosting operation for the outdoor heat exchanger 3.

除霜運転時、経過時間が8分に達すると、ま
たは温度Teが3℃以上になると、電気式膨張
弁4を全閉して冷凍サイクルの冷媒流量を低減
する手段。
Means for fully closing the electric expansion valve 4 to reduce the refrigerant flow rate in the refrigeration cycle when the elapsed time reaches 8 minutes during defrosting operation or when the temperature Te becomes 3° C. or higher.

除霜運転時、電気式膨張弁4の全閉からさら
に2分が経過するか、またはTeが5℃以上に
なると、電気式膨張弁4の全閉制御を解除する
とともに、四方弁2の切換作動、室外フアン6
の運転、および室内フアン7の運転を設定し、
除霜運転を終了して暖房運転を再開する手段。
During defrosting operation, if two minutes pass after the electric expansion valve 4 is fully closed, or if Te reaches 5°C or higher, the electric expansion valve 4 is fully closed and the four-way valve 2 is switched. Operation, outdoor fan 6
and the operation of the indoor fan 7,
A means of ending defrosting operation and restarting heating operation.

つぎに、上記のような構成において第3図およ
び第4図を参照しながら動作を説明する。
Next, the operation of the above configuration will be explained with reference to FIGS. 3 and 4.

運転操作部43で暖房運転および室内温度を設
定し、かつ運転開始操作を行なう。すると、圧縮
機1の運転が開始されるとともに、四方弁2が切
換作動して暖房サイクルが形成される。さらに、
室内フアン6および室外フアン7の運転が開始さ
れる。つまり、暖房運転が開始される。この暖房
運転時、室内温度センサ44によつて室内温度が
検知されており、この検知温度と上記設定温度と
の差に応じてインバータ回路49の出力周波数お
よび電圧が設定され、これにより負荷に対応する
能力で圧縮機1の運転が行なわれる。一方、蒸発
器として作用する室外熱交換器3のスーパヒート
量(冷媒加熱度)が図示していない温度センサに
より検知されており、このスーパヒート量に応じ
て電気式膨張弁4の開度が制御される。これによ
り、圧縮機1の能力変化にかかわらず冷凍サイク
ルの安定運転が行なわれる。
The heating operation and indoor temperature are set using the operation control section 43, and the operation is started. Then, the compressor 1 starts operating, and the four-way valve 2 switches to form a heating cycle. moreover,
The operation of the indoor fan 6 and the outdoor fan 7 is started. In other words, heating operation is started. During this heating operation, the indoor temperature is detected by the indoor temperature sensor 44, and the output frequency and voltage of the inverter circuit 49 are set according to the difference between this detected temperature and the above-mentioned set temperature, thereby responding to the load. The compressor 1 is operated with the ability to On the other hand, the amount of superheat (degree of refrigerant heating) of the outdoor heat exchanger 3, which acts as an evaporator, is detected by a temperature sensor (not shown), and the opening degree of the electric expansion valve 4 is controlled according to this amount of superheat. Ru. Thereby, stable operation of the refrigeration cycle is performed regardless of changes in the capacity of the compressor 1.

しかして、暖房運転の開始と同時に経過時間t1
が計測されており、さらに室外熱交換器3の温度
Teが熱交温度センサ47によつて検知されてお
り、t1≧60分になつたとき、温度Te≦−10℃と
なつていれば、四方弁2が復帰作動する。四方弁
2が復帰作動すると、暖房サイクルが解除されて
除霜サイクル(冷房サイクル)が形成され、室外
熱交換器3に高温、高圧冷媒が供給される。つま
り、室外熱交換器3に対する除霜運転が開始され
る。この除霜運転時、室内への冷風の吹出しを防
ぐために室内フアン7の運転が停止するととも
に、除霜効率向上のために室外フアン6の運転も
停止する。また、除霜運転時、経過時間t2が計測
されており、t2≧8分になると、またはTe≧3
℃になると、電気式膨張弁4の絞りが増大たとえ
ば全閉される。そして、T2≧10分になると、ま
たはTe≧5℃になると、電気式膨張弁4の全閉
制御が解除されるとともに、四方弁2が再び切換
作動し、暖房運転が再開される。
Therefore, at the same time as the heating operation starts, the elapsed time t 1
is measured, and the temperature of outdoor heat exchanger 3 is also measured.
Te is detected by the heat exchanger temperature sensor 47, and when t 1 ≧60 minutes, if the temperature Te≦−10° C., the four-way valve 2 is operated to return. When the four-way valve 2 returns to operation, the heating cycle is canceled, a defrosting cycle (cooling cycle) is formed, and high-temperature, high-pressure refrigerant is supplied to the outdoor heat exchanger 3. That is, the defrosting operation for the outdoor heat exchanger 3 is started. During this defrosting operation, the operation of the indoor fan 7 is stopped to prevent blowing of cold air into the room, and the operation of the outdoor fan 6 is also stopped to improve defrosting efficiency. Also, during defrosting operation, the elapsed time t 2 is measured, and if t 2 ≧8 minutes, or Te≧3
℃, the throttle of the electric expansion valve 4 increases, for example, is completely closed. Then, when T 2 ≧10 minutes or Te≧5° C., the fully closed control of the electric expansion valve 4 is canceled, the four-way valve 2 is switched again, and the heating operation is resumed.

このように、除霜運転終了前の2分間または室
外熱交換器3の温度Teが5℃以上となるまでの
間は、電気式膨張弁4を全閉することにより、冷
凍サイクルの冷媒流量が減少する。
In this way, the refrigerant flow rate of the refrigeration cycle is reduced by fully closing the electric expansion valve 4 for two minutes before the end of the defrosting operation or until the temperature Te of the outdoor heat exchanger 3 reaches 5°C or higher. Decrease.

冷媒流量が少なくなれば、圧縮機1に吸い込ま
れる低温冷媒の量も少なくなり、圧縮機1が冷媒
によつて冷却されなくなる。よつて、第4図に示
すように圧縮機1の吐出冷媒温度が上昇し、かつ
圧縮機1の巻線温度も上昇し、除霜運転の終了時
に圧縮機1の温度は50℃以上と高い状態に保持さ
れる。
When the refrigerant flow rate decreases, the amount of low-temperature refrigerant sucked into the compressor 1 also decreases, and the compressor 1 is no longer cooled by the refrigerant. Therefore, as shown in Fig. 4, the temperature of the refrigerant discharged from the compressor 1 rises, and the winding temperature of the compressor 1 also rises, so that the temperature of the compressor 1 is as high as 50°C or more at the end of the defrosting operation. held in state.

したがつて、除霜運転の終了後の暖房運転の再
開に際し、たとえ圧縮機1への液バツクが生じて
液冷媒が圧縮機1内で蒸発しても、圧縮機1の温
度が高い状態に保たれていたため、圧縮機1内の
潤滑油に冷媒が溶け込むほどには圧縮機1の温度
が下がらない。すなわち、圧縮機1の温度低下に
起因する潤滑油の粘土低下や潤滑油の減少を回避
することができ、よつて圧縮機1の摺動部が潤滑
不足となる事態を避けることができ、圧縮機1の
損傷を防止できる。
Therefore, even if liquid refrigerant evaporates in the compressor 1 due to liquid back-up to the compressor 1 when the heating operation is resumed after the defrosting operation ends, the temperature of the compressor 1 will remain high. As a result, the temperature of the compressor 1 does not drop to the extent that the refrigerant dissolves in the lubricating oil in the compressor 1. In other words, it is possible to avoid a decrease in lubricating oil content and a decrease in lubricating oil due to a decrease in the temperature of the compressor 1, and it is therefore possible to avoid a situation where the sliding parts of the compressor 1 become insufficiently lubricated, and the compression Damage to machine 1 can be prevented.

また、圧縮機1の温度低下の抑制により、暖房
運転の再開に際しての暖房能力の立上りを速める
ことができる。
Moreover, by suppressing the temperature drop of the compressor 1, it is possible to accelerate the rise of the heating capacity when the heating operation is restarted.

なお、上記実施例では、電気式膨張弁4を全閉
したが、必ずしも全開する必要はなく、開度を小
さくするようにしてもよく、要は冷媒流量を低減
すればよい。さらに、このような冷媒流量の低減
制御の実施時間を2分間または室外熱交換器3の
温度Teの変化に応じて設定するようにしたが、
その設定要素として圧縮機1の温度を加えるよう
にしてもよい。
In the above embodiment, the electric expansion valve 4 is fully closed, but it does not necessarily need to be fully opened, and the degree of opening may be reduced.In short, the refrigerant flow rate may be reduced. Further, although the execution time of such refrigerant flow rate reduction control is set to 2 minutes or according to a change in the temperature Te of the outdoor heat exchanger 3,
The temperature of the compressor 1 may be added as a setting factor.

また、除霜サイクルの形成によつて除霜運転を
行なう場合について説明したが、第5図に示すよ
うに、圧縮機1の冷媒吐出口と室外熱交換器3と
の間に二方弁8を介してホツトガスバイパスサイ
クルを設け、その二方弁8の開放によるホツトガ
ス注入によつて除霜を行なう場合についても同様
に実施できる。
In addition, although the case where the defrosting operation is performed by forming a defrosting cycle has been described, as shown in FIG. A hot gas bypass cycle may be provided via the two-way valve 8, and the defrosting may be carried out by injecting the hot gas by opening the two-way valve 8.

すなわち、このホツトガスバイパス除霜では、
圧縮機1から吐出される高温冷媒の一部が二方弁
8を通つて室外熱交換器3に注入され、室外熱交
換器3が除霜されるが、そのときに室外熱交換器
3で液冷媒が生じ、それが圧縮機1に吸い込まれ
る液バツクを生じる。この液バツクは除霜中から
すでに始まるため、上記実施例の逆サイクル除霜
の場合よりも影響が大きい。そこで、この影響を
極力解消するべく、上記実施例と同様に除霜終了
前に電気式膨張弁4を全閉し、冷凍サイクルの冷
媒流量を減少する。
In other words, with this hot gas bypass defrosting,
A part of the high temperature refrigerant discharged from the compressor 1 is injected into the outdoor heat exchanger 3 through the two-way valve 8, and the outdoor heat exchanger 3 is defrosted. A liquid refrigerant is formed which creates a liquid bag which is sucked into the compressor 1. Since this liquid back-up already begins during defrosting, the influence is greater than in the case of reverse cycle defrosting in the above embodiment. Therefore, in order to eliminate this influence as much as possible, the electric expansion valve 4 is fully closed before the end of defrosting to reduce the refrigerant flow rate in the refrigeration cycle, as in the above embodiment.

冷媒流量が少なくなれば、圧縮機1への液バツ
ク量が減少し、圧縮機1の温度低下が抑制されて
圧縮機1の温度が高い状態に保たれる。よつて、
圧縮機1の温度低下に起因する潤滑油の温度低下
や潤滑油の減少を回避することができ、よつて圧
縮機1の摺動部が潤滑不足となる事態を避けるこ
とができ、圧縮機1の損傷を防止できる。しか
も、暖房運転の再開に際しての暖房能力の立上り
を速めることができる。
When the refrigerant flow rate decreases, the amount of liquid back into the compressor 1 decreases, suppressing a drop in the temperature of the compressor 1, and keeping the temperature of the compressor 1 high. Afterwards,
It is possible to avoid a decrease in the temperature of the lubricating oil and a decrease in the amount of lubricating oil caused by a decrease in the temperature of the compressor 1, and it is therefore possible to avoid a situation where the sliding parts of the compressor 1 become insufficiently lubricated. damage can be prevented. Moreover, the heating capacity can be increased quickly when the heating operation is restarted.

また、第6図に示すように、減圧装置としてキ
ヤピラリチユーブ9a,9bを用い、かつそのキ
ヤピラリチユーブ9bへの管路に二方弁10を設
け、除霜運転終了前二方弁10の閉成に基づくキ
ヤピラリチユーブ9bの遮断によつて絞りを増
し、冷媒流量を低減するようにしてもよい。
In addition, as shown in FIG. 6, capillary tubes 9a and 9b are used as pressure reducing devices, and a two-way valve 10 is provided in the pipeline to the capillary tube 9b, and the two-way valve 10 is closed before the end of the defrosting operation. The restriction may be increased by blocking the capillary tube 9b based on the closure, thereby reducing the refrigerant flow rate.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、除霜運転
終了後の暖房運転再開に際し、たとえ液バツクが
生じても、それによる圧縮機温度の低下を極力防
ぐことができ、これにより圧縮機の損傷を回避
し、さらには暖房能力の立上がりを速めることが
できる信頼性にすぐれた空気調和機を提供でき
る。
As described above, according to the present invention, even if a liquid back-up occurs when resuming heating operation after defrosting operation, it is possible to prevent the compressor temperature from decreasing as much as possible due to this, thereby causing damage to the compressor. It is possible to provide a highly reliable air conditioner that can avoid this and further accelerate the rise of heating capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における冷凍サイ
クルの構成図、第2図は同実施例における制御回
路の構成図、第3図は同実施例の動作を説明する
ためのフローチヤート、第4図は同実施例におけ
る圧縮機の吐出冷媒温度の変化を示す図、第5図
および第6図はそれぞれ同実施例の変形例を示す
冷凍サイクルの構成図、第7図は従来の空気調和
機における圧縮機の吐出冷媒温度の変化を示す図
である。 1……能力可変圧縮機、2……四方弁、3……
室外熱交換器、4……電気式膨張弁(減圧装置)、
5……室内熱交換器、20……室内制御部、30
……室外制御部。
FIG. 1 is a block diagram of a refrigeration cycle in an embodiment of the present invention, FIG. 2 is a block diagram of a control circuit in the same embodiment, FIG. 3 is a flowchart for explaining the operation of the embodiment, and FIG. The figure shows changes in the refrigerant temperature discharged from the compressor in the same embodiment, Figures 5 and 6 are block diagrams of refrigeration cycles showing modifications of the same embodiment, and Figure 7 shows a conventional air conditioner. FIG. 3 is a diagram showing changes in the temperature of the refrigerant discharged from the compressor in FIG. 1... variable capacity compressor, 2... four-way valve, 3...
Outdoor heat exchanger, 4...Electric expansion valve (pressure reducing device),
5...Indoor heat exchanger, 20...Indoor control unit, 30
...Outdoor control section.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方弁、室外熱交換器、減圧装置、
および室内熱交換器などを順次連通して成るヒー
トポンプ式冷凍サイクルを備え、暖房運転時、定
期的または必要に応じて前記室外熱交換器に対す
る除霜運転を行なう空気調和機において、除霜運
転の終了前、所定時間だけ前記減圧装置の絞りを
増して冷凍サイクルの冷媒流量を低減する手段を
設けたことを特徴とする空気調和機。
1 Compressor, four-way valve, outdoor heat exchanger, pressure reducing device,
In an air conditioner equipped with a heat pump type refrigeration cycle consisting of a heat exchanger and an indoor heat exchanger connected in sequence, the air conditioner defrosts the outdoor heat exchanger periodically or as needed during heating operation. An air conditioner characterized in that the air conditioner is further provided with means for increasing the throttle of the pressure reducing device for a predetermined period of time before termination to reduce the flow rate of refrigerant in the refrigeration cycle.
JP13999584A 1984-07-06 1984-07-06 Air conditioner Granted JPS6122161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13999584A JPS6122161A (en) 1984-07-06 1984-07-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13999584A JPS6122161A (en) 1984-07-06 1984-07-06 Air conditioner

Publications (2)

Publication Number Publication Date
JPS6122161A JPS6122161A (en) 1986-01-30
JPH0333992B2 true JPH0333992B2 (en) 1991-05-21

Family

ID=15258478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13999584A Granted JPS6122161A (en) 1984-07-06 1984-07-06 Air conditioner

Country Status (1)

Country Link
JP (1) JPS6122161A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528846B2 (en) * 1986-12-17 1996-08-28 株式会社日立製作所 Air conditioner
JPH0537172Y2 (en) * 1987-09-01 1993-09-20
JPH0438135Y2 (en) * 1988-10-14 1992-09-07
JP2555779B2 (en) * 1990-12-28 1996-11-20 ダイキン工業株式会社 Operation control device for air conditioner
JPH04114031U (en) * 1991-03-22 1992-10-07 船井電機株式会社 liquid crystal display device
JP5341622B2 (en) * 2009-06-04 2013-11-13 日立アプライアンス株式会社 Air conditioner
KR20140092803A (en) * 2011-11-04 2014-07-24 파나소닉 주식회사 Refrigeration cycle apparatus and air conditioner provided with same
JP2014081174A (en) * 2012-10-18 2014-05-08 Fujitsu General Ltd Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212218Y2 (en) * 1979-03-24 1987-03-27

Also Published As

Publication number Publication date
JPS6122161A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
KR930005182B1 (en) Air conditioning apparatus
JP3598809B2 (en) Refrigeration cycle device
US4557115A (en) Heat pump having improved compressor lubrication
JPS6152560A (en) Air conditioner
KR101954151B1 (en) Air conditioner and Method for controlling it
JP3341404B2 (en) Operation control device for air conditioner
KR900001879B1 (en) Heat pump type air conditioning apparatus having a controll@ed variable capacity compressor
JPH0333992B2 (en)
JPH0528439Y2 (en)
JPH048704B2 (en)
JP2522011B2 (en) Air conditioner
JPH11211186A (en) Controlling device of defrosting of air conditioner
JPH094933A (en) Refrigerator with deep freezer
JP3033260B2 (en) Defrosting control device for refrigeration equipment
JPS59217463A (en) Refrigeration cycle of air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH0217370A (en) Operation control device for air conditioning device
JP3168730B2 (en) Air conditioner
JPS6346350B2 (en)
JPH0225104Y2 (en)
JP2762605B2 (en) Heating and cooling machine
JPH05322331A (en) Air conditioner
JPH0333993B2 (en)
JPS6252381A (en) Heat pump type air conditioner
JPS59217459A (en) Refrigeration cycle of air conditioner