JPH0537172Y2 - - Google Patents

Info

Publication number
JPH0537172Y2
JPH0537172Y2 JP1987132242U JP13224287U JPH0537172Y2 JP H0537172 Y2 JPH0537172 Y2 JP H0537172Y2 JP 1987132242 U JP1987132242 U JP 1987132242U JP 13224287 U JP13224287 U JP 13224287U JP H0537172 Y2 JPH0537172 Y2 JP H0537172Y2
Authority
JP
Japan
Prior art keywords
condenser
refrigerant
defrosting operation
evaporator
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987132242U
Other languages
Japanese (ja)
Other versions
JPS6441060U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987132242U priority Critical patent/JPH0537172Y2/ja
Publication of JPS6441060U publication Critical patent/JPS6441060U/ja
Application granted granted Critical
Publication of JPH0537172Y2 publication Critical patent/JPH0537172Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は冷蔵庫、冷凍機、温水機、空気調和機
等の冷凍装置の除霜運転時における高圧圧力の異
常上昇防止装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a device for preventing an abnormal rise in high pressure during defrosting operation of a refrigeration device such as a refrigerator, chiller, water heater, or air conditioner.

(従来の技術) 従来の冷蔵庫の冷媒回路が第3図に、その電気
制御回路が第4図に示されている。
(Prior Art) A refrigerant circuit of a conventional refrigerator is shown in FIG. 3, and its electric control circuit is shown in FIG. 4.

第3図において、冷却運転時には圧縮機1から
吐出された高温・高圧のガス冷媒は実線矢印で示
すように四方弁2を経て冷蔵庫外に設置された凝
縮器3内に入り、ここで凝縮器3用送風機11に
よつて送風される外気に放熱することにより凝縮
液化して高温・高圧の液冷媒となる。次いで、こ
の液冷媒はドライヤ4、逆止弁5を経て膨張弁等
の絞り装置6に入り、ここで絞られることにより
断熱膨張して低温・低圧の気液二相となる。次い
で、この気液二相の冷媒は冷蔵庫内に設置された
蒸発器7内に入り、ここで蒸発器7用送風機12
によつて送風される庫内空気から吸熱することに
より蒸発気化して低温・低圧の冷媒ガスとなり、
四方弁2、アキユームレータ8を経て圧縮機1に
吸入される。
In Fig. 3, during cooling operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and enters the condenser 3 installed outside the refrigerator, as shown by the solid line arrow, where it enters the condenser. By dissipating heat to the outside air blown by the No. 3 fan 11, the refrigerant condenses and liquefies, becoming a high-temperature, high-pressure liquid refrigerant. Next, this liquid refrigerant passes through a dryer 4 and a check valve 5 and enters a throttle device 6 such as an expansion valve, where it is throttled and expands adiabatically to become a low-temperature, low-pressure gas-liquid two-phase. Next, this gas-liquid two-phase refrigerant enters the evaporator 7 installed in the refrigerator, where it is passed through a blower 12 for the evaporator 7.
By absorbing heat from the air blown into the refrigerator, it evaporates and becomes a low-temperature, low-pressure refrigerant gas.
It is sucked into the compressor 1 through the four-way valve 2 and the accumulator 8.

除霜運転時には四方弁2が切り換えられること
により冷媒は破線矢印で示すように上記冷却運転
時とは逆向に流れて圧縮機1、四方弁2、蒸発器
7、逆止弁9、キヤピラリチユーブ等の絞り装置
10、凝縮器3、四方弁2、アキユームレータ8
をこの順に経て圧縮機1に戻る。この過程におい
て、圧縮機1から吐出された高温・高圧の冷媒ガ
スが蒸発器7内を流過することによつて蒸発器7
の外表面に付着した霜が融解してこれを除去す
る。そして、この除霜運転中、凝縮器3用送風機
11は運転されるが、蒸発器7用送風機12は庫
内温度の上昇を防止するために停止される。
During defrosting operation, the four-way valve 2 is switched, and the refrigerant flows in the opposite direction to that during the cooling operation, as shown by the broken line arrow, to the compressor 1, four-way valve 2, evaporator 7, check valve 9, and capillary tube. etc. throttle device 10, condenser 3, four-way valve 2, accumulator 8
in this order and then returns to the compressor 1. In this process, the high temperature and high pressure refrigerant gas discharged from the compressor 1 flows through the evaporator 7 and
The frost adhering to the outer surface of the machine will melt and be removed. During this defrosting operation, the blower 11 for the condenser 3 is operated, but the blower 12 for the evaporator 7 is stopped in order to prevent the temperature inside the refrigerator from rising.

第4図において、冷却運転時、温調用サーモス
タツト27が閉となると、圧縮機1用電磁接触器
20が励磁されるので、その常開接点20aが閉
となつて圧縮機1の駆動用電動機21に通電され
ると同時に凝縮器3用送風機11の駆動用電動機
22に通電される。この際、リレー26は消磁さ
れ、その常閉接点26bが閉となつているので、
蒸発器7用送風機12の駆動用電動機23に通電
される。
In FIG. 4, when the temperature control thermostat 27 is closed during cooling operation, the electromagnetic contactor 20 for the compressor 1 is energized, so its normally open contact 20a is closed and the drive motor of the compressor 1 is closed. 21 is energized, and at the same time, the driving electric motor 22 of the blower 11 for the condenser 3 is energized. At this time, the relay 26 is demagnetized and its normally closed contact 26b is closed, so
The driving electric motor 23 of the blower 12 for the evaporator 7 is energized.

冷却運転によつて冷蔵庫内が冷却され、庫内温
度が温調用サーモスタツト27の設定温度に達す
ると、温調用サーモスタツト27が開となり、こ
れに伴つて、電動機21,22への通電が遮断さ
れるので、圧縮機1及び凝縮器3用送風機11が
停止する。なお、冷却運転中、逆転防止リレー3
0が作動してその常閉接点30bが開となつた
り、または、過電流継電器31が作動したりする
と、リレー25が消磁され、その常開接点25a
が開となつてこの制御回路への通電が全て遮断さ
れる。
The inside of the refrigerator is cooled by the cooling operation, and when the temperature inside the refrigerator reaches the set temperature of the temperature control thermostat 27, the temperature control thermostat 27 is opened, and accordingly, the electricity to the electric motors 21 and 22 is cut off. Therefore, the compressor 1 and condenser 3 blower 11 are stopped. In addition, during cooling operation, reversal prevention relay 3
0 is activated and its normally closed contact 30b is opened, or when the overcurrent relay 31 is activated, the relay 25 is demagnetized and its normally open contact 25a is activated.
is opened, cutting off all power to this control circuit.

除霜タイマ29は常時励磁され、一定周期(例
えば3時間に1回)毎にその常開接点29aが閉
じて除霜運転が開始される。これに伴つてリレー
26が励磁されその常開接点26aが閉、常閉接
点26bが開となる。除霜タイマ29の常閉接点
29aは数秒後に開となるが、リレー26はその
自己保持回路により継続して励磁される。リレー
26の常開接点26aが閉となることにより四方
弁2用コイル24及び圧縮機1用電磁接触器20
に通電されるので、四方弁2が除霜時の状態に切
り換わると同時に圧縮機1、凝縮器3用送風機1
1が回転するが、リレー26の常閉接点26bが
開となることにより蒸発器7用送風機12の駆動
用電動機23への通電が遮断される。
The defrosting timer 29 is constantly excited, and its normally open contact 29a closes at regular intervals (for example, once every three hours) to start defrosting operation. In conjunction with this, the relay 26 is energized, its normally open contact 26a is closed, and its normally closed contact 26b is opened. Although the normally closed contact 29a of the defrost timer 29 opens after a few seconds, the relay 26 is continuously energized by its self-holding circuit. When the normally open contact 26a of the relay 26 is closed, the coil 24 for the four-way valve 2 and the electromagnetic contactor 20 for the compressor 1 are closed.
Since the four-way valve 2 is switched to the defrosting state, the blower 1 for the compressor 1 and condenser 3 is turned on.
1 rotates, but the normally closed contact 26b of the relay 26 is opened, thereby cutting off the power to the drive motor 23 of the blower 12 for the evaporator 7.

除霜の終了により蒸発器7の温度が上昇して除
霜終了検知用サーモスタツト28の動作温度に達
すると、この除霜終了検知用サーモスタツト28
が開となり、これに伴つて、リレー26が消磁さ
れるので、その常開接点26aが開、常閉接点2
6bが閉となつて冷却運転時の状態に復帰する。
When the temperature of the evaporator 7 rises due to the end of defrosting and reaches the operating temperature of the defrosting end detection thermostat 28, this defrosting end detection thermostat 28
is opened, and along with this, the relay 26 is demagnetized, so its normally open contact 26a is opened, and its normally closed contact 2
6b is closed and the state returns to the state during cooling operation.

(考案が解決しようとする問題点) 上記従来の冷凍装置においては、その除霜運転
時凝縮器3用送風機11は運転されるが、蒸発器
7用送風機12は庫内温度の上昇を防止するため
に停止される。この結果、蒸発器7の外表面に多
量の霜が付着している間は霜の融解のために多量
の潜熱が蒸発器7で放熱されるため、冷媒の高圧
圧力(圧縮機1の出口からキヤピラリチユーブ1
0に至るまでの冷媒の圧力で冷媒の凝縮圧力とほ
ぼ等しい)は規定値以上に上昇しないが、蒸発器
7の外表面に付着した霜が融解してその量が少な
くなり又は除去されてから除霜終了検知用サーモ
スタツト28が取り付けられている蒸発器7の側
板等の温度が除霜終了検知用サーモスタツト28
の動作温度に上昇するまでの間は蒸発器7で放熱
する熱量に比し凝縮器3で吸熱する熱量が大巾に
大きくなるので、高圧圧力が規定値以上に急上昇
し、冷媒回路内機器が破損するという不具合があ
つた。
(Problems to be solved by the invention) In the conventional refrigeration system described above, the blower 11 for the condenser 3 is operated during defrosting operation, but the blower 12 for the evaporator 7 prevents the temperature inside the refrigerator from rising. be suspended for. As a result, while a large amount of frost adheres to the outer surface of the evaporator 7, a large amount of latent heat is radiated in the evaporator 7 due to melting of the frost. Capillary tube 1
The refrigerant pressure (approximately equal to the refrigerant condensation pressure until it reaches 0) does not rise above the specified value, but after the frost adhering to the outer surface of the evaporator 7 melts and its amount decreases or is removed. The temperature of the side plate of the evaporator 7 to which the defrosting completion detection thermostat 28 is attached is determined by the defrosting completion detection thermostat 28.
Until the operating temperature is reached, the amount of heat absorbed by the condenser 3 is much larger than the amount of heat radiated by the evaporator 7, so the high pressure suddenly rises above the specified value and the equipment in the refrigerant circuit is damaged. There was a problem with it being damaged.

(問題点を解決するための手段) 本考案は上記問題点に対処するために提案され
たものであつて、その要旨とするところは、冷却
運転時には冷媒が圧縮機、凝縮器、絞り装置、蒸
発器をこの順に循環し、除霜運転時には冷媒が上
記と逆に循環するとともに上記蒸発器用送風機が
停止する冷凍装置において、除霜運転時における
高圧圧力を検知して作動する圧力スイツチと、上
記凝縮器の除霜運転時における冷媒入口側に並列
に設けられた流量抵抗が互いに異なる少なくとも
2個の固定絞り装置と、上記流量抵抗が小さい固
定絞り装置と直列に設けられ、除霜運転中に上記
圧力スイツチが予め設定された作動値を検知した
ときこれからの信号を受けて閉となる電磁弁を備
えていることを特徴とする冷凍装置の除霜運転時
における高圧圧力の異常上昇防止装置にある。
(Means for Solving the Problems) The present invention has been proposed to address the above problems, and its gist is that during cooling operation, the refrigerant flows through the compressor, condenser, throttling device, etc. In a refrigeration system in which the evaporator is circulated in this order and the refrigerant is circulated in the opposite direction to the above during defrosting operation and the evaporator blower is stopped, the pressure switch operates by detecting high pressure during defrosting operation; At least two fixed throttling devices with different flow resistances are provided in parallel on the refrigerant inlet side during defrosting operation of the condenser, and the fixed throttling device with small flow resistance is installed in series. A device for preventing an abnormal rise in high pressure during defrosting operation of a refrigeration system, characterized in that the pressure switch is equipped with an electromagnetic valve that closes in response to a signal when the pressure switch detects a preset operating value. be.

(作用) 本考案においては上記構成を具えているため、
除霜運転時、高圧圧力が圧力スイツチの作動値に
達しない場合には電磁弁が開となつているため少
なくとも2個の固定絞り装置を並列に通つて大量
の冷媒が凝縮器に流入し、凝縮器から大量の熱を
吸熱する。そして、高圧圧力が圧力スイツチの作
動値に達すると、これからの信号によつて電磁弁
が閉となるので流量抵抗が大きい方の固定絞り装
置を通つた少量の冷媒が凝縮器に流入するので、
凝縮器における吸熱量が減少して高圧圧力の異常
上昇を阻止する。
(Function) Since the present invention has the above configuration,
During defrosting operation, if the high pressure does not reach the operating value of the pressure switch, the solenoid valve is open and a large amount of refrigerant flows into the condenser through at least two fixed throttle devices in parallel. It absorbs a large amount of heat from the condenser. Then, when the high pressure reaches the operating value of the pressure switch, the solenoid valve is closed by the signal from this point on, and a small amount of refrigerant flows into the condenser through the fixed throttle device with greater flow resistance.
The amount of heat absorbed in the condenser is reduced, preventing an abnormal rise in high pressure.

(実施例) 本考案の1実施例が第1図及び第2図に示さ
れ、第1図は冷媒回路図、第2図は電気制御回路
図である。第1図に示すように、凝縮器3の除霜
運転時における冷媒入口側にドライヤ4及び逆止
弁5と並列に第1のキヤピラリチユーブ14と第
2のキヤピラリチユーブ15が互いに並列となる
ように接続されている。第1のキヤピラリチユー
ブ14の流量抵抗は第2のキヤピラリチユーブ1
5のそれより小さくされ、この第1のキヤピラリ
チユーブ14の入口側にこれと直列に電磁弁16
が介装されている。そして、四方弁2と蒸発器7
を結ぶ冷媒配管即ち、除霜運転時には高圧冷媒が
流過し、冷却運転時には低圧冷媒が流過する冷媒
配管にこの中を流れる冷媒の圧力を検知して作動
する圧力スイツチ13が取り付けられている。こ
の圧力スイツチ13の作動値は蒸発器7に付着し
た霜の融解が終わる時の高圧圧力よりも若干高く
(例えば冷媒としてR502を用いた場合には10〜15
Kg/cm2G)設定されていて冷却運転時の低圧圧力
より十分高く、従つて、冷却運転時には作動する
ことはない。なお、この圧力スイツチ13は除霜
運転時に高圧の冷媒が流過する流路、即ち、圧縮
機1の吐出口からキヤピラリチユーブ14,15
までの間であればどこに取り付けても良いが、圧
縮機1と四方弁2との間に取り付ける場合には電
気信号等により除霜運転時のみ作動するようにす
れば良い。
(Embodiment) An embodiment of the present invention is shown in FIGS. 1 and 2, in which FIG. 1 is a refrigerant circuit diagram and FIG. 2 is an electric control circuit diagram. As shown in FIG. 1, a first capillary tube 14 and a second capillary tube 15 are arranged in parallel with each other on the refrigerant inlet side of the condenser 3 in parallel with the dryer 4 and the check valve 5. connected so that The flow resistance of the first capillary tube 14 is the same as that of the second capillary tube 1.
5, and a solenoid valve 16 is installed in series with the inlet side of this first capillary tube 14.
is interposed. And the four-way valve 2 and the evaporator 7
A pressure switch 13 is attached to the refrigerant pipe connecting the refrigerant pipes, through which high-pressure refrigerant flows during defrosting operation and through which low-pressure refrigerant flows during cooling operation, which operates by detecting the pressure of the refrigerant flowing therein. . The operating value of this pressure switch 13 is slightly higher than the high pressure when the frost adhering to the evaporator 7 has finished melting (for example, when R502 is used as the refrigerant, 10 to 15
Kg/cm 2 G) is set and is sufficiently higher than the low pressure during cooling operation, so it does not operate during cooling operation. The pressure switch 13 is connected to a flow path through which high-pressure refrigerant flows during defrosting operation, that is, from the discharge port of the compressor 1 to the capillary tubes 14 and 15.
However, if it is installed between the compressor 1 and the four-way valve 2, it may be activated only during defrosting operation using an electric signal or the like.

電磁弁16の励磁用コイル33は、第2図に示
すように、四方弁2のコイル24と並列に接続さ
れ、この励磁用コイル33と直列に圧力スイツチ
13の接点32が接続されている。他の構成は第
3図及び第4図に示す従来のものと同様であり、
対応する部材には同じ符号が付されている。
As shown in FIG. 2, the excitation coil 33 of the electromagnetic valve 16 is connected in parallel with the coil 24 of the four-way valve 2, and the contact 32 of the pressure switch 13 is connected in series with this excitation coil 33. The other configurations are the same as the conventional one shown in FIGS. 3 and 4,
Corresponding members are given the same reference numerals.

しかして、冷却運転時、圧縮機1から吐出され
た冷媒は第1図に実線矢印で示すように四方弁
2、凝縮器3、ドライヤ4、逆止弁5、膨張弁
6、蒸発器7、四方弁2、アキユームレータ8を
この順に経て圧縮機1に戻る。この冷却運転中、
第1及び第2のキヤピラリチユーブ14,15に
はその入口と出口の冷媒圧力がほぼ同じであるた
め冷媒が流過することはない。
During the cooling operation, the refrigerant discharged from the compressor 1 flows through the four-way valve 2, the condenser 3, the dryer 4, the check valve 5, the expansion valve 6, the evaporator 7, as shown by the solid arrow in FIG. It returns to the compressor 1 through the four-way valve 2 and the accumulator 8 in this order. During this cooling operation,
Since the refrigerant pressure at the inlet and outlet of the first and second capillary tubes 14 and 15 is approximately the same, no refrigerant flows through the first and second capillary tubes 14 and 15.

除霜運転時、電磁弁16が開となつている場合
には冷媒は第1図に破線矢印で示すように循環
し、圧縮機1から吐出された高温・高圧の冷媒ガ
スが蒸発器7を流過する際、この外表面に付着し
た霜を融解することによつて凝縮液化して高温・
高圧の冷媒液となる。この冷媒液の大部は逆止弁
9を経て電磁弁16を経て第1のキヤピラリチユ
ーブ14に流入すると同時に残部は第2のキヤピ
ラリチユーブ15に流入し、これら第1及び第2
のキヤピラリチユーブ14,15を流過する際に
絞られることによつて断熱膨張して低温・低圧の
気液二相となる。次いで、この気液二相の冷媒は
凝縮器3で蒸発気化して低温・低圧の冷媒ガスと
なり、四方弁2、アキユームレータ8を経て圧縮
機1に戻る。
During defrosting operation, if the solenoid valve 16 is open, the refrigerant circulates as shown by the broken line arrow in FIG. As it flows through, the frost adhering to the outer surface is melted and condensed into liquid, producing high temperature and
It becomes a high-pressure refrigerant liquid. Most of this refrigerant liquid passes through the check valve 9 and the solenoid valve 16 and flows into the first capillary tube 14, and at the same time the remainder flows into the second capillary tube 15.
As it flows through the capillary tubes 14 and 15, it is constricted and expands adiabatically, becoming a gas-liquid two-phase at low temperature and low pressure. Next, this gas-liquid two-phase refrigerant is evaporated in the condenser 3 to become a low-temperature, low-pressure refrigerant gas, which returns to the compressor 1 via the four-way valve 2 and the accumulator 8.

この間、凝縮器3用送風機11の駆動用電動機
22には通電されるが、蒸発器7用送風機12の
駆動用電動機23は庫内温度の上昇を防ぐために
停止している。
During this time, the drive motor 22 of the condenser 3 blower 11 is energized, but the drive motor 23 of the evaporator 7 blower 12 is stopped to prevent the temperature inside the refrigerator from rising.

しかして、高圧圧力は第5図に示すように変化
し、除霜運転時、蒸発器7に大量の霜が付着して
いる間はその融解のために多量の潜熱が蒸発器7
で吸熱されるためその上昇は比較的少ないが、霜
の付着量が少なくなり又は霜の融解が終了すると
急激に上昇する。そして、この高圧圧力が圧力ス
イツチ13の作動値に達するとその接点32が開
路して電磁弁16の励磁用コイル33への通電を
遮断する。すると、冷媒液は流路抵抗が大きい第
2のキヤピラリチユーブ15のみを通るので凝縮
器3に流入する冷媒量が少なくなり、凝縮器3に
おける外気からの吸熱量が減少する。
As a result, the high pressure changes as shown in FIG.
The increase is relatively small because heat is absorbed by the temperature, but it increases rapidly when the amount of frost decreases or when the frost has finished melting. When this high pressure reaches the operating value of the pressure switch 13, its contact 32 opens to cut off the current supply to the excitation coil 33 of the solenoid valve 16. Then, since the refrigerant liquid passes only through the second capillary tube 15 having a large flow path resistance, the amount of refrigerant flowing into the condenser 3 decreases, and the amount of heat absorbed from the outside air in the condenser 3 decreases.

かくして、それ以後は凝縮器3における吸熱量
が少なくなるので、高圧圧力の上昇は破線に示す
従来のものに比し大巾に少なくなる。
Thus, from then on, the amount of heat absorbed in the condenser 3 decreases, so the rise in high pressure becomes much smaller than in the conventional case, as shown by the broken line.

なお、上記実施例においては、第1及び第2の
キヤピラリチユーブ14,15を用いているが、
これに代えて膨張弁その他の絞り装置を用いるこ
とがてき、また、絞り装置は3個以上であつても
良い。更に、上記実施例は本考案を冷蔵庫に適用
した1例であるが、本考案は空気を熱源とする空
気調和機、温水機等の熱源側熱交換器に付着した
霜を除霜するのに適用しうることは勿論である。
Although the first and second capillary tubes 14 and 15 are used in the above embodiment,
Instead, an expansion valve or other throttling device may be used, and the number of throttling devices may be three or more. Furthermore, although the above embodiment is an example in which the present invention is applied to a refrigerator, the present invention is also applicable to defrosting frost attached to a heat exchanger on the heat source side of an air conditioner, water heater, etc. that uses air as a heat source. Of course, it can be applied.

(考案の効果) 本考案においては、除霜運転時には冷媒が圧縮
機、蒸発器、絞り装置、凝縮器の順に循環すると
ともに上記蒸発用送風機が停止し、高圧圧力が圧
力スイツチの作動値に達しない場合には電磁弁が
開となつているため、少なくとも2個の固定絞り
装置を並列に通つて大量の冷媒が凝縮器に流入
し、凝縮器から大量の熱を吸熱するので蒸発器に
付着した霜を迅速に隔解することができる。
(Effect of the invention) In the present invention, during defrosting operation, the refrigerant circulates in the order of the compressor, evaporator, throttling device, and condenser, and the evaporation blower stops, and the high pressure reaches the operating value of the pressure switch. If not, the solenoid valve is open, and a large amount of refrigerant flows into the condenser through at least two fixed throttle devices in parallel, absorbing a large amount of heat from the condenser and causing it to adhere to the evaporator. It can quickly disperse frost.

そして、高圧圧力が次第に上昇して圧力スイツ
チが予め設定された作動値を検知すると、これか
らの信号によつて電磁弁が閉となるので流量抵抗
が大きい方の固定絞り装置を通つた少量の冷媒が
凝縮器に流入するので、凝縮器における吸熱量が
減少して高圧圧力の異常上昇を阻止することがで
きる。
Then, when the high pressure gradually increases and the pressure switch detects the preset operating value, the solenoid valve is closed in response to the signal from now on, allowing a small amount of refrigerant to pass through the fixed throttle device with greater flow resistance. flows into the condenser, the amount of heat absorbed in the condenser is reduced, and an abnormal rise in high pressure can be prevented.

かくして、冷媒回路内機器の破損を極めて簡単
で安価な構造により確実に阻止することができ
る。
In this way, damage to equipment within the refrigerant circuit can be reliably prevented with an extremely simple and inexpensive structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案の1実施例を示し、
第1図は冷媒回路図、第2図は電気制御回路図で
ある。第3図及び第4図は従来の冷蔵庫の1例を
示し、第3図は冷媒回路図、第4図は電気制御回
路図である。第5図は高圧圧力の時間的変化を示
す線図である。 圧縮機……1、凝縮器……3、絞り装置……1
4,15、蒸発器……7、電磁弁……16、圧力
スイツチ……13。
1 and 2 show one embodiment of the present invention,
FIG. 1 is a refrigerant circuit diagram, and FIG. 2 is an electrical control circuit diagram. 3 and 4 show an example of a conventional refrigerator, with FIG. 3 being a refrigerant circuit diagram and FIG. 4 being an electrical control circuit diagram. FIG. 5 is a diagram showing temporal changes in high pressure. Compressor...1, condenser...3, throttling device...1
4, 15, Evaporator...7, Solenoid valve...16, Pressure switch...13.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷却運転時には冷媒が圧縮機、凝縮器、絞り装
置、蒸発器をこの順に循環し、除霜運転時には冷
媒が上記と逆に循環するとともに上記蒸発器用送
風機が停止する冷凍装置において、除霜運転時に
おける高圧圧力を検知して作動する圧力スイツチ
と、上記凝縮器の除霜運転時における冷媒入口側
に並列に設けられた流量抵抗が互いに異なる少な
くとも2個の固定絞り装置と、上記流量抵抗が小
さい固定絞り装置と直列に設けられ、除霜運転中
に上記圧力スイツチが予め設定された作動値を検
知したときこれからの信号を受けて閉となる電磁
弁を備えていることを特徴とする冷凍装置の除霜
運転時における高圧圧力の異常上昇防止装置。
In a refrigeration system in which the refrigerant circulates through the compressor, condenser, throttle device, and evaporator in this order during cooling operation, and the refrigerant circulates in the opposite direction to the above during defrosting operation and the evaporator blower stops, during defrosting operation a pressure switch that is activated by detecting high pressure in the condenser, at least two fixed throttle devices that are provided in parallel on the refrigerant inlet side and have different flow resistances when the condenser is in defrosting operation, and that the flow resistance is small. A refrigeration system characterized by comprising an electromagnetic valve that is installed in series with a fixed throttle device and that closes upon receiving a signal when the pressure switch detects a preset operating value during defrosting operation. Device to prevent abnormal rise in high pressure during defrosting operation.
JP1987132242U 1987-09-01 1987-09-01 Expired - Lifetime JPH0537172Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987132242U JPH0537172Y2 (en) 1987-09-01 1987-09-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987132242U JPH0537172Y2 (en) 1987-09-01 1987-09-01

Publications (2)

Publication Number Publication Date
JPS6441060U JPS6441060U (en) 1989-03-10
JPH0537172Y2 true JPH0537172Y2 (en) 1993-09-20

Family

ID=31389024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987132242U Expired - Lifetime JPH0537172Y2 (en) 1987-09-01 1987-09-01

Country Status (1)

Country Link
JP (1) JPH0537172Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122161A (en) * 1984-07-06 1986-01-30 株式会社東芝 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175966U (en) * 1983-05-13 1984-11-24 株式会社東芝 Air-cooled heat pump type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122161A (en) * 1984-07-06 1986-01-30 株式会社東芝 Air conditioner

Also Published As

Publication number Publication date
JPS6441060U (en) 1989-03-10

Similar Documents

Publication Publication Date Title
US4313313A (en) Apparatus and method for defrosting a heat exchanger of a refrigeration circuit
JP3378724B2 (en) Defrosting control method for air conditioner
JP3208323B2 (en) Control method of multi-type air conditioner
US4389851A (en) Method for defrosting a heat exchanger of a refrigeration circuit
US2178807A (en) Refrigeration
JP6134290B2 (en) Air conditioner for vehicles
US3173476A (en) Heat pump
JPH0537172Y2 (en)
JPH04131668A (en) Defrosting operation controller for air-conditioning apparatus
JPH10274448A (en) Air-conditioning device
JP2859981B2 (en) Air conditioner
JPH0671855B2 (en) Package type rooftop vehicle cooling system
JPS59195045A (en) Control method of defrosting operation of refrigeration cycle
JPH10288427A (en) Refrigerating device
JPS6315023A (en) Air conditioner
JP2582320B2 (en) Operation stop device in environmental test equipment
JP2626158B2 (en) Operation control device for air conditioner
JPH05322387A (en) Refrigerating device
JPS59199318A (en) Cooler for vehicle
JPH0233110Y2 (en)
JPS5833501Y2 (en) heat pump
KR820000096Y1 (en) Cooling coil air conditioner using the condeser
JPH089574Y2 (en) Control device for air conditioner
JPS6041481Y2 (en) air conditioner
JPH045948Y2 (en)