JPH0297075A - Heterojunction magnetic sensor - Google Patents

Heterojunction magnetic sensor

Info

Publication number
JPH0297075A
JPH0297075A JP63249544A JP24954488A JPH0297075A JP H0297075 A JPH0297075 A JP H0297075A JP 63249544 A JP63249544 A JP 63249544A JP 24954488 A JP24954488 A JP 24954488A JP H0297075 A JPH0297075 A JP H0297075A
Authority
JP
Japan
Prior art keywords
layer
doped
quantum well
layers
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63249544A
Other languages
Japanese (ja)
Other versions
JPH0691287B2 (en
Inventor
Yoshinobu Sugiyama
杉山 佳延
Yoshikazu Takano
鷹野 致和
Hajime Soga
曽我 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Soken Inc
Original Assignee
Agency of Industrial Science and Technology
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Soken Inc filed Critical Agency of Industrial Science and Technology
Priority to JP63249544A priority Critical patent/JPH0691287B2/en
Priority to US07/291,649 priority patent/US4912451A/en
Publication of JPH0297075A publication Critical patent/JPH0297075A/en
Publication of JPH0691287B2 publication Critical patent/JPH0691287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic sensor which is not saturated in sensitivity even with strong electric field driving and capable of outputting a high power by a method wherein two or more semiconductor layers of quantum well structure, whose energy level are higher than that of a two-dimensional electron gas layer, are provided. CONSTITUTION:Two or more semiconductor layers 5a-2, whose energy levels are higher than that of a two-dimensional electron gas layer 6, are provided to a heterojunction magnetic sensor that contains a heterojunction structure in which the two-dimensional electron gas layer 6 of high mobility if formed at a junction between different semiconductors, 4 and 5, whose energy gaps are different from each other. For instance, a non-doped GaAs layer 4, non- doped barrier layers 5a-1, non-doped quantum well layers 5a-2, a carrier supply layer 5b, and an Si doped GaAs layer 5c are successively formed on a semi- insulating GaAs substrate 7, where the number of the quantum well layers 5a-2 is two. And, Au-Ge ohmic electrodes 200 serving as a current terminal and a hole terminal are so formed as to have an ohmic contact with the above layers 4, 5a, 5b, and 5c.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子・機械工業分野における各種の計測・制
御に用いられている磁気センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic sensor used for various measurements and controls in the electronic and mechanical industry fields.

〔従来の技術] 従来、ヘテロ接合磁気センサは、不純物を含まないGa
AsFjを不純物を含まないAlGaAs層(スペーサ
層)に接合することにより、ヘテロ接合界面の不純物を
含まないGaAs層に二次元電子ガス層(以下2DEC
Jiという)が形成され、かつこのAl2GaAs層に
n型不純物を含むAI!。
[Prior art] Conventionally, a heterojunction magnetic sensor uses Ga that does not contain impurities.
By bonding AsFj to an impurity-free AlGaAs layer (spacer layer), a two-dimensional electron gas layer (hereinafter referred to as 2DEC) is formed on the impurity-free GaAs layer at the heterojunction interface.
) is formed and this Al2GaAs layer contains n-type impurities! .

GaAs層(キャリア供給層)を接合するように構成さ
れていた。
It was configured to bond a GaAs layer (carrier supply layer).

しかし、上記のセンサでは、高電界を入力した場合にn
型AfGaAs層中に余剰キャリアが生成して2DEG
層に過剰にキャリアが満たされるため感度が飽和し、さ
らに、この余剰キャリアによって2DEG層と並列に電
気伝導に寄与することによって平均の移動度が低下する
等によって、高出力が得られないという問題点があった
However, in the above sensor, when a high electric field is input, n
Surplus carriers are generated in the type AfGaAs layer and 2DEG
The problem is that sensitivity is saturated because the layer is filled with excess carriers, and furthermore, this excess carrier contributes to electrical conduction in parallel with the 2DEG layer, reducing the average mobility, making it impossible to obtain high output. There was a point.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記点に鑑み、高電界駆動でも、感度が飽和せ
ず高出力が得られる磁気センサを提供することを目的と
してなされたものである。
In view of the above points, the present invention has been made with the object of providing a magnetic sensor that can obtain high output without saturating its sensitivity even when driven in a high electric field.

〔課題を解決するための手段〕[Means to solve the problem]

基本的な磁気センサであるホール素子の設計原理を考え
る。長方形ホール素子において、入力電圧v1と出力電
圧(ホール電圧)VHの関係は、vi、、が十分小さく
高電界効果やジュール熱の影響がない場合、次式で表さ
れる。
Let's consider the design principle of the Hall element, which is a basic magnetic sensor. In the rectangular Hall element, the relationship between the input voltage v1 and the output voltage (Hall voltage) VH is expressed by the following equation when vi, is sufficiently small and there is no influence of high electric field effect or Joule heat.

V)l  =  (W#り   ・ μ、。・ B ・
 ■五、  ・・・・・・・・・(1)ここで!及びW
は、素子の長さと幅、μNOは、素子の低電界のホール
移動度、Bは、磁束密度である。
V)l = (W#ri・μ,.・B・
■Five. ・・・・・・・・・(1) Here! and W
are the length and width of the element, μNO is the low-field hole mobility of the element, and B is the magnetic flux density.

入力電圧が大きくなると、ジュール熱と電界依存性によ
るホール移動度の低下を考慮する必要があり、最大ホー
ル電圧は次式で表される。
As the input voltage increases, it is necessary to take into account Joule heat and a decrease in Hall mobility due to electric field dependence, and the maximum Hall voltage is expressed by the following equation.

■、□=B−w・μ、(E)・(2・h・ΔT・ρ/ 
t) I / R・・・・・・・・・(2)ここで、μ
H(E)、h、  ρ、及びtは、素子の高電界ホール
移動度、熱伝達係数、比抵抗、及び厚さ、ΔTは素子と
周囲との温度差である。
■, □=B-w・μ, (E)・(2・h・ΔT・ρ/
t) I/R・・・・・・・・・(2) Here, μ
H(E), h, ρ, and t are the high field hole mobility, heat transfer coefficient, resistivity, and thickness of the device, and ΔT is the temperature difference between the device and the surroundings.

ここで、ρ/lは素子の内部抵抗を表す項であるが、外
部回路との整合性から素子の内部抵抗は一定の範囲(数
十Ω〜数キロΩ)のものがよい。
Here, ρ/l is a term representing the internal resistance of the element, and the internal resistance of the element is preferably within a certain range (several tens of ohms to several kilohms) from the viewpoint of compatibility with an external circuit.

従って、ホール素子の高出力化には、この条件の下で、
高電界の移動度が大きいことが必要である。
Therefore, in order to increase the output of the Hall element, under this condition,
High electric field mobility is required.

そこで、本発明では、2DEC層を有するヘテロ接合磁
気センサにおいて、2DEC層の自由キャリアのエネル
ギー準位より大きいエネルギー準位を有する量子井戸構
造の半導体層を2DEG層に隣接して複数層設けて、高
電界においてその特徴を発揮させることにより、高電界
においても感度が飽和せず、かつ移動度の向上により高
出力を得るという技術手段とする。
Therefore, in the present invention, in a heterojunction magnetic sensor having a 2DEC layer, a plurality of quantum well structure semiconductor layers having an energy level higher than the free carrier energy level of the 2DEC layer are provided adjacent to the 2DEG layer, By exhibiting its characteristics in a high electric field, the sensitivity does not saturate even in a high electric field, and it is a technical means to obtain high output by improving mobility.

〔作用〕[Effect]

エネルギー状態の低い2DEG層に隣接して、量子井戸
構造の半導体層を設けたので、高電界を印加した場合に
エネルギーを得て有効質量が増加した2DEG中の電子
が、2DECよりもエネルギー状態の高い量子井戸層に
実空間遷移を起こし、このときエネルギーの一部はポテ
ンシャルエネルギーに変換されるため、電子の有効質量
を減少させ、移動度を増加させる。実空間遷移を起こり
やす−くするためには、量子井戸層に入り得るキャリア
の数をふやすことが有効であるが、量子井戸層を厚くし
たのでは、量子井戸層のエネルギー状態が低くなって、
実空間遷移しても電子のエネルギーの損失が少ないため
移動度はあまり増加しない。
Since a semiconductor layer with a quantum well structure is provided adjacent to the 2DEG layer with a low energy state, the electrons in the 2DEG, which gain energy and increase their effective mass when a high electric field is applied, have a higher energy state than in the 2DEC. A real-space transition occurs in the high quantum well layer, and at this time, part of the energy is converted to potential energy, reducing the effective mass of electrons and increasing their mobility. In order to make real space transition more likely to occur, it is effective to increase the number of carriers that can enter the quantum well layer, but if the quantum well layer is made thicker, the energy state of the quantum well layer becomes lower. ,
Even during real space transition, the mobility does not increase much because the loss of electron energy is small.

しかし、複数の量子井戸層を設けたことにより、量子井
戸層のエネルギー状態を低くしないで、量子井戸層を満
たし得る電子の数をふやすことができ、実空間遷移が起
こりやすくなることにより、量子井戸層の数が1の場合
よりも移動度が増加する。
However, by providing multiple quantum well layers, the number of electrons that can fill the quantum well layer can be increased without lowering the energy state of the quantum well layer, making it easier for real space transitions to occur. The mobility increases compared to when the number of well layers is one.

また、高電界でキャリア供給層に生成される余剰キャリ
アが2DEC層に満たされるばかりでなく、量子井戸構
造の半導体層にも満たされるため、2DEC層が余剰キ
ャリアによって飽和することがなく、かつ余剰キャリア
は2DEC層または量子井戸層に移り、移動度が向上す
るため、2DEG層と並列に電気伝導に寄与することに
よる平均の移動度の低下を防止できるが、量子井戸層を
複数設けたことにより、量子井戸層を満たすことのでき
るキャリアの数が増すため、さらに移動度は増加し、高
電界においても高出力のへテロ接合磁気センサが得られ
る。
In addition, surplus carriers generated in the carrier supply layer by a high electric field not only fill the 2DEC layer but also the semiconductor layer of the quantum well structure, so the 2DEC layer is not saturated with surplus carriers, and Carriers move to the 2DEC layer or quantum well layer and their mobility improves, so it is possible to prevent the average mobility from decreasing due to contribution to electrical conduction in parallel with the 2DEG layer, but by providing multiple quantum well layers, Since the number of carriers that can fill the quantum well layer increases, the mobility further increases, and a high-output heterojunction magnetic sensor can be obtained even in high electric fields.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図は、本発明を特にホール素子用として適用した場
合のその概略構成図を示す。この場合、バンドギャップ
の異なる2種類の半導体層4と5のへテロ接合部分には
、高移動度の二次元電子ガス層(以下2DEC層という
)6が形成される。
FIG. 1 shows a schematic configuration diagram when the present invention is applied particularly to a Hall element. In this case, a high-mobility two-dimensional electron gas layer (hereinafter referred to as 2DEC layer) 6 is formed at the heterojunction between the two types of semiconductor layers 4 and 5 having different band gaps.

半導体層5は、不純物をドープした半導体層5b(キャ
リア供給層)と、ドープしていない半導体115a(ス
ペーサ層)からなり、かつ半導体層5aは量子井戸構造
を有する。なお、第1図において、2a、2bは、ホー
ル素子Hに電流を流すための電流端子、3aおよび3b
は、ホール素子Hに磁束密度Bの磁界を加えた時、発生
するホール起電力■8を取り出すためのホール端子であ
る。
The semiconductor layer 5 includes a semiconductor layer 5b doped with impurities (carrier supply layer) and an undoped semiconductor 115a (spacer layer), and the semiconductor layer 5a has a quantum well structure. In addition, in FIG. 1, 2a and 2b are current terminals for flowing current to the Hall element H, and 3a and 3b are
is a Hall terminal for taking out the Hall electromotive force (8) generated when a magnetic field of magnetic flux density B is applied to the Hall element H.

次に、上記のホール素子Hの具体的な構造、及びその製
造方法について説明する。
Next, a specific structure of the Hall element H described above and a method of manufacturing the same will be explained.

第2図は第1実施例として、量子井戸層付へテロ接合半
導体の構造を示しており、半絶縁性GaAs基板7の上
に、ノンドープGaAs 4、ノンドープバリア層5a
−1、ノンドープウェル(N子井戸)層5a−2、キャ
リア供給層5b、StドープGaAs層5Cを順次分子
線結晶成長法(MBE)を用いて形成した。なお、他に
、有機金属気相成長法、液相成長法等を用いてもよい。
FIG. 2 shows the structure of a heterojunction semiconductor with a quantum well layer as a first embodiment. On a semi-insulating GaAs substrate 7, non-doped GaAs 4 and a non-doped barrier layer 5a
-1, a non-doped well (N-well) layer 5a-2, a carrier supply layer 5b, and a St-doped GaAs layer 5C were sequentially formed using molecular beam crystal growth (MBE). In addition, metal organic vapor phase epitaxy, liquid phase epitaxy, etc. may also be used.

5a−1をノンドープAffiGaAs、5a−2をノ
ンドープGaAsとし、5bをSiドープA2GaAs
とする場合を第1実施例として説明する。
5a-1 is non-doped AffiGaAs, 5a-2 is non-doped GaAs, and 5b is Si-doped A2GaAs.
A case will be described as a first example.

なお、第2図には、ノンドープ量子井戸層の付加数が2
の場合を示した。
In addition, in Figure 2, the number of additional non-doped quantum well layers is 2.
The case of

第2図かられかるように、20EGJi6は、ノンドー
プGaAs層4のノンドープバリア層5a−i側のへテ
ロ接合境界面上に形成される。ノンドープバリア層5a
−1とノンドープウェル層5a−2からなる量子井戸層
は、n型不純物のSiがドープされたキャリア供給層5
b中のStがノンドープGaAs層4中に侵入するのを
防止するのに加えて、高電界における移動度を向上させ
るために設けである。
As can be seen from FIG. 2, 20EGJi6 is formed on the heterojunction boundary surface of the non-doped GaAs layer 4 on the non-doped barrier layer 5a-i side. Non-doped barrier layer 5a
-1 and a non-doped well layer 5a-2, the carrier supply layer 5 is doped with n-type impurity Si.
This is provided not only to prevent St in b from entering the non-doped GaAs layer 4, but also to improve mobility in a high electric field.

また、上述した電流端子2a、2b、及びホール端子3
a、3bの電極として機能するAu−Geオーム性電極
200が、上記各層4.5a−1゜5a−2,5b、5
cとオーム性接触を有するように形成されているが、低
周波数雑音が小さいAu−3n電極を用いてもよい。
In addition, the above-mentioned current terminals 2a, 2b and Hall terminals 3
Au-Ge ohmic electrodes 200 functioning as electrodes a and 3b are connected to each layer 4.5a-1, 5a-2, 5b, 5.
An Au-3n electrode, which has low low frequency noise, may also be used.

なお、結晶成長用の半絶縁性GaAs基板のクリーニン
グは、濃硫酸、過酸化水素水、純水の混合液(容積比が
4:l:1、液温60°C)中で約1分間エツチングし
、結晶成長用真空槽の中でヒ素の蒸気をあてながら熱エ
ツチングを行った。結晶成長条件の第1実施例における
代表例は以下のとおりである。
The semi-insulating GaAs substrate for crystal growth was cleaned by etching it for about 1 minute in a mixed solution of concentrated sulfuric acid, hydrogen peroxide, and pure water (volume ratio 4:1:1, solution temperature 60°C). Then, thermal etching was performed in a vacuum chamber for crystal growth while applying arsenic vapor. Representative examples of crystal growth conditions in the first example are as follows.

1、Gaフラックス: 4.8 X 10−7Torr
2、Asフラックス= 1. OX 10−’Torr
3、Afフラックス: 1.2 X 10−’Torr
4、結晶成長温度 =630°C 5、結晶成長速度 : 1.20μm/hr (GaA
s)1、65 g m/hr (AfGaAs) 0.45 am/hr (A/!As )6、第1層:
ノンドープGaAs (500nm)第2層:ノンドー
プAfGaAs (1,5nm)第3層:ノンドープG
aAs (2,5nm)第4層:ノンドープAj2Ga
As (1,5nm)第5N:ノンドープGaAs (
2,5nm)第6層:ノンドープAjl!GaAs (
1,5nm)第7層:SiドープA/!GaAs (7
5nm)第8層:SiドープGaAs (10nm)こ
こでSiドープ濃度はI X 10 lIlcm−’で
ある。
1. Ga flux: 4.8 x 10-7 Torr
2. As flux = 1. OX 10-'Torr
3. Af flux: 1.2 x 10-'Torr
4. Crystal growth temperature = 630°C 5. Crystal growth rate: 1.20 μm/hr (GaA
s) 1,65 g m/hr (AfGaAs) 0.45 am/hr (A/!As)6, 1st layer:
Non-doped GaAs (500 nm) 2nd layer: Non-doped AfGaAs (1.5 nm) 3rd layer: Non-doped G
aAs (2.5 nm) 4th layer: non-doped Aj2Ga
As (1,5 nm) 5th N: non-doped GaAs (
2.5 nm) 6th layer: non-doped Ajl! GaAs (
1.5 nm) 7th layer: Si-doped A/! GaAs (7
5 nm) 8th layer: Si-doped GaAs (10 nm) where the Si doping concentration is I x 10 lIlcm-'.

7、 オーミック電極はAuC;e (7%から12%
) / N i / A uの蒸着膜の合金化による。
7. Ohmic electrode is AuC;e (7% to 12%
) / Ni / Au by alloying the deposited film.

上記の方法によって得られたヘテロ接合ホール素子の考
えられる作用を第3図のエネルギーバンド図を用いて説
明する。
The possible effects of the heterojunction Hall element obtained by the above method will be explained using the energy band diagram shown in FIG.

なお、量子井戸5a−2−1,5a−2−2および2D
EGN6には、伝導帯底のエネルギー状態を示すととも
に、量子効果によって生ずる基底量子準位Aを合わせ示
した。
In addition, quantum wells 5a-2-1, 5a-2-2 and 2D
EGN6 shows the energy state at the bottom of the conduction band and also shows the base quantum level A caused by quantum effects.

はじめに、電流端子2a、、2bに正電圧を印加した場
合、キャリア供給層であるn型A l G a A s
層5bより基底量子準位Aのエネルギー状態の低い2D
EG層6を通して電流が流れると、電子の持つエネルギ
ーは低く、電子の移動度は高い。
First, when a positive voltage is applied to the current terminals 2a, 2b, the n-type A l Ga A s which is the carrier supply layer
2D with a lower energy state of the ground quantum level A than the layer 5b
When a current flows through the EG layer 6, the energy of electrons is low and the mobility of electrons is high.

その状態で、高電界を印加した場合に、2DEG層6に
満たされている電子のエネルギーが高くなり、実効質量
が増加するため、移動度が低下する。しかし、第1実施
例の構造においては、1.5 nmのノンドープAAG
aAs層5a−1−1,5a−1−2を介して、ZDE
G層6よりも基底量子準位Aのエネルギー状態のわずか
に高いGaAs層5a−2−1,5a−2−2が設けら
れているので、電子は実空間遷移を起こし、ノンドープ
AffiGaAs層5a−1−1,5a−1−2を介し
てGaAs層5a−2−1,5a−2−2を満たしはじ
める。そのため、G a A s j15 a −2−
1,5a−2−2に満たされる電子のエネルギーの一部
はポテンシャルエネルギーに変換されるため、電子の実
効ittを減少させ、ふたたび移動度を増加させる。
When a high electric field is applied in this state, the energy of the electrons filled in the 2DEG layer 6 increases, the effective mass increases, and the mobility decreases. However, in the structure of the first example, 1.5 nm of non-doped AAG
ZDE via the aAs layers 5a-1-1 and 5a-1-2
Since the GaAs layers 5a-2-1 and 5a-2-2 whose energy state of the ground quantum level A is slightly higher than that of the G layer 6 are provided, electrons undergo real space transition and the non-doped AffiGaAs layer 5a- The GaAs layers 5a-2-1 and 5a-2-2 begin to be filled through the layers 1-1 and 5a-1-2. Therefore, G a A s j15 a -2-
A part of the energy of the electrons filled in 1,5a-2-2 is converted into potential energy, thereby reducing the effective itt of the electrons and increasing the mobility again.

また、高電界を印加することによって生成されたキャリ
ア供給層であるAfGaAs層5b中のキャリアは、2
DEC層6だけでなく量子井戸層5a−2のエネルギー
状態をもとることができるので、移動度の低い余剰キャ
リアの存在を防ぐことができ、平均の移動度の低下を防
止できる。
Further, carriers in the AfGaAs layer 5b, which is a carrier supply layer, generated by applying a high electric field are 2
Since the energy state of not only the DEC layer 6 but also the quantum well layer 5a-2 can be determined, the presence of surplus carriers with low mobility can be prevented, and a decrease in average mobility can be prevented.

ここで、GaAs層5a−2の幅が大きくなると、Ga
As層5a−2の基底量子準位のエネルギー状態が低く
なり、低い電界においてもGaAs層5a−2内に留ま
る電子の数が多くなってしまい、上記の効果を得ること
が困難となる。
Here, as the width of the GaAs layer 5a-2 increases, the GaAs layer 5a-2 becomes larger.
The energy state of the fundamental quantum level of the As layer 5a-2 becomes low, and the number of electrons remaining in the GaAs layer 5a-2 increases even in a low electric field, making it difficult to obtain the above effect.

しかし、複数の量子井戸層を設けたことにより、GaA
s層5a−2の基底量子準位のエネルギー状態を低くし
ないで、量子井戸層を満たすことのできるキャリアの数
を増すことができ、上記の効果がさらに有効となる。
However, by providing multiple quantum well layers, GaA
The number of carriers that can fill the quantum well layer can be increased without lowering the energy state of the base quantum level of the s-layer 5a-2, and the above effect becomes even more effective.

次に、第1実施例のGaAs層5a−2−1と5a−2
−2の厚さを、例えば、5a−2−1が2.5nm、 
 5a−2−2が1.5nn+という様に変えたものを
第2実施例とする。このように、量子井戸層の幅を変え
ることにより、20EG@の量子井戸層5a−2−1よ
り逆側の量子井戸層5a−22のエネルギー状態を高く
すれば、5a−2−1から5a−2−2Jiへの量子井
戸層間の実空間遷移が起こり、移動度はさらに増加する
Next, the GaAs layers 5a-2-1 and 5a-2 of the first embodiment
-2 thickness, for example, 5a-2-1 is 2.5 nm,
The second embodiment is one in which 5a-2-2 is changed to 1.5nn+. In this way, by changing the width of the quantum well layer, the energy state of the quantum well layer 5a-22 on the opposite side from the quantum well layer 5a-2-1 of 20EG@ is made higher, A real space transition between the quantum well layers to -2-2Ji occurs and the mobility further increases.

次に、5a−1をノンドープAfAs、5a−2をノン
ドープGaAsとし、5bがノンドープAlAS/ノン
ドープG a A s / S i  ドープGaAs
/ノンドープGaAsを基本構造とする超格子である場
合を第3実施例とし、第4図にその模式断面図を示す。
Next, 5a-1 is non-doped AfAs, 5a-2 is non-doped GaAs, and 5b is non-doped AlAS/non-doped GaAs/Si doped GaAs.
A third embodiment is a superlattice whose basic structure is non-doped GaAs, and a schematic cross-sectional view thereof is shown in FIG.

第3実施例では、第1実施例のn型AffiGaAs層
5bを、ノンドープGaAs層(1,5nm)50b−
1、ノンドープGaAs層(0,5nm) 50 b2
、StドープGaAs層(1,5nm) 50 b −
3、ノンドープGaAsJi (0,5nm) 50 
b−4からなる4nmの層を基本構造とし、これらの1
5回の繰り返しからなる総膜厚60nmの超格子構造の
半導体層50bに置き換え、ノンドープAfGaAs層
5a−1を、ノンドープGaAs層(1゜5nm)で置
き換えた量子井戸層付超格子ホール素子とする。なお、
第4図には、量子井戸層50a=2の数が2の場合を示
した。
In the third embodiment, the n-type AffiGaAs layer 5b of the first embodiment is replaced with a non-doped GaAs layer (1.5 nm) 50b-
1. Non-doped GaAs layer (0.5 nm) 50 b2
, St-doped GaAs layer (1,5 nm) 50 b −
3. Non-doped GaAsJi (0.5 nm) 50
The basic structure is a 4 nm layer consisting of b-4, and these 1
A superlattice Hall element with a quantum well layer is obtained by replacing the non-doped AfGaAs layer 5a-1 with a non-doped GaAs layer (1°5 nm) by replacing the superlattice structure semiconductor layer 50b with a total film thickness of 60 nm consisting of 5 repetitions. . In addition,
FIG. 4 shows a case where the number of quantum well layers 50a=2 is 2.

第3実施例の素子の直流駆動時の移動度の電界依存性を
第5図に示す。量子井戸層50a−2の数nが増えると
、低電界移動度は小さくなるが、電界増加に伴う移動度
の低下の割合は小さくなる。
FIG. 5 shows the electric field dependence of the mobility during direct current driving of the device of the third example. As the number n of quantum well layers 50a-2 increases, the low electric field mobility decreases, but the rate of decrease in mobility due to an increase in electric field decreases.

なお、n=oのときよりn=1の場合に低電界移動度が
高いのは、スペーサ層が厚くなることによりドープした
不純物と2DEC層中のキャリアとの分離が良くなるた
めである。
The reason why the low electric field mobility is higher when n=1 than when n=o is because the thicker spacer layer improves the separation between doped impurities and carriers in the 2DEC layer.

第3実施例の素子の直流駆動時の磁界感度の電界依存性
を第6図に示す。量子井戸7150 a−2の数nが増
えると、低電界での磁界感度は小さくなるが、高電界時
にはn=oの場合より大きくなり、高出力が得られる。
FIG. 6 shows the electric field dependence of the magnetic field sensitivity of the element of the third example when driven with direct current. As the number n of quantum wells 7150a-2 increases, the magnetic field sensitivity becomes smaller in low electric fields, but becomes larger in high electric fields than when n=o, and a high output can be obtained.

さらに、素子を小型化して高電界で駆動すれば、量子井
戸層50a−2を複数設けたことによる磁気センサの高
出力化の効果は、さらに大きくなる。
Furthermore, if the element is miniaturized and driven with a high electric field, the effect of increasing the output of the magnetic sensor by providing a plurality of quantum well layers 50a-2 will be even greater.

また、ダブルへテロ構造で、2DEC層に隣接して片側
あるいは両側に量子井戸層を複数層設けた構造を第4実
施例、基板側にキャリア供給層を設けた逆構造のへテロ
構造で、2 DEC,層に隣接して量子井戸層を複数層
設けた構造を第5実施例、ヘテロ接合構造で、2DEC
に隣接して基板側に量子井戸層を複数層設けた構造を第
6実施例とし、それぞれ、第7図、第8図、第9図に概
略断面図を示す。この様な構造でも素子の高出力化が実
現できる。
In addition, the fourth embodiment has a double hetero structure in which multiple quantum well layers are provided on one side or both sides adjacent to the 2DEC layer, and a reverse hetero structure in which a carrier supply layer is provided on the substrate side. In the fifth embodiment, a structure in which multiple quantum well layers are provided adjacent to a 2DEC layer is a heterojunction structure, and a 2DEC
A sixth embodiment has a structure in which a plurality of quantum well layers are provided adjacent to the substrate on the substrate side, and schematic cross-sectional views are shown in FIGS. 7, 8, and 9, respectively. Even with such a structure, high output power of the device can be achieved.

また、上記第1実施例から第6実施例に示した断面構造
でのドレイン分離型の磁気センサの様なホール素子以外
の磁気センサでも高出力化が実現できる。
Furthermore, high output can be achieved with magnetic sensors other than Hall elements, such as the drain-separated type magnetic sensors with the cross-sectional structures shown in the first to sixth embodiments.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ヘテロ接合ホール素
子のスペーサ層を量子井戸構造としているため、高電界
移動度の低下を小さくでき、高出力の磁気センサが得ら
れ、計測、制御の高精度化に大きく貢献することができ
るという優れた効果が得られる。
As described above, according to the present invention, since the spacer layer of the heterojunction Hall element has a quantum well structure, the decrease in high electric field mobility can be reduced, a high output magnetic sensor can be obtained, and measurement and control can be improved. An excellent effect can be obtained in that it can greatly contribute to precision improvement.

・・・キャリア供給層。...Carrier supply layer.

6・・・二次元電子ガス層。6...Two-dimensional electron gas layer.

Claims (1)

【特許請求の範囲】[Claims]  バンドギャップの異なる異種半導体の接合部に、高移
動度の二次元電子ガス層を形成するヘテロ接合構造を包
含するヘテロ接合磁気センサにおいて、前記二次元電子
ガス層のエネルギー状態より高いエネルギー状態を持つ
量子井戸構造の半導体層を、複数層設けたことを特徴と
するヘテロ接合磁気センサ。
In a heterojunction magnetic sensor including a heterojunction structure that forms a two-dimensional electron gas layer with high mobility at a junction of dissimilar semiconductors with different band gaps, the sensor has an energy state higher than that of the two-dimensional electron gas layer. A heterojunction magnetic sensor characterized by having multiple semiconductor layers with a quantum well structure.
JP63249544A 1988-03-28 1988-10-03 Heterojunction magnetic sensor Expired - Lifetime JPH0691287B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63249544A JPH0691287B2 (en) 1988-10-03 1988-10-03 Heterojunction magnetic sensor
US07/291,649 US4912451A (en) 1988-03-28 1988-12-29 Heterojunction magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249544A JPH0691287B2 (en) 1988-10-03 1988-10-03 Heterojunction magnetic sensor

Publications (2)

Publication Number Publication Date
JPH0297075A true JPH0297075A (en) 1990-04-09
JPH0691287B2 JPH0691287B2 (en) 1994-11-14

Family

ID=17194571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249544A Expired - Lifetime JPH0691287B2 (en) 1988-03-28 1988-10-03 Heterojunction magnetic sensor

Country Status (1)

Country Link
JP (1) JPH0691287B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204584A (en) * 1991-11-21 1994-07-22 Nec Corp Magnetoresistance effect element using gaas/algaas superlattice and measurement of magnetic field strength
US5657189A (en) * 1994-09-19 1997-08-12 Fujitsu Limited Hall-effect magnetic sensor and a thin-film magnetic head using such a hall-effect magnetic sensor
US8059373B2 (en) 2006-10-16 2011-11-15 Hitachi Global Storage Technologies Netherlands, B.V. EMR sensor and transistor formed on the same substrate
CN113391246A (en) * 2021-06-11 2021-09-14 西南科技大学 Method for improving performance of bulk acoustic wave driven micro-heterojunction magnetic sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204584A (en) * 1991-11-21 1994-07-22 Nec Corp Magnetoresistance effect element using gaas/algaas superlattice and measurement of magnetic field strength
US5657189A (en) * 1994-09-19 1997-08-12 Fujitsu Limited Hall-effect magnetic sensor and a thin-film magnetic head using such a hall-effect magnetic sensor
US8059373B2 (en) 2006-10-16 2011-11-15 Hitachi Global Storage Technologies Netherlands, B.V. EMR sensor and transistor formed on the same substrate
CN113391246A (en) * 2021-06-11 2021-09-14 西南科技大学 Method for improving performance of bulk acoustic wave driven micro-heterojunction magnetic sensor

Also Published As

Publication number Publication date
JPH0691287B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5883564A (en) Magnetic field sensor having high mobility thin indium antimonide active layer on thin aluminum indium antimonide buffer layer
US4978938A (en) Magnetoresistor
US4912451A (en) Heterojunction magnetic field sensor
US4926154A (en) Indium arsenide magnetoresistor
JPH0821708B2 (en) Semiconductor element
US8324672B2 (en) Spin transport device
JPH0297075A (en) Heterojunction magnetic sensor
JP3002466B1 (en) Thermoelectric converter
JPH01245574A (en) Heterojunction magnetic sensor
KR930000825B1 (en) Improved magnetoresistors
JPS6359272B2 (en)
JPH0342707B2 (en)
JPS5963769A (en) High-speed semiconductor element
Pettenpaul et al. GaAs Hall devices produced by local ion implantation
JPH0567056B2 (en)
JP3399053B2 (en) Heterojunction Hall element
JP2671790B2 (en) Differential negative resistance transistor
JPH0870146A (en) Magnetic sensor
US7902919B2 (en) Current amplifying element and current amplification method
JPH11186631A (en) Hall element, semiconductor device and electronic device having rotating mechanism
JPH07211954A (en) Heterojunction hall element
JPH069261B2 (en) Semiconductor coupled superconducting device
JP2583793B2 (en) Semiconductor substrate
JP3469675B2 (en) Magnetic spin element
JP3287054B2 (en) Magnetoelectric conversion element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term