JPH0295574A - Grinding method for electrolytic dressing and method and device for compound working of polishing method serving conductive grindstone for tool as well - Google Patents

Grinding method for electrolytic dressing and method and device for compound working of polishing method serving conductive grindstone for tool as well

Info

Publication number
JPH0295574A
JPH0295574A JP24696588A JP24696588A JPH0295574A JP H0295574 A JPH0295574 A JP H0295574A JP 24696588 A JP24696588 A JP 24696588A JP 24696588 A JP24696588 A JP 24696588A JP H0295574 A JPH0295574 A JP H0295574A
Authority
JP
Japan
Prior art keywords
grinding
polishing
electrolytic
conductive
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24696588A
Other languages
Japanese (ja)
Other versions
JP2565385B2 (en
Inventor
Hitoshi Omori
整 大森
Takeo Nakagawa
威雄 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP24696588A priority Critical patent/JP2565385B2/en
Publication of JPH0295574A publication Critical patent/JPH0295574A/en
Application granted granted Critical
Publication of JP2565385B2 publication Critical patent/JP2565385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/001Devices or means for dressing or conditioning abrasive surfaces involving the use of electric current

Abstract

PURPOSE:To facilitate a stabilized mirrorface grinding by serving the conductive grindstone used for electrolytic dressing grinding for the tool for polishing as well after the electrolytic dressing grinding and performing finishing efficiently. CONSTITUTION:A highly efficient mirror face finish grinding is performed by the conductive grindstone fixed with a fine abrasive grain. Then finally only the small cutting streak which can not be ground even by this fine fixed abrasive grain is removed at high speed and completely by the electrolytic polishing method and free abrasive grain utilized auxiliarily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、機械加工分野における研削加工ならびに研磨
加工で用いられる加工方式および装置に関するものであ
り、特に高能率加工に適用されている導電性砥石である
鋳鉄ファイバボンド砥石の特徴を活かしながら、そのま
ま併重用の工具として兼用する複合加工方法および装置
に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a processing method and apparatus used in grinding and polishing in the field of machining, and particularly relates to a method and an apparatus for grinding and polishing in the field of machining. This invention relates to a composite machining method and device that utilizes the characteristics of a cast iron fiber bonded grindstone as a grindstone and can also be used as a grinding tool.

(従来の技術) 被削材の仕上加工、特に鏡面仕上法として従来から一般
的なのは、ラッピングあるいはポリッシングと呼ばれる
研房方法で、遊離砥粒と被削材を互いに擦り合わせて次
第に凹凸をなくしていくといった極めて簡単ながら時間
のかかる方式であった。この仕上方式では、被削材1個
当たりに要する加工時間が長いために、大型の研房装置
を製作し同時に多数の被削材を加工することで見かけ上
加工能率を上げ、単一な形状を有する製品を大量に生産
するといった場合には適当な方式であったと言うことが
できる。
(Prior art) The conventionally common method for finishing workpiece materials, especially mirror finishing, is a polishing method called lapping or polishing, in which free abrasive grains and the workpiece are rubbed against each other to gradually eliminate irregularities. It was an extremely simple but time-consuming method. This finishing method takes a long time to process each workpiece, so by building a large-scale laboratory device and processing multiple workpieces at the same time, the apparent machining efficiency is increased and a single shape is achieved. It can be said that this method is suitable for producing large quantities of products with

しかしながら、近代文明の象徴とも言える産業革命に端
を発した少品種大量生産時代が祢わりを告げ、現代産業
において従来は想像もされなかった多品種少量生産化や
高加工精度化が要求される時代になると、これまでは問
題となり得なかった様々な研磨加工の欠点が高生産能率
化を妨げる結果となった。中でも全自動化が困難な点と
仕上能率が低いといった欠点は、遊離砥粒を利用する研
摩方式の原理的な弊害であって、これらの問題解決を図
るためには加工原理そのものを変える以外に方法がない
と言われてきている。
However, the era of mass production of a small number of products, which began with the industrial revolution, which can be considered a symbol of modern civilization, is coming to an end, and modern industry is now demanding high-mix, low-volume production and high processing precision that were previously unimaginable. As time progressed, various drawbacks of polishing, which had never been a problem in the past, became a hindrance to high production efficiency. Among them, the drawbacks of difficulty in full automation and low finishing efficiency are fundamental disadvantages of the polishing method that uses free abrasive grains, and there is no way to solve these problems other than changing the processing principle itself. It has been said that there is no such thing.

この遊離砥粒を用いた研磨法を改め、固定された微細砥
粒、すなわち微細砥粒を有する砥石を利用した研削方式
に改変することを想定すると、併置で問題となった低加
工能率は当然ながら容易に解決できると考えられるが、
高精度な研削加工を長期に渡り維持していくために何ら
対策が施されていないことが考えられる。事実、微細砥
粒を保持した砥石は作り難い上、慣用研削方式によって
鏡面を維持することはまず不可能であることが多くの研
究によって明らかとなっている。
Assuming that this polishing method using free abrasive grains is changed to a grinding method that uses fixed fine abrasive grains, that is, a grinding wheel with fine abrasive grains, the low machining efficiency that was a problem with co-locating the abrasive grains will naturally be reduced. Although it is thought that it can be easily solved,
It is possible that no measures were taken to maintain high-precision grinding over a long period of time. In fact, many studies have revealed that it is difficult to make a grindstone that retains fine abrasive grains, and that it is almost impossible to maintain a mirror surface using conventional grinding methods.

従って、従来の加工技術、特に仕上加工技術においては
、始めから最後まで遊離砥粒による研磨(ラッピング、
ポリッシング)方式を取るか、あるいは始めに比較的粗
い砥粒を有する砥石によって研削しある程度の平滑度を
得た後、別の加工機に被加工物を移送して遊離砥粒によ
る研磨加工に移るといった複雑な加工工程を取らざるを
得なかったのが従来技術と言うことが出来る。
Therefore, in conventional processing technology, especially finishing processing technology, polishing (lapping, lapping,
(polishing) method, or first grind it with a whetstone with relatively coarse abrasive grains to obtain a certain degree of smoothness, then transfer the workpiece to another processing machine and move on to polishing with free abrasive grains. It can be said that the conventional technology had no choice but to take such complicated processing steps.

(発明が解決しようとする課題) 本発明では、ラッピングなど遊離砥粒による従来の研摩
技術によってはとうてい実現できないとされている(1
)高仕上能率化、(2)高加工精度化、(3) 仕上加
工の全自動化、(4)仕上加工装置のコンパクト化、(
5)  仕上工程の高フレキシビリティ−化など、将来
の産業発展を見るためには必要不可欠である問題解決を
容易且つ確実に実現することを見込んでいる。特に、高
加工能率を得る研削加工と高加工精度を得る研磨加工を
連続して、それぞれを極めて効果的に実現する本発明に
よれば、ほぼ加工工程を1つに集約することが可能とな
り特に(1)  、(2) 、(3)  の問題解決に
対する効果は大きいと考えられる。
(Problems to be Solved by the Invention) The present invention is said to be completely unachievable by conventional polishing techniques using loose abrasives such as lapping (1)
) High finishing efficiency, (2) High machining accuracy, (3) Full automation of finishing machining, (4) Compactness of finishing machining equipment, (
5) We anticipate that we will be able to easily and reliably solve problems that are essential for future industrial development, such as increasing the flexibility of finishing processes. In particular, according to the present invention, which successively performs grinding processing to obtain high processing efficiency and polishing processing to obtain high processing accuracy, it is possible to consolidate almost all processing steps into one, and especially (1), (2), and (3) are considered to have a large effect on problem solving.

(課題を解決するための手段) 本発明は、ラッピングなど遊離砥粒による従来の研摩方
式を改め、微細砥粒(粒径:数μm)を固定した導電性
砥石によって高能率な鏡面仕上研削を行うことで大幅な
仕上加工時間の短縮化を図った後、最終的に微細固定砥
粒でも取り切れなかった微小研削条痕のみを電解研暦法
および補助的に利用する遊離砥粒によって高速に且つ完
全に除去する手段を取る。
(Means for Solving the Problems) The present invention improves the conventional polishing method using loose abrasive grains such as lapping, and achieves highly efficient mirror finish grinding using a conductive grindstone fixed with fine abrasive grains (particle size: several μm). After significantly shortening the finishing machining time by doing this, in the end, only the fine grinding marks that could not be removed even with fine fixed abrasive grains were removed at high speed and using the electrolytic polishing method and free abrasive grains used as an auxiliary method. Take steps to completely remove it.

本発明では、従来では各工程ごとに加工工具および加工
機を何段階も変えていく方式を改め、鏡面研削から鏡面
研摩へ工程が変わっても、初期の鏡面研削に用いた導電
性砥石そのものを研磨用の工具として利用することで、
同一加工機上でほぼ最終仕上製品として通用する品質を
得ることが可能である。本発明において導電性砥石を用
いるのは、電解ドレッシング作用を研削中に発生させる
ことによって、微細砥粒砥石による安定した鏡面研削を
実現する上で問題となる砥粒見立てと研削屑の排除を容
易且つ確実に実現するためである。
In the present invention, we have changed the conventional method of changing the processing tool and processing machine several times for each process, and even if the process changes from mirror grinding to mirror polishing, the conductive grindstone itself used for the initial mirror grinding can be changed. By using it as a polishing tool,
It is possible to obtain a quality that can almost be used as a final finished product using the same processing machine. In the present invention, the conductive grindstone is used because it generates an electrolytic dressing effect during grinding, which facilitates the removal of abrasive grains and grinding debris, which are problems when achieving stable mirror grinding using a fine abrasive grindstone. This is to ensure that this is achieved.

しかも、電解ドレッシングを利用した鏡面研削後に、同
導電性砥石はそのまま電解研磨用工具として電気条件の
制御のみで利用可能になることと、同砥石に若干の改良
を施すことによって従来の最終ポリッシング用工具とし
ても利用可能であることが本発明の大きな新規性である
Moreover, after mirror grinding using electrolytic dressing, the conductive grinding wheel can be used as an electrolytic polishing tool by simply controlling the electrical conditions, and by making some improvements to the same grinding wheel, it can be used for conventional final polishing. The great novelty of the present invention is that it can also be used as a tool.

(作 用) 以下に、本発明の複合加工方法における電解ドレッシン
グ作用を利用した鏡面研削過程および研削に使用した導
電性砥石による研磨加工作用について詳述する。
(Function) Below, the mirror grinding process using the electrolytic dressing action in the composite processing method of the present invention and the polishing action by the conductive grindstone used for grinding will be described in detail.

まず、本発明による複合加工方法の初期における電解ド
レッシングを用いた鏡面研削機構について触れる。メタ
ルボンド砥石に限らず導電性を有する砥石であれば、既
に電解作用により砥粒の目立て効果および研削屑の排除
効果(通常は両者をまとめた意味で電解ドレッシングと
呼んでいる)が生じることが明らかとなっている。電解
ドレッシングを利用した研削方式は、特に鋳鉄ファイバ
ボンド砥石のような砥粒保持力が極めて高いメタルボン
ド剛性砥石に関して最もその効果が高いと言われている
。微細砥粒を有した鋳鉄ファイバボンド砥石(ダイヤモ
ンドあるいはCBN砥粒)は慣用研削法で用いられると
、は全くと言って良いほど研削性能が悪劣で、剛性ボン
ドであるが故にボンドから砥粒を突出させることが困難
で、安定した鏡面研削が実現できないためである。しか
しながら、本発明初期の電解ドレッシング研削法によれ
ば、砥石の使い始め段階(ツルーイング直後:第1図A
)において鋳鉄ファイバボンドに覆われている砥粒が、
電解ドレッシング時間とともに次第に突出してくる。こ
の様子が第1図A→第1図B→第1図Cである。
First, we will discuss the mirror grinding mechanism using electrolytic dressing in the early stage of the composite processing method according to the present invention. Not only metal-bond grindstones but also conductive grindstones can already have an effect of sharpening the abrasive grains and removing grinding debris (usually referred to as electrolytic dressing) due to electrolytic action. It has become clear. Grinding methods using electrolytic dressing are said to be most effective, especially for metal-bond rigid grindstones that have extremely high abrasive grain retention, such as cast iron fiber-bond grindstones. When cast iron fiber bonded grinding wheels with fine abrasive grains (diamond or CBN abrasive grains) are used in conventional grinding methods, the grinding performance is quite poor, and because the bond is a rigid bond, the abrasive grains are separated from the bond. This is because it is difficult to make it protrude, and stable mirror grinding cannot be achieved. However, according to the electrolytic dressing grinding method of the early stage of the present invention, the initial stage of using the grinding wheel (immediately after truing: Fig. 1A
), the abrasive grains covered with cast iron fiber bond are
It gradually becomes more prominent with the time of electrolytic dressing. This situation is shown in FIG. 1A→FIG. 1B→FIG. 1C.

本発明による複合加工方法の初期では、この鋳鉄ファイ
バボンド砥石の砥粒突出とその維持を主眼として砥石自
体を(+)極とし、砥石面と対向する金属板電極を(−
)極として、両者の間隙に導電性研削液を供給する事に
よって鏡面研削を実現する。本発明の初期工程である研
削工程において、微細砥粒鋳鉄ファイバボンド砥石を利
用した場合、仕上面粗さは既に鏡面と言えるオーダー<
F(86820〜4 Qnm)  まで向上可能であり
、通常の研削加工では実現不可能な仕上面精度と言える
In the early stages of the composite machining method according to the present invention, the focus is on protruding abrasive grains from this cast iron fiber bonded grinding wheel and maintaining it, and the grinding wheel itself is set as the (+) pole, and the metal plate electrode facing the grinding wheel surface is set as the (-) pole.
) As a pole, mirror grinding is achieved by supplying conductive grinding fluid to the gap between the two. In the grinding process, which is the initial process of the present invention, when a fine abrasive cast iron fiber bond grinding wheel is used, the finished surface roughness is already on the order of a mirror surface.
It can be improved to F (86820-4 Qnm), which can be said to be a finished surface accuracy that cannot be achieved by normal grinding.

従って、本発明の初期の研削加工段階において既に従来
の研房面に匹敵する面性状を得られているために、本複
合加工方法の後期の研磨工程においては極めて短時間な
がら更に面精度を向上できることになる。
Therefore, since a surface quality comparable to that of a conventional grinding surface has already been obtained in the initial grinding stage of the present invention, the surface precision can be further improved in a very short period of time in the later polishing process of this combined processing method. It will be possible.

次に、本発明の複合加工方法の後期における研磨効果に
ついて述べる。本発明の最大の新規性と言える部分は、
この後期で行われる研磨工程と初期の鏡面研削工程の連
続性にあると言える。即ち後期の研磨工程で使用する研
磨工具を初期の導電性砥石として実現できることによる
。さて、初期の鏡面研削によって得られた被加工物の研
削面は鏡面研削と言えども微視的には第2図Aのような
断面形状を残していることになる。この研削面に対して
、今度は導電性砥石、例えば上記と同様の鋳鉄ファバボ
ンド砥石を電解新暦工具として(−)極に、また被加工
物側を(+)極として電圧を印加しながら砥石を移動さ
せると当初第2図へのような断面を有していた研削面は
、導電性を有する鋳鉄ファイバボンドと被加工物間のギ
ャップ間(つまり微細砥粒の突出量)で電解研磨効果が
生じ研削条痕の低減が生じる(第2図B)。当然ながら
、この工程では初期の研削時の加工経路をもう一度通過
させることになる。この段階における電解研磨効果を確
実に得るためには、本発明の複合加工方法初期における
電解ドレッシング研削後の砥粒突出量が適切に制御され
ていなければならず、電解ドレッシング効果が極めてミ
クロな空間における電解研磨効果を確実に発生させる効
果を生み出していると言っても過言ではない。更に、本
発明では補助的に遊離砥粒も利用することになるが、こ
れは電解研磨が進むにつれて仕上面に生じてくる微細な
不導体被膜を極めて微細に除去することで電解研磨効果
を維持していく役割を果たす。この様子を第2図Cに示
す。通常は、電解研磨効果1回により鏡面研削面粗さを
ほぼ半分に低減することが見込まれているために、極め
て短時間で鏡面研削によっても得られない鏡面加工物を
得ることができるが、更にR18数nm以下の超鏡面を
得る場合には、例えば鋳鉄ファイバボンド砥石の一部に
非砥石部(第3図A)を設けることで、更に被加工物に
工具を定圧的に押し付けて行き(第3図B)、鏡面研削
面粗を高めることが可能である。
Next, the polishing effect in the latter stage of the composite processing method of the present invention will be described. The most novel part of the present invention is
This can be said to be due to the continuity between the polishing process performed in the latter stage and the mirror polishing process in the early stage. That is, the polishing tool used in the later polishing process can be realized as an initial conductive grindstone. Now, even though the ground surface of the workpiece obtained by the initial mirror grinding is mirror polished, microscopically it still has a cross-sectional shape as shown in FIG. 2A. To this grinding surface, a conductive grindstone, for example, a cast iron Faberbond grindstone similar to the one described above, is used as an electrolytic Shinreki tool with the (-) pole and the workpiece side as the (+) pole while applying voltage. When moved, the grinding surface, which initially had a cross section as shown in Figure 2, shows that the electrolytic polishing effect occurs between the gap between the conductive cast iron fiber bond and the workpiece (in other words, the amount of protrusion of fine abrasive grains). This results in reduction of grinding marks (FIG. 2B). Naturally, in this step, the machining path used during initial grinding will be passed through again. In order to reliably obtain the electrolytic polishing effect at this stage, the amount of abrasive grain protrusion after electrolytic dressing grinding in the early stage of the composite processing method of the present invention must be appropriately controlled, and the electrolytic dressing effect is extremely small in the microscopic space. It is no exaggeration to say that it produces the effect of reliably producing the electrolytic polishing effect. Furthermore, in the present invention, free abrasive grains are also used as an auxiliary, which maintains the electropolishing effect by extremely finely removing the fine nonconductor film that forms on the finished surface as electropolishing progresses. fulfill the role of This situation is shown in FIG. 2C. Normally, one electropolishing effect is expected to reduce the roughness of the mirror-ground surface by almost half, so it is possible to obtain a mirror-finished workpiece that cannot be obtained even by mirror-finishing in an extremely short time. Furthermore, in order to obtain a super mirror surface with an R18 of several nm or less, for example, by providing a part of the cast iron fiber bonded grinding wheel with a non-grinding part (Fig. 3A), the tool can be further pressed against the workpiece under constant pressure. (FIG. 3B), it is possible to increase the roughness of the mirror-ground surface.

(発明の効果) 本発明によって、従来から実用化が困難とされていた安
定した鏡面研削を容易に実現できるだけでなく、シリコ
ン、フェライト、セラミックス、超硬合金、鉄鋼材料や
その他の導電性被加工物で鏡面研削による微細な研削条
痕をも問題とされる材料の最終製品まで、−貫して高能
率にしかも容易に仕上げることが可能となった。本発明
による複合加工方法では、同一工作機械上でかなり精密
な鏡面仕上まで実現可能であるため、従来から問題とさ
れていた仕上作業の自動化にも大きな役割を果たすこと
になろう。中でも、古来職人芸とされてきた金型研摩作
業などは、いかに人間の介在する作業をなくし自動化を
行なえるかが、今後の金型生産コストを下げ、加工精度
を向上させる上で最重要ポイントとなるが、本発明によ
り用途を問わない金型産業は言うまでもなく、電子産業
など様々な基幹産業に与える効果は多大であると言える
(Effects of the Invention) The present invention not only makes it possible to easily realize stable mirror polishing, which has been considered difficult to put into practical use, but also enables processing of silicon, ferrite, ceramics, cemented carbide, steel materials, and other conductive materials. It has become possible to easily and efficiently finish even the final product of materials, where even minute scratches caused by mirror grinding can be easily achieved. The composite machining method according to the present invention can achieve even a fairly precise mirror finish on the same machine tool, so it will play a major role in automating finishing work, which has been a problem in the past. In particular, the most important point in reducing mold production costs and improving processing accuracy in the future is how to eliminate human intervention and automate work such as mold polishing, which has been considered a craft since ancient times. However, it can be said that the present invention has a great effect on various basic industries such as the electronic industry, as well as the mold industry regardless of the purpose.

また、本発明を実用化することを想定すると、複雑な装
置あるいは極めて特殊な装置が必要ない点がその普及に
おいて大きな優位性を与えると言える。つまり、本発明
における複合加工装置の構成の通り、導電性砥石、電解
ドレッシング装置、電解研磨装置、加工液供給装置、被
加工物などを構成するにはさほど困難さがない上、これ
らが全てアタッチメント方式で従来の加工機械に装着可
能であるために、現状の生産工程に組み込まれている機
械がほぼそのまま利用できることになる。
Further, assuming that the present invention is put into practical use, it can be said that the fact that no complicated or extremely special equipment is required will give a great advantage in its widespread use. In other words, according to the configuration of the multi-processing device according to the present invention, it is not difficult to configure the conductive grindstone, electrolytic dressing device, electrolytic polishing device, machining fluid supply device, workpiece, etc., and all of these are attached. Since it can be attached to conventional processing machines using this method, machines that are incorporated into current production processes can be used almost as-is.

当然のことながら、導電性砥石形状、f被、旭工物形状
、加工機タイプには特に制限が存在しない。これは、本
発明の新規性と共に大きな汎用性を物語る事実であり、
近い将来本発明の採用によって古来類希な生産方式の革
新が期待できよう。
Naturally, there are no particular restrictions on the conductive grindstone shape, f-cover, Asahi workpiece shape, and processing machine type. This is a fact that demonstrates the novelty and great versatility of the present invention.
By adopting the present invention in the near future, we can expect innovations in production methods that have never been seen before.

(実施例) 以下、本発明を実施例に基づいて詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on examples.

表1は、本発明を実施するために用いた鏡面研削−電解
仕上複合加工システムの仕様である。本実施例は、本発
明による複合加工方法の基本効果を確認するために行わ
れたものであり、被加工物としては代表的な電子材料で
あるシリコンウェハを対象とした。表1の複合加工実験
システムでは本発明の複合加工作用を明らかにするため
に2種の加工機を利用している。すなわち、鏡面研削と
その次に行う電解新暦を含んだスパークアウト(切り込
み無しの砥石移動)の複合効果を確認するために第一の
実験においては静圧(油)仕様スピンドルを備えた精密
ロータリー平面研削盤を利用する。また、第二の実験で
は本発明において・工具の一部に非砥石部を設は定圧に
近い電解新暦を実現するために模擬的に構成したシステ
ムを用い、電解と補助的に使用する遊離砥粒の複合効果
を確認する。このシステムでは、一般に使用されている
安価な横型インフィード研削盤を加工機として使用する
Table 1 shows the specifications of the mirror grinding/electrolytic finishing combined processing system used to carry out the present invention. This example was carried out to confirm the basic effects of the composite processing method according to the present invention, and the workpiece used was a silicon wafer, which is a typical electronic material. In the combined machining experiment system shown in Table 1, two types of processing machines are used to clarify the combined machining effect of the present invention. In other words, in order to confirm the combined effect of mirror grinding and subsequent spark-out (grinding wheel movement without cutting), we used a precision rotary flat surface equipped with a hydrostatic (oil) specification spindle. Use a grinder. In addition, in the second experiment, in the present invention, a non-grinding part was set up in a part of the tool, and a system was constructed in a simulated manner to realize an electrolytic calendar near a constant pressure. Check the combined effect of grains. This system uses a commonly used, inexpensive horizontal infeed grinder as a processing machine.

表2 本発明の実施例で行った加工工程の分類(■十■:第−
工程、■:第二工程と呼ぶ)つまり本実施例で行った加
工実験は、表2のような■+■(第一工程)、■(第二
工程)といっり各工程を、便宜的に別の加工機システム
において行っているわけである。このように、本実施例
では試験の都合上便宜的に加工機を分けているものの、
本発明による複合加工方法のコンセプトでは、導電性砥
石の一部を改変することにより本実施例の加工機を1台
に集約した形で実現できることを示している。
Table 2 Classification of processing steps carried out in the examples of the present invention (■10■: No.-
In other words, in the processing experiment conducted in this example, each process was conveniently divided into ■+■ (first process) and ■ (second process) as shown in Table 2. This is done using a separate processing machine system. In this way, although the processing machines are separated for convenience of testing in this example,
The concept of the composite processing method according to the present invention shows that by modifying a part of the conductive grindstone, the processing machines of this embodiment can be integrated into one unit.

まず上述の第一工程では、微細砥粒鋳鉄ファイバポンド
ダイヤモンド砥石(#4000:平均砥粒径約4μm)
を研削および電解研磨工程として使用する。前記研削盤
による加ニジステムは、砥石側に(+)極の電圧印加を
行い、シリコンウェハの鏡面研削を実現する。もちろん
砥石側(+)の電圧印加は電解インプロセスドレッシン
グの目的である。この際に用いた電源装置は、本鏡面研
削用に仕様設計を行った電解ドレッシング電iN装置で
ある。本電源では、鏡面研削初期の砥粒突出過程におい
ては比較的強めの電解電流を供給し砥粒突出後は研削屑
排除などに寄与するに充分な微弱電流を供給するといっ
たプロセスを自動的に実行する機構をも内蔵している。
First, in the first step described above, a fine abrasive cast iron fiber pond diamond grinding wheel (#4000: average abrasive grain diameter of about 4 μm) is used.
is used as a grinding and electropolishing process. In the grinding system using the grinding machine, a positive (+) voltage is applied to the grinding wheel to achieve mirror polishing of the silicon wafer. Of course, the voltage application on the grinding wheel side (+) is the purpose of electrolytic in-process dressing. The power supply device used at this time was an electrolytic dressing electric iN device whose specifications were designed for this mirror surface grinding. This power supply automatically executes processes such as supplying a relatively strong electrolytic current during the abrasive grain ejection process in the initial stage of mirror grinding, and supplying a weak current sufficient to contribute to the removal of grinding debris after the abrasive grain ejects. It also has a built-in mechanism.

本システムでは、微細砥粒砥石による鏡面研削後、電解
電源装置の電圧極性を反転し、被削材側に(+)を砥石
側に(−)極の電圧を印加する。この際の砥石は実質的
には、電解用の工具(電極)として寄与することになる
。これら、鏡面研削から電解研磨工程へ移行する際には
、印加極性を変えるだけではなく電解条件設定および被
加工物自体に(+)極の給電を行う保持具が必要となる
が、本実施例ではシリコンウェハのような薄い被加工物
に直接給電を行う導電性真空チャックを利用した。本研
削盤で使用した加工液は、市販されている水溶性研削液
を水道水で50倍に希釈したものを利用し後工程の電解
研磨においても同加工液をそのまま利用したが、必要な
導電性は電解ドレッシングおよび電解研磨とも微弱電流
を流すのに充分なオーダーであるため、両者の充分な複
合効果が得られている。
In this system, after mirror grinding with a fine abrasive grindstone, the voltage polarity of the electrolytic power supply is reversed, and a (+) voltage is applied to the workpiece and a (-) voltage is applied to the grindstone. In this case, the grindstone essentially serves as a tool (electrode) for electrolysis. When transitioning from mirror grinding to electrolytic polishing, a holder is required that not only changes the applied polarity but also sets the electrolytic conditions and supplies the (+) pole to the workpiece itself. The researchers used a conductive vacuum chuck that directly supplies power to thin workpieces such as silicon wafers. The processing fluid used in this grinding machine was a commercially available water-soluble grinding fluid diluted 50 times with tap water, and the same processing fluid was used as is in the subsequent electrolytic polishing process. Since both electrolytic dressing and electrolytic polishing have a sufficient strength to flow a weak current, a sufficient combined effect of both can be obtained.

また、本研削盤の特徴としては良好な回転精度と主軸剛
性が挙げられ、また砥石中心軸から供給される加工液に
より研削屑の排除効果も大いに期待出来る。
In addition, the features of this grinding machine include good rotational accuracy and main shaft rigidity, and the machining fluid supplied from the grinding wheel center shaft can be expected to be highly effective in removing grinding debris.

第4図Aは、本発明の上記第一工程の鏡面研削を実施す
るための装置の構成図である。同図は、主として精密ロ
ータリー平面研削盤の主要部分41と電解ドレッシング
用電源装置42から構成されている。同図において、被
削材のシリコンウェハ43はロータリーテーブル44上
の保持具45上に固定され加工のための研削液46を砥
石中心部から遠心力によって供給しながら鏡面研削され
る。
FIG. 4A is a configuration diagram of an apparatus for carrying out mirror polishing in the first step of the present invention. The figure mainly consists of a main part 41 of a precision rotary surface grinder and a power supply device 42 for electrolytic dressing. In the figure, a silicon wafer 43 as a workpiece is fixed on a holder 45 on a rotary table 44 and mirror-ground while a grinding fluid 46 for processing is supplied by centrifugal force from the center of the grindstone.

また、平面研削盤内の電解ドレッシング装置は、砥石4
7外周に密着させた給電ブラシを(+)電極48、砥石
面とある間隙を持たせて平行に設置した(=)電極板4
9から成り、砥石と(−)電極間に加工時に使用するも
のと同一の研削液を供給することでインプロセスドレッ
シングを実現する。実施例では、鏡面研削前に使用鋳鉄
ファイバボンド砥石47の平滑化(ツルーイング)を、
W^ステック砥石(#80)の研削により行ない、その
後10分間の電解ドレッシングによる目立てを行った。
In addition, the electrolytic dressing device in the surface grinder is equipped with a grinding wheel 4.
7 A power supply brush closely attached to the outer periphery of the (+) electrode 48 and a (=) electrode plate 4 installed parallel to the grinding wheel surface with a certain gap.
9, and realizes in-process dressing by supplying the same grinding fluid used during machining between the grindstone and the (-) electrode. In the example, smoothing (truing) of the cast iron fiber bond grinding wheel 47 used before mirror grinding,
This was done by grinding with a W^stick grindstone (#80), followed by polishing by electrolytic dressing for 10 minutes.

本構成でシリコンウェハの鏡面研削を行なった後、今度
はシリコンウェハに電流を供給しながら電解作用による
研房工程に入る。この段階では、砥石47に(−〉極の
印加を、シリコンウェハには導電性保持具45を通して
(+)極の電圧印加を行ない、砥石をシリコンウェハ上
を通過させながら電解研磨を行なう。この電解研磨時の
システム構成図を第4B図に示す。もちろん、第4A図
と第4B図の研削装置は同一のものであり、電流供給方
式の切り替えはオペレータの手動で行なったが、これは
自動的な切り替え装置の適用が容易である。本加工工程
によって、鏡面研削および鏡面電解仕上加工を実施した
ところ、初期の電解インプロセスドレッシング研削加工
(電解ドレッンングをインプロセスで行ない微細砥粒鋳
鉄ファイバボンドダイヤモンド砥石を利用した研削加工
)によってRsax44nm、 Ra5nmの良好な鏡
面ウェハが得られ、更に電解研磨効果によってR+aa
x26nm 。
After performing mirror polishing of the silicon wafer with this configuration, a polishing process using electrolytic action is started while supplying current to the silicon wafer. At this stage, a (-) voltage is applied to the grinding wheel 47, and a (+) voltage is applied to the silicon wafer through the conductive holder 45, and electrolytic polishing is performed while the grinding wheel is passed over the silicon wafer. The system configuration diagram during electrolytic polishing is shown in Figure 4B.Of course, the grinding devices in Figures 4A and 4B are the same, and the current supply method was manually switched by the operator, but this is not done automatically. It is easy to apply a switching device.When mirror grinding and mirror electrolytic finishing were carried out using this processing process, initial electrolytic in-process dressing grinding (electrolytic draining was performed in-process and fine abrasive cast iron fiber bond A good mirror surface wafer with Rsax of 44 nm and Ra of 5 nm was obtained by grinding using a diamond grinding wheel, and furthermore, due to the electrolytic polishing effect, R + aa
x26nm.

R,4nmの極めて良好な鏡面ウェハをi尋ることがで
きた。これら面性状の変化の様子を第5図へ(鏡面研削
後)およびB(電解仕上後)に示す。顕微鏡観察による
面性状および面粗さ測定結果から判断しても、研削条痕
の充分な低減効果が得られていることが分かる。この鏡
面研削条件は、砥石周速1000m/min  (回転
数159Orpm)、ロータリーテーブルの送り速度1
00 s/min 、切り込み深さ2μm/passで
あり、続いて切り込み深さ0で同様の送り速度で電解研
磨仕上を実施した。従ってスライシング直後のシリコン
ウェハを保持具に装着し一度粗粒砥石で面を平滑化しR
maイ0.40μm程度にしておけば、たった2 Pa
5sの工程でRaax 26nm、 Ra 4nmもの
鏡面が実現できタコトになる。この実加工は、シリコン
ウェハを連続して流しておけば2分強で実現できること
になる。
We were able to obtain an extremely good mirror surface wafer with an R of 4 nm. These changes in surface properties are shown in FIGS. 5 (after mirror grinding) and B (after electrolytic finishing). Judging from the surface texture and surface roughness measurement results obtained by microscopic observation, it can be seen that a sufficient effect of reducing grinding marks has been obtained. The mirror grinding conditions are: grinding wheel circumferential speed 1000 m/min (rotation speed 159 orpm), rotary table feed speed 1
00 s/min and a cutting depth of 2 μm/pass, followed by electrolytic polishing finishing at a cutting depth of 0 and the same feed rate. Therefore, immediately after slicing, the silicon wafer is mounted on a holder and the surface is smoothed with a coarse grindstone.
If the mai is set to about 0.40 μm, it will only be 2 Pa.
A mirror surface with Raax of 26nm and Ra of 4nm can be achieved in a 5s process. This actual processing can be accomplished in just over two minutes if silicon wafers are fed continuously.

なお、この工程における電解条件は、ε。60V(無負
荷電圧)、1plOA(ピーク電流)、T2μ5ec(
オンタイム/オフタイム)程度の低い条件である上、実
加工電流値は最終的にはIA未満にまで低減するので、
加工機械本体やオペレータに与える影響は皆無であると
考えて良い。加工液自体も何ら特殊な電解液を含まず、
加工機の腐食の問題および作業者への影響も考えられな
い。従来は、30〜40分間ものラップによって本実施
例で得た鏡面性状は実現されていない。実に10倍以上
の高能率化となる。
Note that the electrolytic conditions in this step are ε. 60V (no load voltage), 1plOA (peak current), T2μ5ec (
In addition to the low on-time/off-time conditions, the actual machining current value ultimately decreases to less than IA.
It can be considered that there is no impact on the processing machine itself or the operator. The processing fluid itself does not contain any special electrolyte,
There is no possibility of problems with corrosion of processing machines or any impact on workers. Conventionally, the mirror surface properties obtained in this example have not been achieved by lapping for 30 to 40 minutes. In fact, efficiency is increased by more than 10 times.

一方、本発明の実施例の第二工程においては、既述のよ
うに電解研磨仕上と補助的に遊離砥粒を利用した研磨加
工の複合効果を確認するために第6図に示すような構成
のシステムを利用する。本実施例で利用した装置の構成
は、大まかに横型インフィード研削機の主要部分61と
電解用電源装置62から構成されている。本研削盤では
、シリコンウェハ63と工具64は共に横軸の周りに回
転しながら接近して行き、接触した状態で定圧的な切り
込み方式を取る。ここで、既述のロータリー平面研削盤
において実施した複合加工方法と同様の方式を取り得る
のであるが、既に鏡面研削および電解研磨の連続加工の
複合効果に関しては実施済みであるために、本実施例の
第二段階では主として工具64に電解研磨に寄与する導
電性部分と補助的な遊離砥粒による研磨に寄与する非導
電性部分を持たせ、定圧で工具64とシリコンウェハ6
3を密着させながら、電解研磨および遊離砥粒@磨の複
合加工実験を実施した。この際、工具側には給電ブラシ
65を介して(−)極の電圧印加を行い、シリコンウェ
ハ63側にはやはり同様の給電ブラシ66を介して(十
)極の電圧印加を行った。インフィード研削盤の性格上
、工具軸およびワーク軸は絶縁治具67を用いて互いに
絶縁を行った。また、ワーク軸には導電性の保持具68
を介してシリコンウェハを装着し、工具とシリコンウェ
ハ間には遊離砥粒を含む導電性加工液69を供給しなが
ら加工を行う。本実施例で用いた″電解研磨工具の構造
を第7図に示す。本工具はその構造上、工具本体を形成
する導電性部分71と樹脂などから成る非導電性部分7
2を有しており、前者は電解研磨効果に寄与し後者は遊
離砥粒を用いた研磨効果に寄与する部分である。定圧で
本工具とシリコンウェハを密着させると、その加圧力に
応じて非導電性部分72が変形し、導電性部分とシリコ
ンウェハ間の距離が適切に設定されるために、有効な研
磨効果が期待出来る。もちろん、本工具の導電性部分7
1が固定砥粒を有する鋳鉄ファイバボンド砥石部であれ
ば、加工初期においては強制切り込みにより非導電性部
分72が砥石部より後退し、固定砥粒による鏡面研削(
電解ドレッシングのために砥石側を(+)極とする)が
実現でき、その後送り方式を定圧制御に変えれば非導電
性部分よりも砥石部分が後退し本実施例の研磨効果を実
現できるので、1台の加工機にて本発明の複合加工方法
が実施可能である。さて、本実施例においては、基本的
な複合研摩効果の確認のためにCW(エツチング処理後
のシリコンウェハ)を被加工物として適用した。このC
Wの初期面粗さはR,0,68μm、 R,0,l O
μmであったが、本加工の実施の結果R−0,37μm
y Ra 0.06 μmという面粗さの向上が確認で
きた(第8図A(初期面)およびB(”!解パフ仕上げ
後))。本加工面性状および仕上面粗さパターンの変化
から推察すればシリコンウェハのようなかなりの電気的
抵抗体であっても、確実に複合研暦の効果が生じている
ことが分かる。この場合、加工時間10分程度でこれだ
けの向上が得られていることから、CWを鏡面研削後の
ウェハに代えて実施すれば相当な能率で鏡面粗さの向上
が見込めることが予想される。実際にこの加工を実施し
たところ、鏡面シリコンウェハを容易に得ることができ
た。従って、将来的には鋳鉄ファイバボンド砥石の一部
に本実施例で用いた非導電性部分を設けた工具(第9図
)の利用により、全く新しい鏡面加工工具を実現できる
ことがr4認されたと言える。なお、本工程において補
助的に遊離砥粒(平均粒径0.6μm :γアルミナ砥
粒)を用いたのは、慣用的な電解研磨においては電解の
進行に伴って被加工物表面に酸化膜が形成され電解研磨
が停止してしまう現象を抑えるためである。よって、導
電性加工液に混入すべき遊離砥粒濃度は低くても効果的
であると分かっている。これは機械の保守の観点からも
有利である。
On the other hand, in the second step of the embodiment of the present invention, a configuration as shown in FIG. system. The configuration of the apparatus used in this embodiment is roughly composed of a main part 61 of a horizontal infeed grinding machine and an electrolytic power supply device 62. In this grinding machine, the silicon wafer 63 and the tool 64 approach each other while rotating around the horizontal axis, and when they are in contact, a constant pressure cutting method is performed. Here, it is possible to use a method similar to the combined processing method implemented with the rotary surface grinder described above, but since the combined effect of continuous processing of mirror grinding and electrolytic polishing has already been implemented, this method In the second stage of the example, the tool 64 is mainly provided with a conductive part that contributes to electrolytic polishing and a non-conductive part that contributes to polishing with auxiliary free abrasive particles, and the tool 64 and the silicon wafer 6 are heated at a constant pressure.
A combined machining experiment of electrolytic polishing and free abrasive @polishing was carried out while 3 was brought into close contact. At this time, a (-) pole voltage was applied to the tool side via the power supply brush 65, and a (10) pole voltage was applied to the silicon wafer 63 side via a similar power supply brush 66. Due to the nature of the infeed grinder, the tool shaft and work shaft were insulated from each other using an insulating jig 67. In addition, a conductive holder 68 is attached to the work shaft.
A silicon wafer is mounted through the tool and the silicon wafer is processed while a conductive processing liquid 69 containing free abrasive grains is supplied between the tool and the silicon wafer. The structure of the "electrolytic polishing tool" used in this example is shown in FIG.
2, the former contributes to the electrolytic polishing effect, and the latter contributes to the polishing effect using free abrasive grains. When this tool and the silicon wafer are brought into close contact with each other under constant pressure, the non-conductive portion 72 is deformed according to the applied pressure, and the distance between the conductive portion and the silicon wafer is appropriately set, resulting in an effective polishing effect. I can expect it. Of course, the conductive part 7 of this tool
If 1 is a cast iron fiber bonded grinding wheel part with fixed abrasive grains, the non-conductive part 72 retreats from the grinding wheel part due to forced cutting in the early stage of machining, and mirror grinding with fixed abrasive grains (
For electrolytic dressing, the grinding wheel side is set as the (+) pole), and if the feeding method is then changed to constant pressure control, the grinding wheel portion is retracted from the non-conductive portion, and the polishing effect of this example can be achieved. The composite processing method of the present invention can be implemented with one processing machine. In this example, a CW (silicon wafer after etching treatment) was used as the workpiece in order to confirm the basic composite polishing effect. This C
The initial surface roughness of W is R,0,68μm, R,0,l O
μm, but as a result of this processing R-0.37 μm
It was confirmed that the surface roughness improved by yRa 0.06 μm (Figure 8 A (initial surface) and B ("! after puff finishing)). From the changes in the processed surface properties and finished surface roughness pattern. If we infer it, we can see that even with a highly electrically resistive material such as a silicon wafer, the effect of composite research is definitely occurring.In this case, such an improvement can be obtained in about 10 minutes of processing time. Therefore, it is expected that if CW is performed instead of mirror-ground wafers, the mirror surface roughness can be improved with considerable efficiency.When this process was actually performed, mirror-finished silicon wafers were easily obtained. Therefore, in the future, it will be possible to create a completely new mirror-finishing tool by using a cast-iron fiber-bond grinding wheel with a non-conductive part used in this example (Fig. 9). It can be said that r4 was recognized.The reason why free abrasive grains (average grain size 0.6 μm: γ alumina abrasive grains) were used as an auxiliary in this process is that in conventional electrolytic polishing, as electrolysis progresses, This is to suppress the phenomenon where an oxide film is formed on the surface of the workpiece and electrolytic polishing stops.Therefore, it is known that it is effective even if the concentration of free abrasive particles that should be mixed into the conductive processing fluid is low. .This is also advantageous from the viewpoint of machine maintenance.

以上、本発明は、特に鋳鉄ファイバボンド砥石などの導
電性砥石を利用した電解インプロセスドレッシング研削
法と同砥石をそのまま新暦工具として利用した研房法と
の複合加工方法を、同一加工機上で順次実行することに
よって、従来は実現不可能であった高加工能率で高面精
度である鏡面シリコンウェハを容易に実現することがで
きた。
As described above, the present invention particularly provides a combined processing method of an electrolytic in-process dressing grinding method using a conductive grinding wheel such as a cast iron fiber bonded grinding wheel and a Kenbo method using the same grinding wheel as a Shinreki tool on the same processing machine. By performing the steps sequentially, it was possible to easily create a mirror-finished silicon wafer with high processing efficiency and high surface precision, which was previously impossible.

本発明が全面的に実用化されることになれば、本実施例
でも確認された通り従来法とはオーダーを異にする加工
能率が実現され、製品の生産コストダウンならびに高付
加価値化、高品質化を容易に実現できることになる。本
実施例では、現代電子産業に大きな影響を与えると考え
られる電子材料;シリコンウェハを取り上げて本発明を
実施したわけであるが、導電性を有する被削材であれば
本発明が広範に適用可能であることは言うまでもない。
If the present invention is fully put into practical use, processing efficiency that is on a different order from conventional methods will be realized, as was confirmed in this example, and production costs will be reduced as well as high added value and high This means that quality improvement can be easily achieved. In this example, the present invention was implemented using a silicon wafer, an electronic material that is considered to have a major impact on the modern electronic industry, but the present invention can be widely applied to any conductive work material. It goes without saying that it is possible.

今後ますます低コスト化競争が白熱しつつある生産業界
の中に、−光を投じる基本技術として本発明の適用が大
いに期待できよう。
It is highly anticipated that the present invention will be applied as a basic technology that will shed light on the production industry, where competition to lower costs is becoming increasingly heated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の複合加工の初期における電解ドレッ
シングによる砥石の砥粒状態を示す概略説明図、 第2図は、本発明の複合加工の鏡面研削および砥石を工
具とした研磨・効果の原理を示す概略説明図、 第3図は、鋳鉄ファイバボンド砥石と非導電性部分を共
有した工具による複合研磨効果を示す概略図、 第4A図は、本発明の実施例において鏡面研削を行うた
めの装置の構成図、 第4B図は、本発明の実施例において砥石を工具とした
複合研磨を行うための装置の構成図、第5図は、第4A
図および第4B図の複合加工装置によって加工を実施し
た際のシリコンウェハ加工面性状の変化の様子を示すグ
ラフ、第6図は、本発明の実施例において電解研磨およ
び補助的に遊離砥粒を利用した複合研磨効果を確認する
ために使用した装置の構成図、第7図AおよびBは、本
発明の実施例において電解複合研磨効果の確認のために
使用した工具を示す側面図および平面図、 第8図は、第6図および第7図の装置および工具を用い
てCW(シリコンウェハ)の研磨を行った結果確認され
た仕上げ面性状変化の様子を示すグラフ。 第9図ΔおよびBは、実用化の可能性が大きい鋳鉄ファ
イバボンド砥石と非導電性部を共有した新暦工具を模式
的に示す側面図および平面図。 (符号の説明) 第4図に関するもの 41・・・・・・精密ロータリー平面研削盤の主要部4
2・・・・・・電解用電源装置(ドレッシング/研@)
43・・・・・・シリコンウェハ(被削材)44・・・
・・・ロータリーテーブル 45・・・・・・導電性保持具(シリコンウェハ吸着板
)46・・・・・・加工用クーラント 47・・・・・・9鉄ファイバボンド砥石48・・・・
・・砥石部給電ブラシ 49・・・・・・電解ドレッシング用電極第6図に関す
るもの 61・・・・・・横型インフィード研削盤主要部62・
・・・・・電解用電源装置(ドレッシング/研暦)63
・・・・・・シリコンウェハ(被削材)64・・・・・
・複合研磨用工具 65・・・・・・工具部給電ブラシ 66・・・・・・ワーク部給電ブラシ 67・・・・・・工具部絶縁板 68・・・・・・導電性吸着板 69・・・・・・導電性加工液 第7図に関するもの 71・・・・・・研摩工具の導電性部分72・・・・・
・研摩工具の非導電性部分第 図 ツルーイング直後の砥石状層→研削不能電Ng立て途中
の砥石状態→研削不充分18鉄ファイバボンド砥石の状
態変化 第 図 U鉄ファ4A1ンド砥石に組み込んだ非導電性部分非導
電性部分による定圧研磨効果 鋳鉄ファイバ17F砥石と非6電性部分を共有した工具
第 図 Jail研M後の被剛材断面の模式図 間隙で電解発生 u飲フ1イA1ント砥石による電解研磨効果工具の非導
電性部分による研磨効果 11面研削後の研磨作用による平滑効果筒 4A図 砥石回転方向0 46→・・・・・・・ 電解インプロセスドレフシンクによる鏡面研削装置第 4B図 砥石回転方向O 砥石を工具と して兼用 した研磨装置 第 図 電解および遊離砥粒複合研磨に使用した実験装置部 図 鏡面研削および電解研磨の複合仕上効果筒 図 本発明の実施例で用いた電解研磨工具 第 図 電解研磨工具のみで行った仕上効果 筒 図
Fig. 1 is a schematic explanatory diagram showing the state of the abrasive grains of the grindstone due to electrolytic dressing at the initial stage of the complex machining of the present invention. Fig. 2 shows the mirror grinding of the complex machining of the present invention and the polishing effect using the whetstone as a tool. A schematic explanatory diagram showing the principle; FIG. 3 is a schematic diagram showing a composite polishing effect using a tool that shares a non-conductive part with a cast iron fiber bond grinding wheel; FIG. 4A is a diagram for mirror grinding in an embodiment of the present invention. FIG. 4B is a configuration diagram of an apparatus for performing composite polishing using a grindstone as a tool in an embodiment of the present invention, and FIG.
Graphs showing changes in the processed surface properties of silicon wafers when processing is carried out using the combined processing apparatus shown in FIGS. 4B and 4B, and FIG. A block diagram of the apparatus used to confirm the composite polishing effect utilized, and FIGS. 7A and 7B are a side view and a plan view showing the tool used to confirm the electrolytic composite polishing effect in the example of the present invention. , FIG. 8 is a graph showing changes in finished surface properties observed as a result of polishing a CW (silicon wafer) using the apparatus and tools shown in FIGS. 6 and 7. FIGS. 9A and 9B are a side view and a plan view schematically showing a Shinreki tool that shares a non-conductive part with a cast iron fiber bond grindstone, which has a high possibility of being put to practical use. (Explanation of symbols) Items related to Fig. 4 41 Main parts of precision rotary surface grinder 4
2...Power supply device for electrolysis (dressing/ken@)
43... Silicon wafer (work material) 44...
... Rotary table 45 ... Conductive holder (silicon wafer suction plate) 46 ... Processing coolant 47 ... 9 Iron fiber bond grindstone 48 ...
・・Whetstone part power supply brush 49 ・・・Things related to electrode for electrolytic dressing shown in Fig. 6 61 ・・・Main part of horizontal infeed grinding machine 62 ・・・
...Power supply device for electrolysis (dressing/Kenreki) 63
...Silicon wafer (work material) 64...
・Composite polishing tool 65... Tool part power supply brush 66... Work part power supply brush 67... Tool part insulating plate 68... Conductive suction plate 69 ... Conductive machining fluid related to Figure 7 71 ... Conductive portion of polishing tool 72 ...
・Non-conductive part of the polishing tool Fig. Grinding wheel-like layer immediately after truing → Grinding wheel state in the middle of setting up the non-grinding power → Condition change of 18 iron fiber bond grinding wheel with insufficient grinding Fig. U Constant-pressure polishing effect due to conductive part and non-conductive part Tool that shares non-conductive part with cast iron fiber 17F grinding wheel Diagram: Schematic diagram of cross-section of rigid material after Jail grinding M Electrolysis occurs in the gap Electrolytic polishing effect by the grindstone Polishing effect by the non-conductive part of the tool 11 Smoothing effect by the polishing action after surface grinding Cylindrical 4A Diagram Rotation direction of the grindstone 0 46→・・・・・・ Mirror grinding device using electrolytic in-process doref sink Fig. 4B Grinding wheel rotation direction O. Polishing device that uses the grinding wheel as a tool. Fig. Electrolytic polishing tool diagram Finishing effect cylinder diagram made only with electrolytic polishing tools

Claims (1)

【特許請求の範囲】 (1)電解ドレッシング研削後に、前記電解ドレッシン
グ研削に使用した導電性砥石を研磨用の工具として兼用
し能率的に仕上加工を行うことを特徴とする電解ドレッ
シング研削法と導電性砥石を工具に兼用した研磨法の複
合加工方法。 (2)前記複合加工方法の初期には、前記導電性砥石の
電解ドレッシングのために前記砥石側に(+)極の電圧
を印加しながら研削を行い、前記複合加工方法の後期に
は前記砥石を電解研磨用工具として兼用するため(−)
極とし被削材側に(+)極の電圧の印加を行うことを特
徴とする請求項(1)記載の複合加工方法。 (3)前記複合加工方法の後期に行う前記導電性砥石を
兼用した研磨法において、補助的に遊離砥粒を用いた研
磨加工を行うことを特徴とする請求項(1)記載の複合
加工方法。(4)前記導電性砥石が、前記複合加工方法
初期において研削に寄与する砥粒部分と、前記複合加工
方法後期において電解研磨に寄与する導電性部分からな
ることを特徴とする請求項(1)記載の複合加工方法。 (5)前記導電性砥石が、前記複合加工方法後期におい
て補助的に行う遊離砥粒を用いた研磨に寄与する非砥石
部分を含むことを特徴とする請求項(1)記載の複合加
工方法。 (6)前記複合加工方法における加工液が、通電のため
に効果的な導電性研削液と研磨に効果的な微細な遊離砥
粒を含むことを特徴とする請求項(1)記載の複合加工
方法。 (7)導電性砥石、 この導電性砥石の電解ドレッシング装置、 および、 加工液が供給された状態で前記導電性砥石と被加工物間
に電圧を印加する電源装置、 を備えて構成される電解ドレッシング研削法と導電性砥
石を工具に兼用した研磨法の複合加工装置。
[Scope of Claims] (1) An electrolytic dressing grinding method and a conductive electrolytic dressing characterized in that after the electrolytic dressing grinding, the conductive grindstone used for the electrolytic dressing grinding is also used as a polishing tool to perform finishing processing efficiently. A combined polishing method that uses a grindstone as a tool. (2) In the early stage of the combined processing method, grinding is performed while applying a (+) voltage to the grinding wheel side for electrolytic dressing of the conductive grinding wheel, and in the latter stage of the combined processing method, the grinding Because it can also be used as an electrolytic polishing tool (-)
2. The composite machining method according to claim 1, wherein a (+) voltage is applied to the workpiece side. (3) The composite processing method according to claim (1), characterized in that in the polishing method that also uses the conductive grindstone, which is performed in the later stage of the composite processing method, polishing using free abrasive grains is performed auxiliary. . (4) Claim (1) characterized in that the conductive grindstone comprises an abrasive part that contributes to grinding in the early stage of the composite processing method, and a conductive part that contributes to electrolytic polishing in the latter stage of the composite processing method. Combined processing method described. (5) The composite processing method according to claim 1, wherein the conductive grindstone includes a non-grindstone portion that contributes to polishing using free abrasive grains that is performed auxiliary in the later stage of the composite processing method. (6) The composite machining method according to claim 1, wherein the machining fluid in the composite machining method contains a conductive grinding fluid effective for energization and fine free abrasive grains effective for polishing. Method. (7) An electrolysis device comprising: a conductive grindstone; an electrolytic dressing device for the conductive grindstone; and a power supply device that applies a voltage between the conductive grindstone and the workpiece in a state where machining fluid is supplied. A complex processing device that combines dressing grinding and polishing using a conductive grindstone as a tool.
JP24696588A 1988-09-30 1988-09-30 Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool Expired - Lifetime JP2565385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24696588A JP2565385B2 (en) 1988-09-30 1988-09-30 Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24696588A JP2565385B2 (en) 1988-09-30 1988-09-30 Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool

Publications (2)

Publication Number Publication Date
JPH0295574A true JPH0295574A (en) 1990-04-06
JP2565385B2 JP2565385B2 (en) 1996-12-18

Family

ID=17156357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24696588A Expired - Lifetime JP2565385B2 (en) 1988-09-30 1988-09-30 Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool

Country Status (1)

Country Link
JP (1) JP2565385B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077117A (en) * 1999-09-07 2001-03-23 Sony Corp Manufacture of semiconductor device, and method and device for polishing
WO2004083494A1 (en) * 2003-03-19 2004-09-30 Ebara Corporation Composite machining device and method
GB2416488A (en) * 2004-07-27 2006-02-01 Kevin Schuberth Apparatus for suspension of a hanging basket
JP4878159B2 (en) * 2003-06-26 2012-02-15 東京ステンレス研磨興業株式会社 Rotational surface reduction head, electrolytic surface reduction device, and electrolytic surface reduction method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077117A (en) * 1999-09-07 2001-03-23 Sony Corp Manufacture of semiconductor device, and method and device for polishing
JP4513145B2 (en) * 1999-09-07 2010-07-28 ソニー株式会社 Semiconductor device manufacturing method and polishing method
WO2004083494A1 (en) * 2003-03-19 2004-09-30 Ebara Corporation Composite machining device and method
US7563356B2 (en) 2003-03-19 2009-07-21 Ebara Corporation Composite processing apparatus and method
JP4878159B2 (en) * 2003-06-26 2012-02-15 東京ステンレス研磨興業株式会社 Rotational surface reduction head, electrolytic surface reduction device, and electrolytic surface reduction method
GB2416488A (en) * 2004-07-27 2006-02-01 Kevin Schuberth Apparatus for suspension of a hanging basket
GB2416488B (en) * 2004-07-27 2008-01-02 Kevin Schuberth Apparatus for suspension of a hanging basket

Also Published As

Publication number Publication date
JP2565385B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
JP5363091B2 (en) Polishing machine equipped with a device for bringing the grinding wheel into an appropriate state and method thereof
US5032238A (en) Method of and apparatus for electropolishing and grinding
CN103341822B (en) Based on surfacing method and the equipment thereof of two electrolysis
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
JP4104199B2 (en) Molded mirror grinding machine
JPH0295574A (en) Grinding method for electrolytic dressing and method and device for compound working of polishing method serving conductive grindstone for tool as well
JP2838314B2 (en) Electrolytic interval dressing grinding method
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JPH11262860A (en) Extremely precise grinding method and device
JPH0639644A (en) Grinding machine
JP4013240B2 (en) Processing method for work made of brittle materials
JP3136169B2 (en) Double-sided lap grinding machine
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPS6179566A (en) Dressing method of sintered hard abrasive grain grinding wheel
CN203495765U (en) Surface grinding equipment based on dual electrolysis action
JP3356693B2 (en) Ultra-precision grinding method and grinding device
JP2002086350A (en) Polishing fluid for electrophoretic polishing and polishing method
JPH07164286A (en) Grinding method and device therefor
JP2717438B2 (en) Method and apparatus for truing and dressing conductive grindstone by electrolytic dressing grinding
JP3260304B2 (en) Truing or dressing method and apparatus for grinding tool
JPH07195261A (en) Spherical grinding method and device thereof
JP4141118B2 (en) Grinding tool dressing equipment
KR950015117B1 (en) Electroerosion machine having cylindrical aspects works
JPH0430963A (en) Method and device for polishing free curved face by polishing film
JPH05285826A (en) Grinding and polishing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

EXPY Cancellation because of completion of term