JPH0294487A - Solid laser device - Google Patents

Solid laser device

Info

Publication number
JPH0294487A
JPH0294487A JP63246990A JP24699088A JPH0294487A JP H0294487 A JPH0294487 A JP H0294487A JP 63246990 A JP63246990 A JP 63246990A JP 24699088 A JP24699088 A JP 24699088A JP H0294487 A JPH0294487 A JP H0294487A
Authority
JP
Japan
Prior art keywords
laser
solid
state laser
excitation
gsgg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63246990A
Other languages
Japanese (ja)
Other versions
JPH0566035B2 (en
Inventor
Toshio Shoji
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63246990A priority Critical patent/JPH0294487A/en
Publication of JPH0294487A publication Critical patent/JPH0294487A/en
Publication of JPH0566035B2 publication Critical patent/JPH0566035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a laser beam of good quality at a high efficiency by a method wherein a lamp for excitation use is installed on one side of a conical diffusion type condensing device consisting of ceramics and a solid layer rod, which is directly mirror-coated, is arranged on the other side of the condensing device. CONSTITUTION:Light emitted from a spherical Xe flash lamp 2 is irregularly reflected by a conical diffusion type reflecting plate consisting of BaSO4 ceramics, enters in an Nd, Cr-GSGG 4 and a laser oscillation takes place effectively. An excitation light, which penetrates the GSGG 4 and has a wavelength of 600nm or longer, excites an Nd-YAG 5, and undergoes a reciprocating amplitude between a 100% reflection coat surface 7 and a 50% reflection coat surface 6, and a laser oscillation takes place.

Description

【発明の詳細な説明】 イ0発明の目的 〔産業上の利用分野〕 本発明は、レーザ加工などに用いられる固体レーザ装置
のレーザヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention [Field of Industrial Application] The present invention relates to a laser head of a solid-state laser device used for laser processing and the like.

〔従来の技術〕[Conventional technology]

従来、ランプ励起を用いた固体レーザ装置としては、第
4図に示す様に、楕円円筒型の集光器11と固体レーザ
ロッド13、励起ランプ12、外部の反射ミラー14、
出射ミラー15から構成されていた。
Conventionally, as shown in FIG. 4, a solid-state laser device using lamp excitation includes an elliptical cylindrical condenser 11, a solid-state laser rod 13, an excitation lamp 12, an external reflection mirror 14,
It consisted of an exit mirror 15.

励起ランプ12の光は、集光器11によって固体レーザ
ロッドの中心部に集光され、反射ミラー14と出射ミラ
ー15との間で往復増幅されレーザ発振する。
The light from the excitation lamp 12 is focused on the center of the solid-state laser rod by the condenser 11, and is amplified back and forth between the reflection mirror 14 and the output mirror 15, and oscillates as a laser.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

固体レーザロッド(例えばNd−YAGレーザロッド)
の吸収スペクトルは線幅の狭い線状スペクトルを示し、
それに励起光の波長を合わせることが難しい。第2図に
固体レーザの吸収スペクトルと第3図にキセノンフラッ
シュランプの発光スペクトルを示す。第2図の(a)は
、Nd−YAGの吸収スペクトルで、(b)は増感イオ
ンを含むNd、 Cr−GSGGレーザの吸収スペクト
ルである。これらの吸収スペクトルの面積を300nm
から900nmまでの間で求めた場合、Nd。
Solid state laser rod (e.g. Nd-YAG laser rod)
The absorption spectrum of shows a linear spectrum with a narrow linewidth,
It is difficult to match the wavelength of the excitation light to this. FIG. 2 shows the absorption spectrum of the solid-state laser, and FIG. 3 shows the emission spectrum of the xenon flash lamp. FIG. 2(a) is the absorption spectrum of Nd-YAG, and FIG. 2(b) is the absorption spectrum of Nd, Cr-GSGG laser containing sensitizing ions. The area of these absorption spectra is 300 nm
Nd when measured between 900 nm and 900 nm.

Cr−GSGGは、Nd−YAGに比べ、6倍もの吸収
量を有することが認められた。しかるに、レーザ発振さ
せた時には、3倍のレーザ発振効率が得られる。しかし
、Nd、 Cr−GSGGのような多元素添加単結晶は
、熱レンズ効果が大きいため、ロッド中心に励起光を集
光する方法では良質のビーム光が得られない。
It was found that Cr-GSGG has an absorption amount six times that of Nd-YAG. However, when laser oscillation is performed, three times the laser oscillation efficiency can be obtained. However, since multi-element doped single crystals such as Nd and Cr-GSGG have a large thermal lens effect, a high quality beam cannot be obtained by focusing the excitation light at the center of the rod.

集光器はNd−YAGの場合、安定なAuメツキ膜を用
いるが、6001以下の波長領域で高反射率を必要とす
るNd、 Cr−GSGGではAgが有効であるが、A
g膜は耐久性がない欠点がある。
In the case of Nd-YAG, a stable Au plating film is used for the concentrator, but Ag is effective for Nd and Cr-GSGG, which require high reflectance in the wavelength region of 6001 or less, but A
G-membrane has the disadvantage of lack of durability.

本発明の課題は、これらの欠点を補う高いレーザ発振効
率でビーム質の良いレーザ光を得ることにある。
An object of the present invention is to obtain a laser beam with high beam quality and high laser oscillation efficiency that compensates for these drawbacks.

口0発明の構成 〔課題を解決するための手段〕 本発明は、円錐型のセラミックス集光器(拡散型集光器
)の一方に励起用ランプを設置し、もう一方に多元素添
加単結晶と一元素添加単結晶を直列に配置したことを特
徴するビーム質と発振効率の高い固体レーザ装置の提供
である。
Configuration of the Invention [Means for Solving the Problems] The present invention is characterized in that an excitation lamp is installed on one side of a conical ceramic condenser (diffusion type condenser), and a multi-element doped single crystal is installed on the other side. The object of the present invention is to provide a solid-state laser device with high beam quality and oscillation efficiency, which is characterized by arranging a single crystal doped with one element in series.

即ち、■、レーザロッドと励起用ランプ、及び拡散型集
光器から成るレーザ発振器に於て、円錐状のセラミック
スを用いた拡散型集光器の一方に励起用ランプを設置し
、もう一方に直接ミラーコートされた固体レーザロッド
を配置し、エンドボンピングによってレーザ発振させる
ことを特徴とする固体レーザ装置。
Namely, in a laser oscillator consisting of a laser rod, an excitation lamp, and a diffused condenser, the excitation lamp is installed on one side of the diffused condenser made of conical ceramics, and the excitation lamp is installed on the other side. A solid-state laser device characterized by arranging a directly mirror-coated solid-state laser rod and causing laser oscillation by end bombing.

2、増感作用によってレーザ媒質の吸収波長以外のポン
ピング光を有効に励起エネルギーに変換するための増感
イオンを含む多元素添加固体レーザロッドを数種類直列
に配置し、エンドボンピングすることを特徴とする固体
レーザ装置。
2. It is characterized by arranging several kinds of multi-element-doped solid-state laser rods containing sensitizing ions in series and performing end bombing to effectively convert pumping light at a wavelength other than the absorption wavelength of the laser medium into excitation energy by sensitizing action. A solid-state laser device.

3、前記の組合せとして、異なる発振波長を示す固体レ
ーザロッドを数種類組み合わせることを特徴とする固体
レーザ装置である。
3. The solid-state laser device is characterized in that, as the above-mentioned combination, several types of solid-state laser rods exhibiting different oscillation wavelengths are combined.

〔作用〕[Effect]

安定な比校的反射効率の高いBaSO4集光器を用い、
且つ増感イオンを含む結晶をレーザロッドとして組合せ
使用することにより、良質のいくつかのレーザ光を高効
率に得る装置が出来る。
Using a BaSO4 condenser with stable and high specific reflection efficiency,
In addition, by using a crystal containing sensitizing ions in combination as a laser rod, a device that can obtain high-quality laser beams with high efficiency can be created.

〔実施例〕〔Example〕

実施例−1 本発明の実施例について図面を参照して説明する。 Example-1 Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例を示す固体レーザ装置の発振
器の断面図である。球型キセノンフラッシュランプ2か
ら発した光は、 Ba5Oaセラミツクスから成る拡散
型反射板lで散乱反射して増感イオンを含むNd、 C
r−GSGG 4に入射する。BaSO4粉末は、反射
率が比校的大きく、粉末内で乱反射が起こるため、Ba
SO4セラミックス板では高い反射率が得られる。Ba
SO4セラミックスの拡散型反射板の集光器の効率は、
Agより20%劣るが、Auの1.5倍の効率が得られ
、又、Agのように変質することがないので半永久的に
使用出来る。しかも光が拡散するので、Nd、 Cr−
GSGG 4の断面内は均一に励起され、径方向での温
度分布が出来ない。従って、熱レンズ効果が起こらない
。又、長さ方向での励起光の密度分布があっても、10
0%反射コート面7と、50%反射コート面6の間で往
復するため、励起光の密度分布によるレーザ発振への影
響はない。Nd、 Cr−GSGGでは、波長600r
o++以下の励起光を十分に吸収し、且つ、600nm
以上の励起光を一部吸収し、有効にレーザ発振する。N
d、 Cr−GSGGを透過した波長600nm以上の
励起光がNd−YAG 5を励起し、100%反射コー
ト面7と50%反射コート面6間で往復増幅され、レー
ザ発振する。
FIG. 1 is a cross-sectional view of an oscillator of a solid-state laser device showing an embodiment of the present invention. The light emitted from the spherical xenon flash lamp 2 is scattered and reflected by the diffuse reflector 1 made of Ba5Oa ceramics, and is reflected by the Nd and C containing sensitizing ions.
input to r-GSGG 4. BaSO4 powder has a relatively high reflectance and diffuse reflection occurs within the powder.
A high reflectance can be obtained with the SO4 ceramic plate. Ba
The efficiency of the SO4 ceramic diffuse reflector concentrator is:
Although it is 20% inferior to Ag, it is 1.5 times more efficient than Au, and unlike Ag, it does not deteriorate, so it can be used semi-permanently. Moreover, since the light is diffused, Nd, Cr-
The cross section of GSGG 4 is excited uniformly, and there is no temperature distribution in the radial direction. Therefore, no thermal lens effect occurs. Also, even if there is a density distribution of excitation light in the length direction, 10
Since the excitation light goes back and forth between the 0% reflection coated surface 7 and the 50% reflection coated surface 6, the density distribution of the excitation light does not affect laser oscillation. For Nd, Cr-GSGG, the wavelength is 600r.
Sufficiently absorbs excitation light below o++ and 600 nm
Part of the above excitation light is absorbed and the laser oscillates effectively. N
d. The excitation light having a wavelength of 600 nm or more that has passed through the Cr-GSGG excites the Nd-YAG 5, is amplified back and forth between the 100% reflection coated surface 7 and the 50% reflection coated surface 6, and oscillates as a laser.

本実施例では、多元素添加単結晶の母体材と一元素添加
単結晶の母体の材質が異なるため、違った2つのレーザ
光が出てくる。この場合、Nd−YAGは1.0641
 tt、 rtrで発振し、Nd、 Cr−GSGGで
は1.0612 a mで発振する。Nd−YAGに達
する励起光は、はとんどが波長600nni以上の光で
あるため、Nd−YAG内での発熱がほとんど無く、良
質のレーザ光がtt+られる。
In this embodiment, since the base material of the multi-element-doped single crystal and the base material of the single-element-doped single crystal are different, two different laser beams are emitted. In this case, Nd-YAG is 1.0641
It oscillates at tt and rtr, and oscillates at 1.0612 am for Nd and Cr-GSGG. Since most of the excitation light that reaches the Nd-YAG has a wavelength of 600 nni or more, there is almost no heat generation within the Nd-YAG, and high-quality laser light is produced at tt+.

実施例−2 次に、第1図に於て、Nd、 Cr−GSGG4の代わ
りにCrを添加したルビーレーザロッドを置き、Nd−
YAG5の代わりにYAGロッドを配置した場合につい
て説明する。
Example-2 Next, in FIG. 1, a ruby laser rod doped with Cr was placed instead of Nd and Cr-GSGG4, and
A case where a YAG rod is arranged instead of YAG5 will be explained.

ルビーレーザの光吸収は、400止と550止付近に幅
の広い吸収ピークを有するだけで、600nm以上での
光吸収がほとんどない。Nd−YAGに於ては、600
nm以上の励起光だけが有効にレーザ発振に寄与するが
、600nm以下の励起光のほとんどはNd−YAG内
で熱エネルギーに変換されるため、熱レンズ効果を大き
くし、レーザビームの拡がり角度を大きくする働きがあ
る。第4図のように配置した場合、Nd−YAGに有害
な励起光でルビーレーザ発振させ、残りの励起光でNd
−YAG励起してレーザ発振させるために、ビーム拡が
り角度の小さい良質のYAGレーザ光(1,06μm)
と、可視領域のルビーレーザ光(0,69μm)が同時
に得られる。YAGレーザ光は加工用レーザ光源として
、ルビーレーザ光は光学系の調整用として用いることが
出来る。又、Qスイッチなどを用いた大出力レーザでは
、可視光に吸収を有する物質のレーザ加工に有効に用い
ることが出来る。
The light absorption of a ruby laser only has broad absorption peaks near 400 and 550 stops, and there is almost no light absorption at 600 nm or more. For Nd-YAG, 600
Only the excitation light of nm or more effectively contributes to laser oscillation, but most of the excitation light of 600 nm or less is converted into thermal energy within Nd-YAG, which increases the thermal lens effect and reduces the spread angle of the laser beam. It has the function of making it bigger. When arranged as shown in Figure 4, ruby laser oscillation is performed using excitation light that is harmful to Nd-YAG, and the remaining excitation light is used to
- High-quality YAG laser light (1.06 μm) with a small beam divergence angle to excite YAG and cause laser oscillation.
Ruby laser light (0.69 μm) in the visible region can be obtained at the same time. YAG laser light can be used as a laser light source for processing, and ruby laser light can be used for adjusting optical systems. Furthermore, a high-output laser using a Q-switch or the like can be effectively used for laser processing of substances that absorb visible light.

ハ0発明の効果 以上述べたように、本発明を用いたレーザ装置では、レ
ーザ発振効率が良く、レーザビームの質が良いレーザ光
が得られる。又、エンドポンピング方式であるため、装
置の小型化が可能であり、安価に作ることが出来る。多
元素添加単結晶の代わりにルビーレーザロッド等を置く
ことによって、可視と赤外で同時にレーザ発振するレー
ザ装置を作ることも可能で、赤外で吸収を持たない物質
に可視光を照射させながら、赤外光を照射してレーザ加
工する分野での応用が可能である。
Effects of the Invention As described above, in the laser device using the present invention, a laser beam with good laser oscillation efficiency and good quality laser beam can be obtained. Furthermore, since it is an end pumping method, the device can be made smaller and can be manufactured at low cost. By placing a ruby laser rod etc. in place of a multi-element-doped single crystal, it is possible to create a laser device that oscillates in the visible and infrared at the same time. , it can be applied in the field of laser processing by irradiating infrared light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による固体レーザ装置の発振器の断面
図。 第2図は、固体レーザロッドの吸収スペクトルを示し、
(a)はNd−YAGの透過率を示し、(b)はNd、
 Cr−GSGGの透過率を示す。 第3図は、キセノンフラッシュランプの発光スペクトル
を示す。 第4図は、従来の固体レーザ装置の発振器の断面図であ
る。 1・・・拡散型反射板、2・・・球状キセノンフラッシ
ュランプ、3・・・ガラス管、4−・−Nd、 Cr−
GSGG、5・Nd−YAG、6・・・50%反射コー
ト膜、7・・・100%反射コート膜、11・・・集光
器、12・・・励起ランプ、13・・・固体レーザロッ
ド、14・・・反射ミラー 15・・・出射ミラー、a
・・・Nd−YAGの透過率、b・・・Nd、 Cr−
GSGGの透過率。 第7図 第2図 特許出願人  東北金属工業株式会社 ス〔μ〕
FIG. 1 is a cross-sectional view of an oscillator of a solid-state laser device according to the present invention. Figure 2 shows the absorption spectrum of the solid-state laser rod,
(a) shows the transmittance of Nd-YAG, (b) shows the transmittance of Nd,
The transmittance of Cr-GSGG is shown. FIG. 3 shows the emission spectrum of a xenon flash lamp. FIG. 4 is a cross-sectional view of an oscillator of a conventional solid-state laser device. 1... Diffuse reflector, 2... Spherical xenon flash lamp, 3... Glass tube, 4-...-Nd, Cr-
GSGG, 5.Nd-YAG, 6...50% reflective coating film, 7...100% reflective coating film, 11... Condenser, 12... Excitation lamp, 13... Solid laser rod , 14... Reflection mirror 15... Output mirror, a
...Transmittance of Nd-YAG, b...Nd, Cr-
Transmittance of GSGG. Figure 7 Figure 2 Patent applicant: Tohoku Metal Industry Co., Ltd. [μ]

Claims (1)

【特許請求の範囲】 1、レーザロッドと励起用ランプ、及び拡散型集光器か
ら成るレーザ発振器に於て、円錐状のセラミックスを用
いた拡散型集光器の一方に励起用ランプを設置し、もう
一方に直接ミラーコートされた固体レーザロッドを配置
し、エンドポンピングによってレーザ発振させることを
特徴とする固体レーザ装置。 2、請求項1記載に於て、増感作用によってレーザ媒質
の吸収波長以外のポンピング光を有効に励起エネルギー
に変換するための増感イオンを含む多元素添加固体レー
ザロッドを数種類直列に配置し、エンドポンピングする
ことを特徴とする固体レーザ装置。 3、請求項1記載、及び請求項2記載の組合せとして、
異なる発振波長を示す固体レーザロッドを数種類組み合
わせることを特徴とする固体レーザ装置。
[Claims] 1. In a laser oscillator consisting of a laser rod, an excitation lamp, and a diffused condenser, the excitation lamp is installed on one side of the diffused condenser made of conical ceramics. A solid-state laser device characterized in that a mirror-coated solid-state laser rod is placed directly on the other end, and laser oscillation is caused by end pumping. 2. In claim 1, several types of multi-element-doped solid-state laser rods containing sensitizing ions are arranged in series to effectively convert pumping light at a wavelength other than the absorption wavelength of the laser medium into excitation energy by sensitizing action. , a solid-state laser device characterized by end pumping. 3. As a combination of claims 1 and 2,
A solid-state laser device that combines several types of solid-state laser rods that exhibit different oscillation wavelengths.
JP63246990A 1988-09-29 1988-09-29 Solid laser device Granted JPH0294487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246990A JPH0294487A (en) 1988-09-29 1988-09-29 Solid laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63246990A JPH0294487A (en) 1988-09-29 1988-09-29 Solid laser device

Publications (2)

Publication Number Publication Date
JPH0294487A true JPH0294487A (en) 1990-04-05
JPH0566035B2 JPH0566035B2 (en) 1993-09-20

Family

ID=17156735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246990A Granted JPH0294487A (en) 1988-09-29 1988-09-29 Solid laser device

Country Status (1)

Country Link
JP (1) JPH0294487A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496894A (en) * 1972-08-23 1974-01-22
JPS5013566U (en) * 1973-06-01 1975-02-13
JPS5040093A (en) * 1973-08-15 1975-04-12
JPS5045595A (en) * 1973-08-27 1975-04-23
JPS5541036A (en) * 1978-09-18 1980-03-22 Seiko Epson Corp Hearing-aid unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496894A (en) * 1972-08-23 1974-01-22
JPS5013566U (en) * 1973-06-01 1975-02-13
JPS5040093A (en) * 1973-08-15 1975-04-12
JPS5045595A (en) * 1973-08-27 1975-04-23
JPS5541036A (en) * 1978-09-18 1980-03-22 Seiko Epson Corp Hearing-aid unit

Also Published As

Publication number Publication date
JPH0566035B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
US5263042A (en) Diffusion reflector
Nishikawa et al. X-ray generation enhancement from a laser-produced plasma with a porous silicon target
US6873633B2 (en) Solid-state laser
EP1766442A1 (en) Aperture stop assembly for high power laser beams
JP3053273B2 (en) Semiconductor pumped solid-state laser
US5883915A (en) Longitudinally pumped laser
JPH0294487A (en) Solid laser device
JPH0563263A (en) Semiconductor laser-pumped solid-state laser device
US4119928A (en) Laser head and application thereof to a laser generator device
JPH0983048A (en) Solid state laser
JP3042173B2 (en) Laser diode pumped solid-state laser device
JPH07131092A (en) Solid-state laser equipment
JPH0254588A (en) Solid-state laser device
JPH09270552A (en) Solid-state laser device
JPH05259540A (en) Light excitation solid-state laser
JPH08250789A (en) Light condenser for solid laser oscillator
US3815044A (en) Solid state laser apparatus with auxiliary intra-cavity mirror elements
JPH02130882A (en) Solid state laser device
JPH0473982A (en) Solid state laser
JPH03163889A (en) Semiconductor laser excitation type solid-state laser device
JPH0278286A (en) Solid-state laser device
JP2001298231A (en) Solid-state laser device
JPH033379A (en) Solid-state laser device
JP2936737B2 (en) Semiconductor-pumped solid-state laser
JPH0521873A (en) Solid-state laser apparatus