JP2936737B2 - Semiconductor-pumped solid-state laser - Google Patents

Semiconductor-pumped solid-state laser

Info

Publication number
JP2936737B2
JP2936737B2 JP822591A JP822591A JP2936737B2 JP 2936737 B2 JP2936737 B2 JP 2936737B2 JP 822591 A JP822591 A JP 822591A JP 822591 A JP822591 A JP 822591A JP 2936737 B2 JP2936737 B2 JP 2936737B2
Authority
JP
Japan
Prior art keywords
laser
solid
excitation light
semiconductor
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP822591A
Other languages
Japanese (ja)
Other versions
JPH04287988A (en
Inventor
彰 石森
豊博 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP822591A priority Critical patent/JP2936737B2/en
Publication of JPH04287988A publication Critical patent/JPH04287988A/en
Application granted granted Critical
Publication of JP2936737B2 publication Critical patent/JP2936737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザを励起源と
する半導体励起固体レーザ、とくに発振効率とビームモ
ードの向上を目的とした半導体レ−ザ近接型固体レーザ
の出力安定化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor-pumped solid-state laser using a semiconductor laser as an excitation source, and more particularly to a semiconductor laser proximity solid-state laser for improving the oscillation efficiency and the beam mode. .

【0002】[0002]

【従来の技術】図3は例えば三菱電機技報63巻、4
号、(1989)P287−290に示された従来の半
導体励起固体レーザの概略構成を示すものである。図に
おいて、1は半導体レーザ、2は半導体レーザ1から出
射されるレーザビームで、以下励起光と呼ぶ。8、9は
レンズ、3は固体レーザ媒質、6は固体レーザ媒質から
出力されるレーザ光、7は部分反射ミラーである。固体
レーザ媒質3の端面にはレーザ光6に対して全反射性の
コーティング32と無反射性のコーティング33が施さ
れ、全反射性のコーティング32と部分反射ミラー7の
間でレーザ共振器が構成されている。
2. Description of the Related Art FIG.
No., (1989), p. 287-290, schematically shows the configuration of a conventional semiconductor-pumped solid-state laser. In the figure, reference numeral 1 denotes a semiconductor laser, and 2 denotes a laser beam emitted from the semiconductor laser 1 and is hereinafter referred to as excitation light. Reference numerals 8 and 9 denote lenses, reference numeral 3 denotes a solid-state laser medium, reference numeral 6 denotes a laser beam output from the solid-state laser medium, and reference numeral 7 denotes a partial reflection mirror. The end face of the solid-state laser medium 3 is provided with a coating 32 that is totally reflective to the laser light 6 and a coating 33 that is non-reflective, and a laser resonator is formed between the coating 32 and the partial reflection mirror 7. Have been.

【0003】次に動作について説明する。半導体レーザ
1によって出射された励起光2はレンズ8によって平行
化され、レンズ9によって固体レーザ媒質3に集光入射
される。励起光2は固体レーザ媒質3の中で広がりなが
ら吸収され、固体レーザ媒質3を励起する。吸収された
励起光2のエネルギーの一部はレーザ光6として外部に
出力される。
Next, the operation will be described. The excitation light 2 emitted by the semiconductor laser 1 is collimated by a lens 8 and condensed and incident on a solid-state laser medium 3 by a lens 9. The excitation light 2 is absorbed while spreading in the solid-state laser medium 3, and excites the solid-state laser medium 3. Part of the absorbed energy of the excitation light 2 is output to the outside as laser light 6.

【0004】[0004]

【発明が解決しようとする課題】従来の固体レーザは以
上のように構成されており、励起光2の固体レーザ媒質
3の中での広がりが大きく、実質的に励起の断面積を小
さくすることが困難であった。そのためレーザ発振のし
きい値が大きくなってレーザ発振のエネルギー効率が小
さい、レーザ光6は次数の高いモードが立ち集束性のよ
い基本モードのビームを得ることが困難であるなどの欠
点があった。
The conventional solid-state laser is constructed as described above. The spread of the excitation light 2 in the solid-state laser medium 3 is large, and the cross-sectional area of the excitation is substantially reduced. Was difficult. Therefore, the laser oscillation has a disadvantage that the threshold value of the laser oscillation is increased and the energy efficiency of the laser oscillation is small, and it is difficult for the laser beam 6 to have a mode of a high order and to obtain a beam of the fundamental mode with good convergence. .

【0005】本発明は上記のような問題点を解消するた
めになされたもので、レ−ザ発振のエネルギ−効率が高
く、出力が安定な高品質ビームを出射する半導体励起固
体レ−ザを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a semiconductor-excited solid-state laser which emits a high-quality beam having a high energy efficiency of laser oscillation and a stable output is provided. The purpose is to gain.

【0006】[0006]

【課題を解決するための手段】本発明に係わる半導体励
起固体レーザは、厚み方向と半導体レーザの活性層の垂
直方向とを一致させるとともに、上記厚みを上記垂直方
向に広がる励起光の固体レーザ媒質内の広がり幅よりも
薄い厚みとし,かつ固体レーザ媒質内の光励起領域が上
記活性層の垂直方向と並行方向とで等しくなるような厚
みとした板状の固体レーザ媒質を用い、この固体レーザ
媒質の励起光入射端面(以後、入射端面と呼ぶ)に無反
射コーティングを施すとともに、半導体レ−ザと入射端
面との距離を、入射端面からの反射光が半導体レ−ザの
発振波長を変化させない程度まで小さくなるよう、励起
光入射端面と半導体レ−ザ間の距離を保ちつつ、上記半
導体レ−ザに近接して配置し、さらにレーザ共振器を、
その光軸が上記固体レ−ザ媒質内を直進し、かつレーザ
光の基本モードのビーム径が上記固体レーザ媒質の厚み
とほぼ一致するように構成したものである。
A semiconductor-pumped solid-state laser according to the present invention has a thickness direction coincident with a vertical direction of an active layer of the semiconductor laser, and a solid-state laser medium of pumping light having the thickness extending in the vertical direction. The thickness is smaller than the width of the laser beam, and the photoexcitation area in the solid-state laser medium is
The thickness of the active layer so that it is equal in the vertical and parallel directions
A plate-shaped solid-state laser medium with a body, the excitation light incident end surface of the solid-state laser medium (hereinafter, referred to as incident end face) with applying a non-reflective coating, semiconductor laser - the distance between The an incident end face, the incident Placing the excitation light incident end face close to the semiconductor laser while maintaining a distance between the excitation light incidence end face and the semiconductor laser so that the reflected light from the end face does not change the oscillation wavelength of the semiconductor laser; In addition, the laser resonator,
The optical axis travels straight through the solid-state laser medium, and the beam diameter of the fundamental mode of the laser beam substantially matches the thickness of the solid-state laser medium.

【0007】なお、励起光入射端面に施された無反射コ
ーティングの励起光に対する反射率は2%以下、上記入
射端面と半導体レ−ザとの距離は100μmから500
μmの間に設定するとよい。
The reflectivity of the antireflection coating applied to the excitation light incident end face to the excitation light is 2% or less, and the distance between the incident end face and the semiconductor laser is 100 μm to 500 μm.
It is good to set it between μm.

【0008】また、本発明の別の発明に係わる半導体励
起固体レーザは、厚み方向と半導体レーザの活性層の垂
直方向とを一致させるとともに、上記厚みを上記垂直方
向に広がる励起光の固体レーザ媒質内の広がり幅よりも
薄い厚みとし,かつ固体レーザ媒質内の光励起領域が上
記活性層の垂直方向と並行方向とで等しくなるような厚
みとした板状の固体レーザ媒質を、半導体レ−ザに近接
して配置するとともに、励起光の光軸を励起光入射端面
の法線から傾けて構成し、さらにレーザ共振器を、その
光軸が上記固体レ−ザ媒質内を直進し、かつレーザ光の
基本モードのビーム径が上記固体レーザ媒質の厚みとほ
ぼ一致するように構成したものである。
A semiconductor-pumped solid-state laser according to another aspect of the present invention has a thickness direction and a vertical direction of an active layer of the semiconductor laser that coincide with each other, and a solid-state laser medium of excitation light that spreads the thickness in the vertical direction. The thickness is smaller than the width of the laser beam, and the photoexcitation area in the solid-state laser medium is
The thickness of the active layer so that it is equal in the vertical and parallel directions
A solid laser medium in the form of a plate is placed close to the semiconductor laser, the optical axis of the excitation light is inclined from the normal to the end face of the excitation light, and the laser resonator is used to The axis of the laser beam travels straight through the solid-state laser medium, and the beam diameter of the fundamental mode of the laser beam substantially matches the thickness of the solid-state laser medium.

【0009】[0009]

【作用】本発明においては固体レーザ媒質の厚み方向と
半導体レーザの活性層の垂直方向とを一致させるととも
に、上記厚みを上記垂直方向に広がる励起光の固体レー
ザ媒質内の広がり幅よりも薄い厚みとし,かつ固体レー
ザ媒質内の光励起領域が上記活性層の垂直方向と並行方
向とで等しくなるような厚みとしたので、簡単な構成で
励起光を狭い領域に閉じこめたまま吸収でき、レーザ発
振のエネルギー効率を向上できる。また入射端面に無反
射コーティングを施すとともに半導体レ−ザと入射端面
間距離を入射端面からの反射光が半導体レ−ザの発振波
長を変化させない程度まで小さくなるよう、励起光入射
端面と半導体レ−ザ間の距離を保ちつつ、半導体レ−ザ
に近接して配置する、あるいは励起光の光軸を入射端面
の法線から傾けて構成しているので、入射端面で反射さ
れる励起光が半導体レ−ザに入射されるために生じる、
いわゆる戻り光の影響を受けないため、出力が安定し、
効率がよく、ビーム品質のよいレーザ光を発生すること
ができる。さらに、レーザ共振器を、その光軸が固体レ
−ザ媒質内を直進し、かつレーザ光の基本モードのビー
ム径が上記固体レーザ媒質の厚みとほぼ一致するように
構成したので、品質のよいガウス状のビームを高効率で
出力することができる。
According to the present invention, the thickness direction of the solid-state laser medium and the vertical direction of the active layer of the semiconductor laser are made to coincide with each other, and the thickness is smaller than the spread width of the excitation light spread in the vertical direction in the solid-state laser medium. And a solid ray
The light excitation region in the medium is parallel to the vertical direction of the active layer.
Since the thickness is made equal to the direction , the excitation light can be absorbed with being confined in a narrow area with a simple configuration, and the energy efficiency of laser oscillation can be improved. In addition, an anti-reflection coating is applied to the incident end face, and the excitation light incident end face and the semiconductor laser are arranged so that the distance between the semiconductor laser and the incident end face is reduced to such an extent that the reflected light from the incident end face does not change the oscillation wavelength of the semiconductor laser. The laser light is arranged close to the semiconductor laser while maintaining the distance between the lasers, or the optical axis of the excitation light is inclined from the normal to the incident end face, so that the excitation light reflected on the incident end face is Caused by being incident on a semiconductor laser,
Because it is not affected by so-called return light, the output is stable,
Efficient laser light with good beam quality can be generated. Further, the laser resonator is configured such that its optical axis goes straight through the solid-state laser medium and the beam diameter of the fundamental mode of the laser light substantially matches the thickness of the solid-state laser medium, so that the quality is good. A Gaussian beam can be output with high efficiency.

【0010】[0010]

【実施例】実施例1.以下、本発明の一実施例を図につ
いて説明する。図1は本発明の半導体励起固体レーザの
一実施例を示す概略構成図であり、図において、1はた
とえば150μmのストライプ幅を持つ1W級の半導体
レ−ザである。2は半導体レ−ザ1より出射される励起
光、3は固体レーザ媒質で、たとえば長さ5mm、幅2m
m、厚さ0.5mmの矩形断面のNd:YAG(Y3-x
x Al512)結晶であり、入射端面が半導体レ−ザ
1から100〜500μmの距離となるよう設置してい
る。4は光学接着剤、5は金属ブロックで、例えば長さ
5mm、幅4mm、厚さ3mmの直方体の金メッキを施した銅
ブロックである。32は固体レーザ媒質3の端面に形成
されたコーティングで、励起光2に対しては無反射、レ
ーザ光6に対しては全反射であり、励起光2に対する反
射率は2%以下となるようにしている。33は固体レー
ザ媒質3の端面に形成されたコーティングで、レーザ光
6に対して無反射である。7は部分反射ミラー、10は
筐体である。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing one embodiment of a semiconductor-pumped solid-state laser according to the present invention. In the figure, reference numeral 1 denotes a 1-W class semiconductor laser having a stripe width of 150 μm, for example. 2 is an excitation light emitted from the semiconductor laser 1, and 3 is a solid-state laser medium, for example, 5 mm long and 2 m wide.
m, 0.5 mm thick rectangular section Nd: YAG (Y3 -xN
d x Al 5 O 12 ) crystal, and the incident end face is set at a distance of 100 to 500 μm from the semiconductor laser 1. Reference numeral 4 denotes an optical adhesive, and reference numeral 5 denotes a metal block, for example, a rectangular parallelepiped gold-plated copper block having a length of 5 mm, a width of 4 mm, and a thickness of 3 mm. Reference numeral 32 denotes a coating formed on the end face of the solid-state laser medium 3, which is non-reflective for the excitation light 2 and totally reflected for the laser light 6, so that the reflectance for the excitation light 2 is 2% or less. I have to. 33 is a coating formed on the end face of the solid-state laser medium 3 and is non-reflective to the laser beam 6. 7 is a partial reflection mirror and 10 is a housing.

【0011】次に動作について説明する。励起光2は固
体レーザ媒質3端面のコーティング32から入射する。
半導体レーザ1より出射される励起光2は一般に広がり
が大きく、例えば発散角は半導体レーザ1の活性層の垂
直方向(以下、単に垂直方向と呼ぶ)に60゜、並行方
向(以下、単に並行方向と呼ぶ)に20゜(いずれも全
角)と非常に大きく、かつ異方性があるが、半導体レー
ザ1と固体レーザ媒質3を近接配置することによって、
励起光2を有効にレーザ媒質3に入射させている。この
入射方法により励起光2は、励起光の固体レーザ媒質内
の広がり幅よりも薄い厚みを持つ板状の固体レーザ媒質
3の上下面で内部反射を繰り返し、固体レーザ媒質3内
に閉じこめられたまま吸収され、有効にこれを励起す
る。半導体レーザ活性層の垂直方向に広がる光を上下面
で反射させることにより、固体レーザ媒質内の光励起領
域は、垂直方向並行方向ともに0.5mm程度にすること
が出来る。固体レーザ媒質3で発生した熱は金属ブロッ
ク5、筐体10を介して効率よく放熱される。コーティ
ング32と部分反射ミラー7の間で安定形共振器が構成
され、例えばコーティング32では平面、部分反射ミラ
ー7の曲率半径2500mm、共振器長10mmの場合、基
本モード(ガウスモード)のビーム直径は約0.35mm
である。このためレーザの基本モード断面積と、励起光
2の閉じこめられる断面積とがほぼ一致し、品質のよい
ガウス状のビームを高効率で出力することができる。
Next, the operation will be described. The excitation light 2 enters from the coating 32 on the end face of the solid-state laser medium 3.
The excitation light 2 emitted from the semiconductor laser 1 generally has a large spread. For example, the divergence angle is 60 ° in the vertical direction (hereinafter, simply referred to as the vertical direction) of the active layer of the semiconductor laser 1, and the parallel direction (hereinafter, simply the parallel direction). 20 ° (both full-angle) and anisotropic, but by arranging the semiconductor laser 1 and the solid-state laser medium 3 close to each other,
The excitation light 2 is effectively made incident on the laser medium 3. With this incident method, the excitation light 2 is repeatedly reflected internally on the upper and lower surfaces of the plate-shaped solid laser medium 3 having a thickness smaller than the spread width of the excitation light in the solid laser medium, and is confined in the solid laser medium 3. It is absorbed as it is and effectively excites it. By reflecting light spreading in the vertical direction of the semiconductor laser active layer on the upper and lower surfaces, the light excitation region in the solid-state laser medium can be reduced to about 0.5 mm in both directions parallel to the vertical direction. The heat generated in the solid-state laser medium 3 is efficiently radiated through the metal block 5 and the housing 10. A stable resonator is formed between the coating 32 and the partial reflection mirror 7. For example, when the coating 32 is a flat surface, the radius of curvature of the partial reflection mirror 7 is 2500 mm, and the resonator length is 10 mm, the beam diameter of the fundamental mode (Gaussian mode) is About 0.35mm
It is. For this reason, the fundamental mode cross-sectional area of the laser and the cross-sectional area in which the pumping light 2 is confined substantially coincide with each other, and a high-quality Gaussian beam can be output with high efficiency.

【0012】入射端面と半導体レ−ザ1との距離は、効
率と出力安定性を考慮して設定する必要がある。近すぎ
ると励起光2の入射端面からのわずかな反射光が半導体
レ−ザ1に入射し、いわゆる戻り光の影響により半導体
レ−ザ1の動作が不安定に、すなわち出力及び出射され
る励起光2の波長が変動する。一方、固体レ−ザ媒質3
と半導体レ−ザ1が遠く離れると、固体レ−ザ媒質3に
入射される励起光2が減少し、レーザ出力が低下する。
本実施例では無反射コーティング32により入射端面で
の反射率を2%以下にし、かつ入射端面と半導体レ−ザ
1との距離を100μm〜500μmに設定することに
よりこの問題を解決している。
The distance between the incident end face and the semiconductor laser 1 must be set in consideration of efficiency and output stability. If it is too close, a small amount of reflected light from the incident end face of the excitation light 2 will be incident on the semiconductor laser 1, and the operation of the semiconductor laser 1 will be unstable due to the effect of so-called return light, that is, the output and emitted excitation The wavelength of light 2 fluctuates. On the other hand, the solid laser medium 3
When the semiconductor laser 1 and the semiconductor laser 1 are far apart, the pumping light 2 incident on the solid-state laser medium 3 decreases, and the laser output decreases.
In this embodiment, this problem is solved by setting the reflectance at the incident end face to 2% or less by the antireflection coating 32 and setting the distance between the incident end face and the semiconductor laser 1 to 100 μm to 500 μm.

【0013】実施例2.なお、上記実施例では150μ
m程度のストライプ幅を持つ1W級の半導体レ−ザに対
して、無反射コーティングの反射率2%以下、半導体レ
−ザ・入射端面間距離100μm〜500μmを設定し
たが、半導体レ−ザの種類に応じて無反射コーティング
の反射率と半導体レ−ザ・入射端面間距離を適当な値に
設定することにより上記実施例と同様の効果を奏する。
Embodiment 2 FIG. In the above embodiment, 150 μm
For a 1 W class semiconductor laser having a stripe width of about m, the reflectance of the antireflection coating is set to 2% or less, and the distance between the semiconductor laser and the incident end face is set to 100 μm to 500 μm. By setting the reflectance of the non-reflective coating and the distance between the semiconductor laser and the incident end face to appropriate values according to the type, the same effects as in the above embodiment can be obtained.

【0014】実施例3. また、上記実施例では無反射コーティングと半導体レ−
ザ・入射端面間距離の設定により半導体レ−ザ1の戻り
光の影響を回避したが、励起光2の反射角度を変える事
により戻り光の影響を避けてもよい。図2は、半導体レ
−ザ1の設置角度を傾けて励起光2の光軸を入射端面の
法線から傾けて構成した実施例であり、上記実施例と同
様の効果を奏する。以下に数値例を示す。半導体レーザ
のストライプ幅を150μm、垂直方向の開き角(光強
度がピークの1/e -2 となる角度)を60゜とする。固
体レーザ媒質をYAGとすると、無反射コーティングを
施さない場合の端面の反射率は約9%である。ここで、
半導体レーザの垂直方向の設置角度を開き角の半分すな
わち30゜としたときの効果を考える。半導体レーザへ
の戻り光は概略固体レーザ媒質に垂直に入射する領域で
の励起光強度に比例する。設置角度を傾けない場合には
ガウス状の強度分布のピークの部分が戻り光に寄与す
る。一方半導体レーザ・入射端面間距離を同じに保った
まま設置角度を30゜傾けた場合、戻り光に寄与する励
起光の強度はピークのe-2、すなわち約13.5%とな
る。その結果設置角度を傾けることによって反射率約
1.2%(=9%×0.135)の無反射コーティング
を施した場合とほぼ同等の効果を奏する。また、例えば
入射端面に2%の無反射コーティングが施されている場
合、設置角度を傾けることにより戻り光の影響はさらに
少なくなるので、半導体レーザ・入射端面間の距離を小
さくして発振効率の改善を図ることができる。即ち、上
記のように設置角度を開き角の半分に設定すると、戻り
光は垂直に設置した場合に比較して約13.5%とな
る。戻り光の光量が半導体レーザ・入射端面間距離の2
乗にほぼ反比例すると考えると、設置角度を傾けること
により半導体レーザ・入射端面間距離をほぼ1/3まで
近づけることが可能となる。なお、設置角度を開き角の
3/4とすると戻り光に寄与する励起光の強度は約5%
となる。あまり傾けると励起光が入射端面から外へもれ
るため、設置角度としては開き角の1/2〜3/4程度
が適当である。
Embodiment 3 FIG. In the above embodiment, the anti-reflection coating and the semiconductor laser were used.
Although the influence of the return light of the semiconductor laser 1 is avoided by setting the distance between the laser and the incident end face, the influence of the return light may be avoided by changing the reflection angle of the excitation light 2. FIG. 2 shows an embodiment in which the installation angle of the semiconductor laser 1 is inclined and the optical axis of the excitation light 2 is inclined from the normal line of the incident end face, and has the same effect as the above embodiment. A numerical example is shown below. The stripe width of the semiconductor laser is 150 μm, and the vertical opening angle (light intensity
The angle at which the degree becomes 1 / e -2 of the peak ) is 60 °. If the solid-state laser medium is YAG, the reflectivity of the end face in the case where the anti-reflection coating is not applied is about 9%. here,
Consider an effect when the vertical installation angle of the semiconductor laser is set to half the opening angle, that is, 30 °. The return light to the semiconductor laser is approximately proportional to the intensity of the excitation light in a region perpendicularly incident on the solid-state laser medium. When the installation angle is not inclined, the peak portion of the Gaussian intensity distribution contributes to the return light. On the other hand, when the installation angle is inclined by 30 ° while keeping the distance between the semiconductor laser and the incident end face the same, the intensity of the excitation light contributing to the return light is e -2 of the peak, that is, about 13.5%. As a result, by tilting the installation angle, almost the same effect as in the case of applying a non-reflective coating having a reflectance of about 1.2% (= 9% × 0.135) is obtained. Further, for example, when a 2% anti-reflection coating is applied to the incident end face, the influence of the return light is further reduced by inclining the installation angle, so that the distance between the semiconductor laser and the incident end face is reduced to reduce the oscillation efficiency. Improvement can be achieved. That is, when the installation angle is set to a half of the opening angle as described above, the return light is about 13.5% as compared with the case where the device is installed vertically. The amount of return light is 2 which is the distance between the semiconductor laser and the incident end face.
Assuming that the angle is almost inversely proportional to the power, the distance between the semiconductor laser and the incident end face can be reduced to almost 1/3 by inclining the installation angle. When the installation angle is set to 3/4 of the open angle, the intensity of the excitation light contributing to the return light is about 5%.
Becomes If the angle is too large, the excitation light leaks out of the incident end face, so that an appropriate installation angle is about 2〜 to / of the opening angle.

【0015】実施例4.また、上記実施例ではレーザ共
振器の光軸と励起光がほぼ一致するものを示したが、複
数の半導体レーザをレーザ媒質の側面に配し、励起光を
レーザ媒質の側面より入射させた、光軸と励起光が直交
するような構造のものに対しても適用することができ
る。
Embodiment 4 FIG. Further, in the above embodiment, the optical axis of the laser resonator and the pump light are substantially coincident, but a plurality of semiconductor lasers are arranged on the side of the laser medium, and the pump light is made incident from the side of the laser medium. The present invention can also be applied to a structure in which the optical axis is perpendicular to the excitation light.

【0016】実施例5.また、上記実施例ではレーザ媒
質は、励起光の固体レーザ媒質内の広がり幅よりも薄い
厚みを持つ板状のものを用いたが、励起光の固体レ−ザ
媒質内の広がり幅よりも薄い厚みと幅を持つ断面形状
の、あるいは励起光の固体レ−ザ媒質内の広がり幅より
も小さい直径を持ち、その断面形状がほぼ円形である固
体レ−ザ媒質を用いてもよい。
Embodiment 5 FIG. In the above embodiment, the laser medium used was a plate-like material having a thickness smaller than the spread width of the excitation light in the solid-state laser medium. However, the laser medium was thinner than the spread width of the excitation light in the solid-state laser medium. A solid laser medium having a cross section having a thickness and a width, or having a diameter smaller than the spread width of the excitation light in the solid laser medium and having a substantially circular cross section may be used.

【0017】[0017]

【発明の効果】以上のように、本発明によれば厚み方向
と半導体レーザの活性層の垂直方向とを一致させるとと
もに、上記厚みを上記垂直方向に広がる励起光の固体レ
ーザ媒質内の広がり幅よりも薄い厚みとし,かつ固体レ
ーザ媒質内の光励起領域が上記活性層の垂直方向と並行
方向とで等しくなるような厚みとした板状の固体レーザ
媒質を用い、この固体レーザ媒質の励起光入射端面に無
反射コーティングを施すとともに、半導体レ−ザと入射
端面との距離を、入射端面からの反射光が半導体レ−ザ
の発振波長を変化させない程度まで小さくなるよう、励
起光入射端面と半導体レ−ザ間の距離を保ちつつ、上記
半導体レ−ザに近接して配置し、さらにレーザ共振器
を、その光軸が上記固体レ−ザ媒質内を直進し、かつレ
ーザ光の基本モードのビーム径が上記固体レーザ媒質の
厚みとほぼ一致するように構成したので、簡単な構成
で、品質のよいガウス状のビームを高効率で、安定に出
力することができる半導体励起固体レーザが得られる効
果がある。
As described above, according to the present invention, the thickness direction and the vertical direction of the active layer of the semiconductor laser are made to coincide with each other, and the width of the excitation light spreading in the vertical direction in the solid-state laser medium is increased. Thinner than solid
Photoexcitation region in the laser medium is parallel to the vertical direction of the active layer
Using a plate-shaped solid laser medium having a thickness equal to the direction , an anti-reflection coating is applied to the excitation light incident end face of the solid laser medium, and the distance between the semiconductor laser and the incident end face is set to the incident end face. The laser is disposed close to the semiconductor laser while maintaining the distance between the excitation light incident end face and the semiconductor laser so that the reflected light from the laser does not change the oscillation wavelength of the semiconductor laser. Since the laser resonator is configured so that its optical axis goes straight through the solid-state laser medium and the beam diameter of the fundamental mode of the laser light substantially matches the thickness of the solid-state laser medium, the laser resonator is simple. There is an effect that a semiconductor-pumped solid-state laser capable of stably outputting a high-quality Gaussian beam with high efficiency can be obtained.

【0018】なお、具体的には励起光入射端面に施され
た無反射コーティングの励起光に対する反射率を2%以
下、上記入射端面と半導体レ−ザとの距離を100μm
から500μmの間に設定すれば、効率がよく、安定な
レーザが得られる。
More specifically, the reflectance of the non-reflection coating applied to the excitation light incident end face to the excitation light is 2% or less, and the distance between the incident end face and the semiconductor laser is 100 μm.
If the distance is set within a range from 500 μm to 500 μm, an efficient and stable laser can be obtained.

【0019】また、本発明の別の発明によれば、厚み方
向と半導体レーザの活性層の垂直方向とを一致させると
ともに、上記厚みを上記垂直方向に広がる励起光の固体
レーザ媒質内の広がり幅よりも薄い厚みとし,かつ固体
レーザ媒質内の光励起領域が上記活性層の垂直方向と並
行方向とで等しくなるような厚みとした板状の固体レー
ザ媒質を、半導体レ−ザに近接して配置するとともに、
励起光の光軸を励起光入射端面の法線から傾けて構成
し、さらにレーザ共振器を、その光軸が上記固体レ−ザ
媒質内を直進し、かつレーザ光の基本モードのビーム径
が上記固体レーザ媒質の厚みとほぼ一致するように構成
したので、簡単な構成で、品質のよいガウス状のビーム
を高効率で、安定に出力することができる半導体励起固
体レーザが得られる効果がある。
According to another aspect of the present invention, the thickness direction coincides with the vertical direction of the active layer of the semiconductor laser, and the width of the excitation light spreading in the vertical direction in the solid-state laser medium increases in the thickness. Thinner and solid
The photoexcitation region in the laser medium is aligned with the vertical direction of the active layer.
A plate-like solid-state laser medium having a thickness equal to the row direction is arranged close to the semiconductor laser, and
The optical axis of the excitation light is inclined from the normal to the excitation light incident end face, and the laser resonator is further configured so that its optical axis goes straight through the solid-state laser medium and the beam diameter of the fundamental mode of the laser light is reduced. Since it is configured so as to substantially match the thickness of the solid-state laser medium, a semiconductor-pumped solid-state laser capable of stably outputting a high-quality Gaussian beam with high efficiency and with a simple configuration is obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による半導体励起固体レ−ザ
を示す断面構成図である。
FIG. 1 is a sectional view showing a semiconductor-excited solid-state laser according to an embodiment of the present invention.

【図2】本発明の他の実施例を示す半導体励起固体レ−
ザの断面構成図である。
FIG. 2 is a semiconductor-excited solid-state laser showing another embodiment of the present invention.
FIG. 3 is a cross-sectional configuration diagram of the ther.

【図3】従来の半導体励起固体レ−ザを示す構成図であ
る。
FIG. 3 is a configuration diagram showing a conventional semiconductor-excited solid-state laser.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 励起光 3 固体レーザ媒質 6 レーザ光 7 部分反射ミラー 32 コーティング DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Excitation light 3 Solid-state laser medium 6 Laser light 7 Partial reflection mirror 32 Coating

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−60578(JP,A) 特開 昭60−135913(JP,A) 特開 平1−154010(JP,A) 特開 平2−1192(JP,A) 特開 昭64−23590(JP,A) 実開 平2−122461(JP,U) 実開 昭63−50152(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01S 3/0941 H01S 3/16 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-60578 (JP, A) JP-A-60-135913 (JP, A) JP-A-1-154010 (JP, A) JP-A-2- 1192 (JP, A) JP-A-64-23590 (JP, A) JP-A-2-122461 (JP, U) JP-A 63-50152 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01S 3/0941 H01S 3/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励起光を出射する半導体レーザと、励起
光入射端面に無反射コーティングがなされ、かつ上記励
起光入射端面と上記半導体レ−ザ間の距離を、上記励起
光入射端面からの反射光が上記半導体レ−ザの発振波長
を変化させない程度まで小さくなるよう、上記励起光入
射端面と上記半導体レ−ザ間の距離を保ちつつ、上記半
導体レ−ザに近接して配置され、厚み方向と上記半導体
レーザの活性層の垂直方向とを一致させるとともに、上
記厚みを上記垂直方向に広がる励起光の固体レーザ媒質
内の広がり幅よりも薄い厚みとし,かつ固体レーザ媒質
内の光励起領域が上記活性層の垂直方向と並行方向とで
等しくなるような厚みとした板状の固体レ−ザ媒質と、
上記固体レーザ媒質からレーザ光を出射させ、その光軸
が上記固体レ−ザ媒質内を直進し、かつ上記レーザ光の
基本モードのビーム径が上記固体レーザ媒質の厚みとほ
ぼ一致するように構成されたレーザ共振器とを備えた半
導体励起固体レーザ。
1. A semiconductor laser that emits excitation light, and a non-reflective coating is applied to an excitation light incident end face, and a distance between the excitation light incident end face and the semiconductor laser is set to reflect from the excitation light incident end face. The laser is arranged close to the semiconductor laser while maintaining a distance between the excitation light incident end face and the semiconductor laser so that the light is small enough not to change the oscillation wavelength of the semiconductor laser. The direction is made to coincide with the vertical direction of the active layer of the semiconductor laser , and the thickness is smaller than the width of the excitation light spreading in the vertical direction in the solid laser medium.
The photoexcitation region inside is in the vertical direction and the parallel direction of the active layer.
A plate-shaped solid laser medium having a thickness so as to be equal ;
A laser beam is emitted from the solid-state laser medium, the optical axis of the laser beam travels straight through the solid-state laser medium, and the beam diameter of the fundamental mode of the laser beam substantially matches the thickness of the solid-state laser medium. Semiconductor-pumped solid-state laser comprising:
【請求項2】 励起光入射端面に施された無反射コーテ
ィングの、励起光に対する反射率が2%以下であり、上
記入射端面と半導体レ−ザとの距離を100μmから5
00μmの間に設定した請求項1記載の半導体励起固体
レ−ザ。
2. The reflectance of the antireflection coating applied to the excitation light incident end face to the excitation light is 2% or less, and the distance between the incident end face and the semiconductor laser is from 100 μm to 5 μm.
2. The semiconductor-excited solid-state laser according to claim 1, wherein said laser is set to be between 00 .mu.m.
【請求項3】 励起光を出射する半導体レーザと、上記
半導体レ−ザに近接して配置され、厚み方向と上記半導
体レーザの活性層の垂直方向とを一致させるとともに、
上記厚みを上記垂直方向に広がる励起光の固体レーザ媒
質内の広がり幅よりも薄い厚みとし,かつ固体レーザ媒
質内の光励起領域が上記活性層の垂直方向と並行方向と
で等しくなるような厚みとした板状の固体レ−ザ媒質
と、上記固体レーザ媒質からレーザ光を出射させ、その
光軸が上記固体レ−ザ媒質内を直進し、かつ上記レーザ
光の基本モードのビーム径が上記固体レーザ媒質の厚み
とほぼ一致するように構成されたレーザ共振器とを備
え、上記励起光の光軸を、上記固体レ−ザ媒質の励起光
入射端面の法線から傾けて構成した半導体励起固体レ−
ザ。
3. A semiconductor laser that emits pump light and is disposed close to the semiconductor laser so that a thickness direction matches a vertical direction of an active layer of the semiconductor laser.
The thickness is set to be smaller than the width of the excitation light spreading in the vertical direction in the solid-state laser medium , and the solid-state laser medium
The photoexcitation region in the material is perpendicular to and parallel to the active layer.
In equal such thickness as the plate-shaped solid les - the laser medium, to emit a laser beam from the solid-state laser medium, the optical axis of the solid les - basic and straight The the medium, and the laser beam A laser resonator configured so that the beam diameter of the mode is substantially equal to the thickness of the solid-state laser medium, wherein the optical axis of the excitation light is adjusted from the normal to the excitation light incident end face of the solid-state laser medium. Semiconductor excited solid-state laser
The.
JP822591A 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser Expired - Fee Related JP2936737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP822591A JP2936737B2 (en) 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP822591A JP2936737B2 (en) 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser

Publications (2)

Publication Number Publication Date
JPH04287988A JPH04287988A (en) 1992-10-13
JP2936737B2 true JP2936737B2 (en) 1999-08-23

Family

ID=11687232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP822591A Expired - Fee Related JP2936737B2 (en) 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser

Country Status (1)

Country Link
JP (1) JP2936737B2 (en)

Also Published As

Publication number Publication date
JPH04287988A (en) 1992-10-13

Similar Documents

Publication Publication Date Title
JP2657078B2 (en) Highly efficient mode-harmonic solid-state laser with lateral pumping
JP4584513B2 (en) Optical amplifier device for solid-state laser (Verstaerker-Anordung)
US5351259A (en) Semiconductor laser-pumped solid-state laser with plural beam output
US4908832A (en) High efficiency mode-matched solid-state laser with transverse pumping
US4916712A (en) Optically pumped slab laser
CA2118612C (en) High efficiency transversely pumped solid-state slab laser
EP0354807A2 (en) High efficiency mode-matched solid-state laser with trasverse pumping
US6532248B2 (en) Diode-laser side-pumped solid-state laser device
US6891877B2 (en) Module of a solid-state platelet light-pumped laser
US6873633B2 (en) Solid-state laser
US6625194B1 (en) Laser beam generation apparatus
JP3053273B2 (en) Semiconductor pumped solid-state laser
JP2936737B2 (en) Semiconductor-pumped solid-state laser
US6563983B2 (en) Laser diode module
US20060126685A1 (en) Slab laser amplifier with parasitic oscillation suppression
JP3270738B2 (en) Semiconductor laser pumped solid state laser
US6341139B1 (en) Semiconductor-laser-pumped solid state laser
JP3602283B2 (en) Laser diode pumped solid state laser
JP3052546B2 (en) Semiconductor-pumped solid-state laser device
JP2516698B2 (en) Slab type solid-state laser oscillator
US20050213631A1 (en) Solid state laser
CN113131340B (en) Semiconductor laser with external cavity modulation
JP2685331B2 (en) Semiconductor laser pumped solid-state laser device
JP3851408B2 (en) Semiconductor laser pumped solid-state laser device
JPS61287287A (en) Solid state laser element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees