JPH04287988A - Semiconductor excited solid-state laser - Google Patents

Semiconductor excited solid-state laser

Info

Publication number
JPH04287988A
JPH04287988A JP822591A JP822591A JPH04287988A JP H04287988 A JPH04287988 A JP H04287988A JP 822591 A JP822591 A JP 822591A JP 822591 A JP822591 A JP 822591A JP H04287988 A JPH04287988 A JP H04287988A
Authority
JP
Japan
Prior art keywords
solid
excitation light
state laser
laser
laser medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP822591A
Other languages
Japanese (ja)
Other versions
JP2936737B2 (en
Inventor
Akira Ishimori
彰 石森
Toyohiro Uchiumi
内海 豊博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP822591A priority Critical patent/JP2936737B2/en
Publication of JPH04287988A publication Critical patent/JPH04287988A/en
Application granted granted Critical
Publication of JP2936737B2 publication Critical patent/JP2936737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To improve energy efficiency of a laser oscillation by absorbing an exciting light while the light is enclosed in a narrow region by an inner reflection of a solid laser medium having thinner thickness, width, etc., than spreading width of the light. CONSTITUTION:A solid laser medium 3 to be used has a thinner thickness than a spreading width in a solid laser medium 3 of an exciting light 2. Or, it has thinner thickness and width than the spreading width in the medium 3 of the light 2. Or, it has smaller diameter than the spreading width in the medium 3 of the light 2. A nonreflecting coating 32 is provided on the exciting light incident end face of the medium 3. The end face of the medium 3 is so disposed near a semiconductor laser 1 as to reduce a distance between the laser 1 and the end face to a degree not to vary the oscillation wavelength of the laser 1 by a reflected light from the incident end face. Thus, a beam of high quality having a high energy efficiency of a laser oscillation and a stable output can be emitted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体レーザを励起源と
する半導体励起固体レーザ、とくに発振効率とビームモ
ードの向上を目的とした半導体レ−ザ近接型固体レーザ
の出力安定化に関するものである。
[Field of Industrial Application] The present invention relates to a semiconductor-excited solid-state laser using a semiconductor laser as an excitation source, and in particular to stabilizing the output of a semiconductor-laser proximity type solid-state laser for the purpose of improving oscillation efficiency and beam mode. .

【0002】0002

【従来の技術】図3は例えば三菱電機技報63巻、4号
、(1989)P287−290に示された従来の半導
体励起固体レーザの概略構成を示すものである。図にお
いて、1は半導体レーザ、2は半導体レーザ1から出射
されるレーザビームで、以下励起光と呼ぶ。8、9はレ
ンズ、3は固体レーザ媒質、6は固体レーザ媒質から出
力されるレーザ光、7は部分反射ミラーである。固体レ
ーザ媒質3の端面にはレーザ光6に対して全反射性のコ
ーティング32と無反射性のコーティング33が施され
、全反射性のコーティング32と部分反射ミラー7の間
でレーザ共振器が構成されている。
2. Description of the Related Art FIG. 3 shows a schematic configuration of a conventional semiconductor-excited solid-state laser, which is disclosed, for example, in Mitsubishi Electric Technical Report Vol. 63, No. 4, (1989) P287-290. In the figure, 1 is a semiconductor laser, and 2 is a laser beam emitted from the semiconductor laser 1, which is hereinafter referred to as excitation light. 8 and 9 are lenses, 3 is a solid laser medium, 6 is a laser beam output from the solid laser medium, and 7 is a partially reflecting mirror. A total reflection coating 32 and a non-reflection coating 33 are applied to the end face of the solid-state laser medium 3 for the laser beam 6, and a laser resonator is formed between the total reflection coating 32 and the partial reflection mirror 7. has been done.

【0003】次に動作について説明する。半導体レーザ
1によって出射された励起光2はレンズ8によって平行
化され、レンズ9によって固体レーザ媒質3に集光入射
される。励起光2は固体レーザ媒質3の中で広がりなが
ら吸収され、固体レーザ媒質3を励起する。吸収された
励起光2のエネルギーの一部はレーザ光6として外部に
出力される。
Next, the operation will be explained. Excitation light 2 emitted by semiconductor laser 1 is collimated by lens 8 and condensed into solid-state laser medium 3 by lens 9 . The excitation light 2 is absorbed while spreading in the solid-state laser medium 3, and excites the solid-state laser medium 3. A part of the absorbed energy of the excitation light 2 is outputted to the outside as a laser beam 6.

【0004】0004

【発明が解決しようとする課題】従来の固体レーザは以
上のように構成されており、励起光2の固体レーザ媒質
3の中での広がりが大きく、実質的に励起の断面積を小
さくすることが困難であった。そのためレーザ発振のし
きい値が大きくなってレーザ発振のエネルギー効率が小
さい、レーザ光6は次数の高いモードが立ち集束性のよ
い基本モードのビームを得ることが困難であるなどの欠
点があった。
[Problem to be Solved by the Invention] The conventional solid-state laser is constructed as described above, and the excitation light 2 spreads widely in the solid-state laser medium 3, so that the cross-sectional area of excitation is substantially reduced. was difficult. As a result, the threshold for laser oscillation becomes large, resulting in low energy efficiency of laser oscillation, and the laser beam 6 has high-order modes, making it difficult to obtain a fundamental mode beam with good focusing. .

【0005】本発明は上記のような問題点を解消するた
めになされたもので、レ−ザ発振のエネルギ−効率が高
く、出力が安定な高品質ビームを出射する半導体励起固
体レ−ザを得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and provides a semiconductor-excited solid-state laser that emits a high-quality beam with high laser oscillation energy efficiency and stable output. The purpose is to obtain.

【0006】[0006]

【課題を解決するための手段】本発明に係わる半導体励
起固体レーザは、励起光の固体レーザ媒質内の広がり幅
よりも薄い厚みを持つ板状の、あるいは上記励起光の固
体レ−ザ媒質内の広がり幅よりも薄い厚みと幅を持つ断
面形状の、あるいは励起光の固体レ−ザ媒質内の広がり
幅よりも小さい直径を持ち、その断面形状がほぼ円形で
ある固体レーザ媒質を用い、この固体レーザ媒質の励起
光入射端面(以後、入射端面と呼ぶ)に無反射コーティ
ングを施すとともに、半導体レ−ザと入射端面との距離
を、入射端面からの反射光が半導体レ−ザの発振波長を
変化させない程度まで小さくなるよう、上記半導体レ−
ザに近接して配置するものである。
[Means for Solving the Problems] The semiconductor pumped solid-state laser according to the present invention has a plate-like structure having a thickness thinner than the spread width of the excitation light in the solid-state laser medium, or This method uses a solid-state laser medium whose cross-sectional shape is thinner than the spread width of the excitation light, or whose cross-sectional shape is approximately circular and has a diameter smaller than the spread width of the excitation light in the solid-state laser medium. An anti-reflection coating is applied to the excitation light input facet (hereinafter referred to as the input facet) of the solid-state laser medium, and the distance between the semiconductor laser and the input facet is adjusted such that the reflected light from the input facet matches the oscillation wavelength of the semiconductor laser. The semiconductor laser is
It should be placed close to the area.

【0007】なお、励起光入射端面に施された無反射コ
ーティングの励起光に対する反射率は2%以下、上記入
射端面と半導体レ−ザとの距離は100μmから500
μmの間に設定するとよい。
The reflectance of the anti-reflection coating applied to the excitation light incident end face for the excitation light is 2% or less, and the distance between the above incident end face and the semiconductor laser is between 100 μm and 500 μm.
It is preferable to set it between μm.

【0008】また、本発明の別の発明に係わる半導体励
起固体レーザは、励起光の固体レーザ媒質内の広がり幅
よりも薄い厚みを持つ板状の、あるいは上記励起光の固
体レ−ザ媒質内の広がり幅よりも薄い厚みと幅を持つ断
面形状の、あるいは上記励起光の固体レ−ザ媒質内の広
がり幅よりも小さい直径を持ち、その断面形状がほぼ円
形である固体レーザ媒質を、半導体レ−ザに近接して配
置するとともに、励起光の光軸を励起光入射端面の法線
から傾けて構成している。
[0008] The semiconductor pumped solid-state laser according to another aspect of the present invention is a plate-shaped laser having a thickness thinner than the spread width of the pumping light in the solid-state laser medium, or A solid-state laser medium whose cross-sectional shape has a thickness and width thinner than the spread width of the solid-state laser medium, or a solid-state laser medium whose cross-sectional shape is approximately circular and has a diameter smaller than the spread width of the excitation light in the solid-state laser medium. It is arranged close to the laser, and the optical axis of the excitation light is inclined from the normal line of the excitation light incident end face.

【0009】[0009]

【作用】本発明においては励起光の広がりよりも薄い厚
み、幅等を持つ固体レーザ媒質の内部反射によって励起
光を狭い領域に閉じこめたまま吸収できるのでレーザ発
振のエネルギー効率を向上できる。また入射端面に無反
射コーティングを施すとともに半導体レ−ザと入射端面
間距離を入射端面からの反射光が半導体レ−ザの発振波
長を変化させない程度まで小さくなるよう半導体レ−ザ
に近接して配置する、あるいは励起光の光軸を入射端面
の法線から傾けて構成しているので、入射端面で反射さ
れる励起光が半導体レ−ザに入射されるために生じる、
いわゆる戻り光の影響を受けないため、出力が安定し、
効率がよく、ビーム品質のよいレーザ光を発生すること
ができる。
[Operation] In the present invention, the energy efficiency of laser oscillation can be improved because the excitation light can be absorbed while being confined in a narrow region by internal reflection of the solid laser medium, which has a thickness and width smaller than the spread of the excitation light. In addition, an anti-reflection coating is applied to the input facet, and the distance between the semiconductor laser and the input facet is set close to the semiconductor laser so that the distance between the semiconductor laser and the input facet is so small that the reflected light from the input facet does not change the oscillation wavelength of the semiconductor laser. Because the optical axis of the excitation light is tilted from the normal line of the input end facet, the excitation light reflected at the entrance end facet is incident on the semiconductor laser.
Since it is not affected by so-called return light, the output is stable,
It is possible to generate laser light with high efficiency and good beam quality.

【0010】0010

【実施例】実施例1.以下、本発明の一実施例を図につ
いて説明する。図1は本発明の半導体励起固体レーザの
一実施例を示す概略構成図であり、図において、1はた
とえば150μmのストライプ幅を持つ1W級の半導体
レ−ザである。2は半導体レ−ザ1より出射される励起
光、3は固体レーザ媒質で、たとえば長さ5mm、幅2
mm、厚さ0.5mmの矩形断面のNd:YAG(Y3
−x Ndx Al5 O12)結晶であり、入射端面
が半導体レ−ザ1から100〜500μmの距離となる
よう設置している。4は光学接着剤、5は金属ブロック
で、例えば長さ5mm、幅4mm、厚さ3mmの直方体
の金メッキを施した銅ブロックである。32は固体レー
ザ媒質3の端面に形成されたコーティングで、励起光2
に対しては無反射、レーザ光6に対しては全反射であり
、励起光2に対する反射率は2%以下となるようにして
いる。33は固体レーザ媒質3の端面に形成されたコー
ティングで、レーザ光6に対して無反射である。7は部
分反射ミラー、10は筐体である。
[Example] Example 1. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of a semiconductor-excited solid-state laser according to the present invention. In the figure, reference numeral 1 denotes a 1W class semiconductor laser having a stripe width of, for example, 150 .mu.m. 2 is the excitation light emitted from the semiconductor laser 1, and 3 is a solid laser medium, for example, 5 mm in length and 2 in width.
Nd:YAG (Y3
-x Ndx Al5 O12) crystal, and is installed so that the incident end face is at a distance of 100 to 500 μm from the semiconductor laser 1. 4 is an optical adhesive, and 5 is a metal block, for example, a rectangular parallelepiped gold-plated copper block with a length of 5 mm, a width of 4 mm, and a thickness of 3 mm. 32 is a coating formed on the end face of the solid-state laser medium 3, and the excitation light 2
There is no reflection for the laser beam 6, total reflection for the laser beam 6, and the reflectance for the excitation light 2 is set to be 2% or less. 33 is a coating formed on the end face of the solid laser medium 3, which does not reflect the laser beam 6. 7 is a partial reflection mirror, and 10 is a housing.

【0011】次に動作について説明する。励起光2は固
体レーザ媒質3端面のコーティング32から入射する。 半導体レーザ1より出射される励起光2は一般に広がり
が大きく、例えば発散角は半導体レーザ1の活性層の垂
直方向(以下、単に垂直方向と呼ぶ)に60゜、並行方
向(以下、単に並行方向と呼ぶ)に20゜(いずれも全
角)と非常に大きく、かつ異方性があるが、半導体レー
ザ1と固体レーザ媒質3を近接配置することによって、
励起光2を有効にレーザ媒質3に入射させている。この
入射方法により励起光2は、励起光の固体レーザ媒質内
の広がり幅よりも薄い厚みを持つ板状の固体レーザ媒質
3の上下面で内部反射を繰り返し、固体レーザ媒質3内
に閉じこめられたまま吸収され、有効にこれを励起する
。半導体レーザ活性層の垂直方向に広がる光を上下面で
反射させることにより、固体レーザ媒質内の光励起領域
は、垂直方向並行方向ともに0.5mm程度にすること
が出来る。固体レーザ媒質3で発生した熱は金属ブロッ
ク5、筐体10を介して効率よく放熱される。コーティ
ング32と部分反射ミラー7の間で安定形共振器が構成
され、例えばコーティング32では平面、部分反射ミラ
ー7の曲率半径2500mm、共振器長10mmの場合
、基本モード(ガウスモード)のビーム直径は約0.3
5mmである。このためレーザの基本モード断面積と、
励起光2の閉じこめられる断面積とがほぼ一致し、品質
のよいガウス状のビームを高効率で出力することができ
る。
Next, the operation will be explained. The excitation light 2 enters from the coating 32 on the end face of the solid-state laser medium 3. The excitation light 2 emitted from the semiconductor laser 1 generally has a wide spread; for example, the divergence angle is 60° in the direction perpendicular to the active layer of the semiconductor laser 1 (hereinafter simply referred to as the vertical direction), and 60° in the parallel direction (hereinafter simply referred to as the parallel direction). Although it has a very large angle of 20° (both full-width) and is anisotropic, by arranging the semiconductor laser 1 and the solid-state laser medium 3 close to each other,
The excitation light 2 is effectively made incident on the laser medium 3. With this incident method, the excitation light 2 is repeatedly internally reflected on the upper and lower surfaces of the plate-shaped solid-state laser medium 3, which has a thickness thinner than the spread width of the excitation light in the solid-state laser medium 3, and is confined within the solid-state laser medium 3. It is absorbed as it is, effectively exciting it. By reflecting the light that spreads in the vertical direction of the semiconductor laser active layer on the upper and lower surfaces, the optical excitation region in the solid-state laser medium can be made approximately 0.5 mm in both the vertical and parallel directions. Heat generated in the solid-state laser medium 3 is efficiently radiated through the metal block 5 and the housing 10. A stable resonator is constructed between the coating 32 and the partially reflecting mirror 7. For example, when the coating 32 is flat, the radius of curvature of the partially reflecting mirror 7 is 2500 mm, and the resonator length is 10 mm, the beam diameter of the fundamental mode (Gaussian mode) is Approximately 0.3
It is 5mm. Therefore, the fundamental mode cross section of the laser is
The cross-sectional area in which the excitation light 2 is confined almost matches, and a high-quality Gaussian beam can be outputted with high efficiency.

【0012】入射端面と半導体レ−ザ1との距離は、効
率と出力安定性を考慮して設定する必要がある。近すぎ
ると励起光2の入射端面からのわずかな反射光が半導体
レ−ザ1に入射し、いわゆる戻り光の影響により半導体
レ−ザ1の動作が不安定に、すなわち出力及び出射され
る励起光2の波長が変動する。一方、固体レ−ザ媒質3
と半導体レ−ザ1が遠く離れると、固体レ−ザ媒質3に
入射される励起光2が減少し、レーザ出力が低下する。 本実施例では無反射コーティング32により入射端面で
の反射率を2%以下にし、かつ入射端面と半導体レ−ザ
1との距離を100μm〜500μmに設定することに
よりこの問題を解決している。
The distance between the incident end facet and the semiconductor laser 1 must be set in consideration of efficiency and output stability. If it is too close, a small amount of reflected light from the incident end face of the excitation light 2 will enter the semiconductor laser 1, and the operation of the semiconductor laser 1 will become unstable due to the influence of so-called return light, that is, the output and the emitted excitation will be affected. The wavelength of light 2 changes. On the other hand, solid laser medium 3
When the semiconductor laser 1 moves away from the solid state laser medium 3, the amount of excitation light 2 incident on the solid laser medium 3 decreases, and the laser output decreases. In this embodiment, this problem is solved by reducing the reflectance at the incident end face to 2% or less using the anti-reflection coating 32 and setting the distance between the incident end face and the semiconductor laser 1 to 100 μm to 500 μm.

【0013】実施例2.なお、上記実施例では150μ
m程度のストライプ幅を持つ1W級の半導体レ−ザに対
して、無反射コーティングの反射率2%以下、半導体レ
−ザ・入射端面間距離100μm〜500μmを設定し
たが、半導体レ−ザの種類に応じて無反射コーティング
の反射率と半導体レ−ザ・入射端面間距離を適当な値に
設定することにより上記実施例と同様の効果を奏する。
Example 2. In addition, in the above example, 150μ
For a 1W class semiconductor laser with a stripe width of about m, the reflectance of the anti-reflection coating was set to 2% or less, and the distance between the semiconductor laser and the incident end facet was set to 100 μm to 500 μm. By setting the reflectance of the anti-reflection coating and the distance between the semiconductor laser and the incident end facet to appropriate values depending on the type, the same effects as in the above embodiment can be obtained.

【0014】実施例3.また、上記実施例では無反射コ
ーティングと半導体レ−ザ・入射端面間距離の設定によ
り半導体レ−ザ1の戻り光の影響を回避したが、励起光
2の反射角度を変える事により戻り光の影響を避けても
よい。図2は、半導体レ−ザ1の設置角度を傾けて励起
光2の光軸を入射端面の法線から傾けて構成した実施例
であり、上記実施例と同様の効果を奏する。以下に数値
例を示す。半導体レーザのストライプ幅を150μm、
垂直方向の開き角を60゜とする。固体レーザ媒質をY
AGとすると、無反射コーティングを施さない場合の端
面の反射率は約9%である。ここで、半導体レーザの垂
直方向の設置角度を開き角の半分すなわち30゜とした
ときの効果を考える。半導体レーザへの戻り光は概略固
体レーザ媒質に垂直に入射する領域での励起光強度に比
例する。設置角度を傾けない場合にはガウス状の強度分
布のピークの部分が戻り光に寄与する。一方半導体レー
ザ・入射端面間距離を同じに保ったまま設置角度を30
゜傾けた場合、戻り光に寄与する励起光の強度はピーク
のe−2、すなわち約13.5%となる。その結果設置
角度を傾けることによって反射率約1.2%(=9%×
0.135)の無反射コーティングを施した場合とほぼ
同等の効果を奏する。また、例えば入射端面に2%の無
反射コーティングが施されている場合、設置角度を傾け
ることにより戻り光の影響はさらに少なくなるので、半
導体レーザ・入射端面間の距離を小さくして発振効率の
改善を図ることができる。即ち、上記のように設置角度
を開き角の半分に設定すると、戻り光は垂直に設置した
場合に比較して約13.5%となる。戻り光の光量が半
導体レーザ・入射端面間距離の2乗にほぼ反比例すると
考えると、設置角度を傾けることにより半導体レーザ・
入射端面間距離をほぼ1/3まで近づけることが可能と
なる。なお、設置角度を開き角の3/4とすると戻り光
に寄与する励起光の強度は約5%となる。あまり傾ける
と励起光が入射端面から外へもれるため、設置角度とし
ては開き角の1/2〜3/4程度が適当である。
Example 3. In addition, in the above embodiment, the influence of the return light from the semiconductor laser 1 was avoided by setting the anti-reflection coating and the distance between the semiconductor laser and the incident end facet, but by changing the reflection angle of the excitation light 2, the return light could be reduced. You can avoid the effects. FIG. 2 shows an embodiment in which the installation angle of the semiconductor laser 1 is tilted so that the optical axis of the excitation light 2 is tilted from the normal line of the incident end face, and the same effect as the above embodiment is achieved. A numerical example is shown below. The stripe width of the semiconductor laser is 150 μm,
The vertical opening angle is 60°. Solid laser medium is Y
Assuming AG, the reflectance of the end face without anti-reflection coating is approximately 9%. Here, consider the effect when the vertical installation angle of the semiconductor laser is set to half the opening angle, that is, 30 degrees. The light returned to the semiconductor laser is approximately proportional to the intensity of the excitation light in the region where the light is incident perpendicularly to the solid-state laser medium. When the installation angle is not tilted, the peak portion of the Gaussian intensity distribution contributes to the returned light. On the other hand, while keeping the distance between the semiconductor laser and the incident end face the same, the installation angle was adjusted to 30°.
When tilted at an angle of .degree., the intensity of the excitation light contributing to the returned light is e-2 of the peak, or approximately 13.5%. As a result, by tilting the installation angle, the reflectance was approximately 1.2% (=9% x
The effect is almost the same as that obtained by applying an anti-reflection coating of 0.135). For example, if the input end face is coated with a 2% anti-reflection coating, tilting the installation angle will further reduce the effect of the returned light. Therefore, the distance between the semiconductor laser and the input end face can be reduced to improve oscillation efficiency. Improvements can be made. That is, when the installation angle is set to half the opening angle as described above, the returned light is about 13.5% compared to when the installation angle is vertical. Considering that the amount of returned light is approximately inversely proportional to the square of the distance between the semiconductor laser and the incident end face, by tilting the installation angle, the semiconductor laser
It becomes possible to reduce the distance between the incident end faces to approximately 1/3. Note that if the installation angle is 3/4 of the opening angle, the intensity of the excitation light contributing to the return light will be about 5%. If it is tilted too much, the excitation light will leak out from the incident end face, so the appropriate installation angle is about 1/2 to 3/4 of the opening angle.

【0015】実施例4.また、上記実施例ではレーザ共
振器の光軸と励起光がほぼ一致するものを示したが、複
数の半導体レーザをレーザ媒質の側面に配し、励起光を
レーザ媒質の側面より入射させた、光軸と励起光が直交
するような構造のものに対しても適用することができる
Example 4. Further, in the above embodiment, the optical axis of the laser resonator and the excitation light almost coincide with each other, but a plurality of semiconductor lasers are arranged on the side of the laser medium, and the excitation light is made incident from the side of the laser medium. It can also be applied to structures where the optical axis and excitation light are orthogonal.

【0016】実施例5.また、上記実施例ではレーザ媒
質は、励起光の固体レーザ媒質内の広がり幅よりも薄い
厚みを持つ板状のものを用いたが、励起光の固体レ−ザ
媒質内の広がり幅よりも薄い厚みと幅を持つ断面形状の
、あるいは励起光の固体レ−ザ媒質内の広がり幅よりも
小さい直径を持ち、その断面形状がほぼ円形である固体
レ−ザ媒質を用いてもよい。
Example 5. In addition, in the above embodiment, the laser medium used was a plate-shaped one having a thickness thinner than the spread width of the excitation light in the solid-state laser medium. A solid-state laser medium having a cross-sectional shape with thickness and width, or a solid-state laser medium having a diameter smaller than the spread width of the excitation light in the solid-state laser medium and having a substantially circular cross-sectional shape may be used.

【0017】[0017]

【発明の効果】以上のように、本発明によれば励起光の
固体レーザ媒質内の広がり幅よりも薄い厚みを持つ板状
の、あるいは上記励起光の固体レ−ザ媒質内の広がり幅
よりも薄い厚みと幅を持つ断面形状の、あるいは上記励
起光の固体レ−ザ媒質内の広がり幅よりも小さい直径を
持ち、その断面形状がほぼ円形である固体レーザ媒質を
用い、この固体レーザ媒質の励起光入射端面に無反射コ
ーティングを施すとともに、半導体レ−ザと入射端面と
の距離を、入射端面からの反射光が半導体レ−ザの発振
波長を変化させない程度まで小さくなるよう、上記半導
体レ−ザに近接して配置したので、効率がよく、出力安
定なビーム品質のよいレーザ光を発生することができる
半導体励起固体レーザが得られる効果がある。
As described above, according to the present invention, a plate-shaped plate having a thickness thinner than the spread width of the excitation light in the solid-state laser medium, or Using a solid-state laser medium with a cross-sectional shape that has a small thickness and width, or a diameter smaller than the spread width of the excitation light in the solid-state laser medium, and whose cross-sectional shape is approximately circular, this solid-state laser medium A non-reflective coating is applied to the excitation light incident end face of the semiconductor laser, and the distance between the semiconductor laser and the incident end face is made small to the extent that the reflected light from the incident end face does not change the oscillation wavelength of the semiconductor laser. Since it is placed close to the laser, it is possible to obtain a semiconductor-excited solid-state laser that is efficient and can generate laser light with stable output and good beam quality.

【0018】なお、具体的には励起光入射端面に施され
た無反射コーティングの励起光に対する反射率を2%以
下、上記入射端面と半導体レ−ザとの距離を100μm
から500μmの間に設定すれば、効率がよく、安定な
レーザが得られる。
Specifically, the reflectance of the anti-reflection coating applied to the excitation light incident end face for the excitation light is 2% or less, and the distance between the above incident facet and the semiconductor laser is 100 μm.
If it is set between 500 μm and 500 μm, a highly efficient and stable laser can be obtained.

【0019】また、本発明の別の発明によれば、励起光
の固体レーザ媒質内の広がり幅よりも薄い厚みを持つ板
状の、あるいは上記励起光の固体レ−ザ媒質内の広がり
幅よりも薄い厚みと幅を持つ断面形状の、あるいは上記
励起光の固体レ−ザ媒質内の広がり幅よりも小さい直径
を持ち、その断面形状がほぼ円形である固体レーザ媒質
を、半導体レ−ザに近接して配置するとともに、励起光
の光軸を励起光入射端面の法線から傾けて構成したので
、効率がよく、出力安定なビーム品質のよいレーザ光を
発生することができる半導体励起固体レーザが得られる
効果がある。
According to another aspect of the present invention, there is provided a plate-shaped plate having a thickness thinner than the spread width of the excitation light in the solid-state laser medium, or A solid-state laser medium with a cross-sectional shape that has a small thickness and width, or a diameter smaller than the spread width of the excitation light in the solid-state laser medium, and whose cross-sectional shape is approximately circular, is used as a semiconductor laser. Semiconductor-pumped solid-state lasers are arranged close to each other and the optical axis of the pumping light is tilted from the normal line of the pumping light input end face, making it possible to generate efficient, stable output, and high-quality laser light. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例による半導体励起固体レ−ザ
を示す断面構成図である。
FIG. 1 is a cross-sectional configuration diagram showing a semiconductor-excited solid-state laser according to an embodiment of the present invention.

【図2】本発明の他の実施例を示す半導体励起固体レ−
ザの断面構成図である。
FIG. 2 is a semiconductor-excited solid-state laser showing another embodiment of the present invention.
FIG.

【図3】従来の半導体励起固体レ−ザを示す構成図であ
る。
FIG. 3 is a configuration diagram showing a conventional semiconductor-excited solid-state laser.

【符号の説明】[Explanation of symbols]

1  半導体レーザ 2  励起光 3  固体レーザ媒質 6  レーザ光 7  部分反射ミラー 32  コーティング 1 Semiconductor laser 2 Excitation light 3 Solid laser medium 6 Laser light 7 Partial reflection mirror 32 Coating

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  励起光を出射する半導体レーザと、励
起光入射端面に無反射コーティングがなされ、かつ上記
励起光入射端面と上記半導体レ−ザ間の距離を、上記励
起光入射端面からの反射光が上記半導体レ−ザの発振波
長を変化させない程度まで小さくなるよう、上記半導体
レ−ザに近接して配置され、上記励起光の固体レーザ媒
質内の広がり幅よりも薄い厚みを持つ板状の、あるいは
上記励起光の固体レ−ザ媒質内の広がり幅よりも薄い厚
みと幅を持つ断面形状の、あるいは上記励起光の固体レ
−ザ媒質内の広がり幅よりも小さい直径を持ち、その断
面形状がほぼ円形である固体レ−ザ媒質と、上記固体レ
ーザ媒質からレーザ光を出射させ、かつその光軸が上記
固体レ−ザ媒質内を直進するよう構成されたレーザ共振
器とを備えた半導体励起固体レーザ。
1. A semiconductor laser that emits excitation light, and an excitation light input end face coated with an anti-reflection coating, and a distance between the excitation light input end face and the semiconductor laser determined by reflection from the excitation light entrance end face. A plate-shaped plate disposed close to the semiconductor laser so that the light is small enough not to change the oscillation wavelength of the semiconductor laser, and having a thickness thinner than the spread width of the excitation light in the solid-state laser medium. or a cross-sectional shape having a thickness and width thinner than the spread width of the excitation light in the solid-state laser medium, or a diameter smaller than the spread width of the excitation light in the solid-state laser medium; A laser resonator comprising: a solid-state laser medium having a substantially circular cross-sectional shape; and a laser resonator configured to emit a laser beam from the solid-state laser medium and whose optical axis travels straight through the solid-state laser medium. Semiconductor-pumped solid-state laser.
【請求項2】  励起光入射端面に施された無反射コー
ティングの、励起光に対する反射率が2%以下であり、
上記入射端面と半導体レ−ザとの距離を100μmから
500μmの間に設定した請求項1記載の半導体励起固
体レ−ザ。
2. The anti-reflection coating applied to the excitation light incident end face has a reflectance of 2% or less for the excitation light,
2. A semiconductor-excited solid-state laser according to claim 1, wherein the distance between said incident end face and the semiconductor laser is set between 100 .mu.m and 500 .mu.m.
【請求項3】  励起光を出射する半導体レーザと、上
記半導体レ−ザに近接して配置され、上記励起光の固体
レーザ媒質内の広がり幅よりも薄い厚みを持つ板状の、
あるいは上記励起光の固体レ−ザ媒質内の広がり幅より
も薄い厚みと幅を持つ断面形状の、あるいは上記励起光
の固体レ−ザ媒質内の広がり幅よりも小さい直径を持ち
、その断面形状がほぼ円形である固体レ−ザ媒質と、上
記固体レーザ媒質からレーザ光を出射させ、かつその光
軸が上記固体レ−ザ媒質内を直進するよう構成されたレ
ーザ共振器とを備え、上記励起光の光軸を、上記固体レ
−ザ媒質の励起光入射端面の法線から傾けて構成した半
導体励起固体レ−ザ。
3. A semiconductor laser that emits excitation light, and a plate-shaped plate disposed close to the semiconductor laser and having a thickness smaller than the spread width of the excitation light in the solid-state laser medium.
Alternatively, the cross-sectional shape has a thickness and width smaller than the spread width of the excitation light in the solid-state laser medium, or the cross-sectional shape has a diameter smaller than the spread width of the excitation light in the solid-state laser medium. a solid-state laser medium having a substantially circular shape, and a laser resonator configured to emit a laser beam from the solid-state laser medium and with its optical axis traveling straight through the solid-state laser medium; A semiconductor pumped solid-state laser configured such that the optical axis of the pumping light is inclined from the normal to the pumping light incident end face of the solid-state laser medium.
JP822591A 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser Expired - Fee Related JP2936737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP822591A JP2936737B2 (en) 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP822591A JP2936737B2 (en) 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser

Publications (2)

Publication Number Publication Date
JPH04287988A true JPH04287988A (en) 1992-10-13
JP2936737B2 JP2936737B2 (en) 1999-08-23

Family

ID=11687232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP822591A Expired - Fee Related JP2936737B2 (en) 1991-01-28 1991-01-28 Semiconductor-pumped solid-state laser

Country Status (1)

Country Link
JP (1) JP2936737B2 (en)

Also Published As

Publication number Publication date
JP2936737B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US8031749B2 (en) Passively Q-switched microlaser with controllable peak power density
JP4584513B2 (en) Optical amplifier device for solid-state laser (Verstaerker-Anordung)
US6785304B2 (en) Waveguide device with mode control and pump light confinement and method of using same
US4916712A (en) Optically pumped slab laser
EP0354807A2 (en) High efficiency mode-matched solid-state laser with trasverse pumping
CA2118612C (en) High efficiency transversely pumped solid-state slab laser
US6532248B2 (en) Diode-laser side-pumped solid-state laser device
WO2016080252A1 (en) External resonator-type semiconductor laser
US6625194B1 (en) Laser beam generation apparatus
US5257277A (en) Semiconductor-laser-pumped, solid-state laser
JP2936737B2 (en) Semiconductor-pumped solid-state laser
JP3270738B2 (en) Semiconductor laser pumped solid state laser
JPH11284257A (en) Semiconductor laser excited solid laser device
JP3052546B2 (en) Semiconductor-pumped solid-state laser device
JP3602283B2 (en) Laser diode pumped solid state laser
JP2962561B2 (en) Laser diode pumped solid-state laser device
JP2685331B2 (en) Semiconductor laser pumped solid-state laser device
JPH0567824A (en) Semiconductor excitation solid-state laser
JP3091764B2 (en) Semiconductor pumped solid-state laser
Wang et al. Output beam quality of edge pumped planar waveguide lasers with confocal unstable resonators
JPS61287287A (en) Solid state laser element
JPH08274393A (en) Slab laser and laser processor
JPH02130882A (en) Solid state laser device
JPH0637368A (en) Laser and beam expander
JPH05121802A (en) Semiconductor excitation solid-state laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees