JPH11284257A - Semiconductor laser excited solid laser device - Google Patents

Semiconductor laser excited solid laser device

Info

Publication number
JPH11284257A
JPH11284257A JP8668998A JP8668998A JPH11284257A JP H11284257 A JPH11284257 A JP H11284257A JP 8668998 A JP8668998 A JP 8668998A JP 8668998 A JP8668998 A JP 8668998A JP H11284257 A JPH11284257 A JP H11284257A
Authority
JP
Japan
Prior art keywords
solid
state laser
laser medium
width
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8668998A
Other languages
Japanese (ja)
Inventor
Hideetsu Kudo
秀悦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8668998A priority Critical patent/JPH11284257A/en
Publication of JPH11284257A publication Critical patent/JPH11284257A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid degradation of beam quality in high-output TEM00 mode by allowing high-output TEM00 mode at high efficiency and reducing thermal distortion of a solid laser medium due to high cooling efficiency, and to make position adjustment of a semiconductor laser easy at assembly or replacement of a semiconductor laser. SOLUTION: An LD optical transfer plate 2 which is transparent and about 1 mm thickness with its side surface tapered, and a solid laser medium 3 of disk or regular polygon wherein the thickness contacting to the LD optical transfer plate 2 is almost same with it while 3×3 mm or less or ϕ 3 mm or less in size are used, so that the component in vertical direction of the excitation light coming out of an LD1 is efficiently transferred in the solid laser medium through total reflection while light collected evenly to a width near TEM00 mode oscillation region to some extent in horizontal direction, for even excitation of a solid laser medium at high excitation density. The solid laser medium 3 is thin plate-like, contacting to a cooling plate 4 by surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体レーザ装置に
関し、特に半導体レーザを励起光源として用いる半導体
レーザ励起固体レーザ装置に関する。
The present invention relates to a solid-state laser device and, more particularly, to a semiconductor laser-excited solid-state laser device using a semiconductor laser as an excitation light source.

【0002】[0002]

【従来の技術】従来のこの種の半導体レーザ励起固体レ
ーザ(以下LD励起固体レーザという)においては、半
導体レーザ(以下LDという)から出射された励起光
を、ロッド状の固体レーザ媒質を端面に照射して励起す
る端面励起方式と、LDからの励起光をロッド状の固体
レーザ媒質を側面から励起する側面励起方式とが一般的
によく用いられている。
2. Description of the Related Art In a conventional semiconductor laser-pumped solid-state laser (hereinafter referred to as an LD-pumped solid-state laser) of this kind, a pumping light emitted from a semiconductor laser (hereinafter referred to as an LD) is applied to an end face of a rod-shaped solid laser medium. An edge pumping method of irradiating and exciting, and a side-surface pumping method of exciting pump light from an LD from the side of a rod-shaped solid laser medium are generally used.

【0003】従来のLD励起固体レーザにおいて、高出
力のTEMooモード出力を得る場合には、端面励起方
式では、多数個のLDからの励起光を固体レーザ媒質の
光軸上に集光するために複雑な光学系を用いたり、励起
光を光ファイバに結合させて束ねたりしていた。
In a conventional LD-pumped solid-state laser, when a high-power TEMoo mode output is obtained, the end-pumping method is used to focus pumping light from a large number of LDs on the optical axis of a solid-state laser medium. A complicated optical system was used, or excitation light was coupled to an optical fiber and bundled.

【0004】また、側面励起方式では、LDからの励起
光を円柱レンズでロッドの軸に平行な方向に線状に集光
してロッド状固体レーザ媒質の側面外周から照射して励
起したり、あるいは、特開平9−18072で示される
ように励起光を拡散伝搬光学系を用いて固体レーザ媒質
を均一励起する方式を取っていた。
In the side-pumping method, the pumping light from the LD is condensed linearly in the direction parallel to the axis of the rod by a cylindrical lens and irradiated from the side outer periphery of the rod-shaped solid laser medium to be excited. Alternatively, as disclosed in JP-A-9-18072, a method of uniformly exciting a solid-state laser medium by using a diffusion-propagation optical system for excitation light has been adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
従来の端面励起方式での従来技術においては、第1に固
体レーザ媒質のTEMooモード発振領域内に効率良く
複数のLD光を集光させるために、特殊な光学系を用い
たり複数のファイバにLD光を入射させて束ねたものを
用いなければならず、光学系が複雑、高価になる。
However, in the above-described conventional technique using the conventional end facet pumping method, first, in order to efficiently collect a plurality of LD lights in the TEMoo mode oscillation region of the solid-state laser medium, However, it is necessary to use a special optical system or use a bundle of LD light incident on a plurality of fibers, which makes the optical system complicated and expensive.

【0006】また、第2に、端面励起方式では局所的に
熱が集中するので、励起入力の増加にともなって固体レ
ーザ媒質の熱レンズ効果や熱複屈折が大きくなるため
に、励起入力が大きくなると固体レーザ出力が飽和し、
ビーム品質が低下する。
Second, since heat is concentrated locally in the end-pumping method, the thermal lens effect and the thermal birefringence of the solid-state laser medium increase with an increase in the pump input. Then the solid state laser output saturates,
Beam quality is reduced.

【0007】また、上述の特開平9−18072に示さ
れるように励起光を拡散する形で固体レーザ媒質を均一
に励起する側面励起方式では、固体レーザのTEMoo
モード領域以外も広く励起するため、励起光と発振光の
空間的マッチングの割合が低下し、発振しきい値も上昇
するため、発振効率が低下する。
Further, as described in the above-mentioned Japanese Patent Application Laid-Open No. 9-18072, in the side-pumping method in which the solid-state laser medium is uniformly pumped by diffusing the pumping light, the TEMoo of the solid-state laser
Excitation is widely performed in areas other than the mode region, so that the ratio of spatial matching between the excitation light and the oscillation light decreases, and the oscillation threshold value also increases, so that the oscillation efficiency decreases.

【0008】本発明の目的は、簡易な光学系で高効率で
高出力TEMooモードを得るとともに、冷却効率が高
く、固体レーザ媒質の熱歪みが少なく、したがって高出
力時のビーム品質が劣化しないLD励起固体レーザ装置
を提供することである。
An object of the present invention is to obtain a high-efficiency, high-power TEMoo mode with a simple optical system, a high cooling efficiency, a small thermal distortion of a solid-state laser medium, and therefore, an LD that does not degrade the beam quality at high power. An object of the present invention is to provide a pumped solid-state laser device.

【0009】また、装置組立時及び励起用LD交換時に
おけるLDの位置調整を容易にする。
Further, it is easy to adjust the position of the LD at the time of assembling the apparatus and exchanging the LD for excitation.

【0010】[0010]

【課題を解決するための手段】本発明は、固体レーザ媒
質を励起する励起光を出射するアレー型の半導体レーザ
と、前記半導体レーザのアレー方向の発光幅に対応する
幅をもつ入射端面と固体レーザ媒質のTEMooモード
発振領域の幅に近い幅をもつ出射端面とを有し半導体レ
ーザのアレー方向と垂直方向の発光幅に対応する厚さの
光伝送板と、前記光伝送板の出射端面に接して設置され
前記光伝送板に対応する厚さを有する円板または正角柱
の固体レーザ媒質とを有している。
SUMMARY OF THE INVENTION The present invention provides an array-type semiconductor laser for emitting excitation light for exciting a solid-state laser medium, and an incident end face having a width corresponding to the emission width of the semiconductor laser in the array direction. An emission end face having a width close to the width of the TEMoo mode oscillation region of the laser medium, an optical transmission plate having a thickness corresponding to the emission width in the direction perpendicular to the array direction of the semiconductor laser; and an emission end face of the optical transmission plate. A disk or regular prismatic solid-state laser medium having a thickness corresponding to the optical transmission plate and disposed in contact therewith.

【0011】本発明では、アレー型のLDの励起光が光
伝送板のLDのアレー方向の幅に対応するテーパの広い
側の入射端面より入射し、光伝送板の厚み方向では全反
射を繰り返し、水平方向にはテーパ状の側面で反射しな
がら固体レーザ媒質のTEMooモード発振領域の幅に
近い幅をもつ出射端面の幅まで集束するよう伝搬し、L
D光伝送板の出射端面は固体レーザ媒質の側面に接し、
LDから出射した励起光は固体レーザ媒質を励起する。
固体レーザ媒質のTEMooモード領域の幅に近い幅の
範囲を均一に励起するため、励起効率が良く、TEMo
oモードが高効率で得られる。また、アレー型LDから
の励起光を集束するのに半導体レーザのアレー方向と垂
直方向の発光幅に対応する厚さの光伝送板を用いるのみ
であり、特殊な光学系を用いたり複数のファイバにLD
光を入射させて束ねたものを用いることなく簡易な光学
系でアレー型LDからの励起光を集束することができる
また、固体レーザ媒質は薄い板状のために冷却効果が高
く、温度勾配も厚み方向に発生するため、熱レンズ効果
や熱歪みが軽減され、ビーム品質の劣化が防げる。
According to the present invention, the excitation light of the array type LD is incident from the entrance end face of the optical transmission plate having a wide taper side corresponding to the width of the LD in the array direction, and the total reflection is repeated in the thickness direction of the optical transmission plate. In the horizontal direction, while being reflected by the tapered side surface, the light propagates so as to converge to the width of the emission end face having a width close to the width of the TEMoo mode oscillation region of the solid-state laser medium.
The emission end face of the D optical transmission plate contacts the side face of the solid-state laser medium,
Excitation light emitted from the LD excites the solid-state laser medium.
The pumping efficiency is good because the range of the width close to the width of the TEMoo mode region of the solid-state laser medium is uniformly excited.
The o mode is obtained with high efficiency. Also, to focus the excitation light from the array type LD, only an optical transmission plate with a thickness corresponding to the emission width in the direction perpendicular to the array direction of the semiconductor laser is used, and a special optical system or multiple fibers are used. To LD
The excitation light from the array type LD can be focused with a simple optical system without using a bundle of incident light.The solid laser medium has a high cooling effect due to its thin plate shape and has a high temperature gradient. Since it occurs in the thickness direction, the thermal lens effect and thermal distortion are reduced, and deterioration of beam quality can be prevented.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して詳細に説明する。図1(a)は本発明
の第1の実施の形態の構成を示す平面図である。また、
図1(b)は、図1(a)のLD励起固体レーザ装置の
側面図である。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a plan view showing the configuration of the first embodiment of the present invention. Also,
FIG. 1B is a side view of the LD-pumped solid-state laser device of FIG.

【0013】固体レーザ媒質3を励起するための励起光
を出力するLD1と、LD1から出力された励起光を、
固体レーザ媒質3まで伝送するLD光伝送体2と、励起
光により励起される固体レーザ媒質3が、平板状の冷却
プレート4上に設置されている。
An LD 1 for outputting an excitation light for exciting the solid-state laser medium 3 and an excitation light output from the LD 1 are
An LD light transmitter 2 that transmits light to a solid laser medium 3 and a solid laser medium 3 that is excited by excitation light are provided on a flat cooling plate 4.

【0014】LD1は、冷却プレート4に設置され、固
体レーザ媒質3の吸収が良い波長で発振するアレー型L
Dである。
The LD 1 is mounted on a cooling plate 4 and oscillates in an array type L which oscillates at a wavelength at which the solid-state laser medium 3 has good absorption.
D.

【0015】LD光伝送板2は、直線状の端面をLD1
の線状の光出射部分に近接して冷却プレート4に設置さ
れ、アレー方向と垂直な方向の発光幅を入射できる程度
の薄さで、また、ほぼ均一な厚さの板状の光伝送体であ
る。また、LD光伝送板2の1対の側面がテーパ状にな
った台形状の形状を有しており、テーパの広がった底辺
側が入射端面としてLD1側に対向し、反対側のテーパ
の狭くなった側が出射端面として固体レーザ媒質3に接
して設置されている。出射端面は、固体レーザ媒質のT
EMooモード発振領域の幅よりは大きいが、それに近
い幅、例えばTEMooモード発振領域の4倍程度以内
の幅をもっている。LD光伝送板2の材質は、LD1の
発振光に対して透過率の高い材質を用いる。
The LD light transmission plate 2 has a linear end face
And a plate-like optical transmission member having a thickness small enough to allow a light emission width in a direction perpendicular to the array direction to be incident and having a substantially uniform thickness. It is. Further, the LD light transmission plate 2 has a trapezoidal shape in which a pair of side surfaces is tapered, and the bottom side where the taper is widened faces the LD1 side as an incident end face, and the taper on the opposite side becomes narrow. The other side is provided in contact with the solid-state laser medium 3 as an emission end face. The emission end face is the T of the solid-state laser medium.
Although it is larger than the width of the EMoo mode oscillation region, it has a width close to it, for example, a width within about four times the TEMoo mode oscillation region. As a material of the LD light transmission plate 2, a material having a high transmittance with respect to the oscillation light of the LD 1 is used.

【0016】また、熱伝導率が良く、熱膨張係数が固体
レーザ媒質3の熱膨張係数と近いものが望ましい。ま
た、LD光伝送板2は、温度により膨張収縮する固体レ
ーザ媒質3との接触を保つように冷却プレート4に取り
付けられている。LD光伝送板2のテーパ状の側面は、
励起光の波長に対して高反射率となる誘電体多層膜又は
金属膜を蒸着等の手段でコーティングする。
It is desirable that the thermal conductivity is good and the thermal expansion coefficient is close to that of the solid-state laser medium 3. The LD light transmission plate 2 is attached to the cooling plate 4 so as to maintain contact with the solid-state laser medium 3 which expands and contracts with temperature. The tapered side surface of the LD light transmission plate 2
A dielectric multilayer film or a metal film having a high reflectance with respect to the wavelength of the excitation light is coated by means such as vapor deposition.

【0017】固体レーザ媒質3は、厚さがLD光伝送板
2と同程度の円板状のレーザ媒質であり、直径がLD光
伝送板2の出射端面の幅とほぼ等しいか、やや大きい。
冷却プレート4のLD光伝送板2の設置された面と同一
面上に設置されている。固体レーザ媒質3の冷却プレー
ト4側の面には、出力する発振波長に対して高反射とな
るミラーコーティングが施されレーザ共振器の一方を構
成する。
The solid-state laser medium 3 is a disk-shaped laser medium having a thickness substantially equal to that of the LD light transmission plate 2, and has a diameter substantially equal to or slightly larger than the width of the emission end face of the LD light transmission plate 2.
The cooling plate 4 is installed on the same surface as the surface on which the LD light transmission plate 2 is installed. The surface of the solid-state laser medium 3 on the side of the cooling plate 4 is coated with a mirror coating that is highly reflective with respect to the output oscillation wavelength, and constitutes one of the laser resonators.

【0018】図1(b)に示されるように、固体レーザ
媒質3の冷却プレート4に接する側と反対側に出力鏡5
が配置され、上述の固体レーザ媒質3のミラーコーティ
ングと出力鏡5とでレーザ共振器を構成する。
As shown in FIG. 1B, an output mirror 5 is provided on the side of the solid-state laser medium 3 opposite to the side in contact with the cooling plate 4.
Are arranged, and the mirror coating of the solid-state laser medium 3 and the output mirror 5 constitute a laser resonator.

【0019】冷却プレート4は、レーザ媒質3、LD
1、LD光伝送板2を固定し、また、レーザ発振及びレ
ーザ光の吸収等により発熱する各要素を冷却する。
The cooling plate 4 includes the laser medium 3, the LD,
1. The LD light transmission plate 2 is fixed, and each element that generates heat due to laser oscillation and absorption of laser light is cooled.

【0020】LD1から出射した励起光は、LD光伝送
板2に入射し、垂直方向はLD光伝送板2の厚み方向に
おいては全反射し、水平方向はテーパ部に施された高反
射コーティングにより反射しながら出射端において収束
する。LD光伝送板2内を収束しつつ伝搬してきた励起
光は、出射端で接触している固体レーザ媒質3に伝搬し
て均一に励起する。この励起により固体レーザ媒質3に
エネルギーの反転分布が形成される。固体レーザ媒質3
の冷却プレート4側の面は、発振波長に対して高反射と
なるミラーコーティングが施され、出力鏡5とでレーザ
共振器を構成しており、TEMooモードレーザ光が発
振する。
Excitation light emitted from the LD 1 is incident on the LD light transmission plate 2, is totally reflected in the vertical direction in the thickness direction of the LD light transmission plate 2, and is horizontally reflected by a high reflection coating applied to a tapered portion. The light converges at the emission end while being reflected. Excitation light that has propagated while converging in the LD light transmission plate 2 propagates to the solid-state laser medium 3 that is in contact at the emission end, and is uniformly excited. Due to this excitation, an inverted population of energy is formed in the solid-state laser medium 3. Solid laser medium 3
The surface on the side of the cooling plate 4 is mirror-coated so as to have a high reflection with respect to the oscillation wavelength, and forms a laser resonator with the output mirror 5, and TEMoo mode laser light oscillates.

【0021】レーザ媒質3は、上記のように非常に薄い
円板状の形状であり、また、冷却プレート4上に底面全
体で密着して固定されているので冷却されやすく、熱レ
ンズ効果や熱複屈折の効果が小さくビーム品質の低下は
小さい。
The laser medium 3 has a very thin disk shape as described above, and is fixed on the cooling plate 4 in close contact with the entire bottom surface, so that the laser medium 3 is easily cooled, and has a thermal lens effect and a thermal effect. The effect of the birefringence is small and the deterioration of the beam quality is small.

【0022】次に、本発明の実施例について詳細に説明
する。固体レーザ媒質3は、φ3mm、厚さ0.5mm
のNd:YAG結晶である。固体レーザ媒質3をこれ以
上太くしても出力光の径はTEMooモードではφ1m
m程度であり、太くならないため効率の点からφ3mm
が好ましい。LD1は発振出力が20W、発光部の幅が
10mmで発振中心波長はNd:YAG結晶の吸収がよ
い809nmである。LD光伝送板2はNd:YAGと
ほぼ同じ屈折率を有した、活性イオンをドープしていな
いYAG結晶を用いる。LD光伝送板2の入射面はLD
1の発光幅よりわずかに広く、出射面は固体レーザ媒質
3の側面にオプティカルコンタクトで接している。LD
光伝送板2のテーパ状側面は、励起光の波長809nm
に対して高反射率となる誘電体多層膜を蒸着している。
また、固体レーザ媒質3の冷却プレート4側の面にはN
d:YAGの発振波長1.06μmに対して高反射とな
るミラーコーティングを施し、出力鏡5とでレーザ共振
器を構成する。
Next, embodiments of the present invention will be described in detail. Solid laser medium 3 is φ3mm, thickness 0.5mm
Nd: YAG crystal. Even if the solid-state laser medium 3 is made thicker, the diameter of the output light is φ1 m in the TEMoo mode.
m and φ3mm from the point of efficiency because it does not become thick
Is preferred. LD1 has an oscillation output of 20 W, a light-emitting portion width of 10 mm, and an oscillation center wavelength of 809 nm, which is excellent in absorption of Nd: YAG crystal. The LD light transmission plate 2 uses a YAG crystal which has substantially the same refractive index as Nd: YAG and is not doped with active ions. The incident surface of the LD light transmission plate 2 is LD
The emission surface is slightly wider than the emission width of No. 1 and the emission surface is in contact with the side surface of the solid-state laser medium 3 by optical contact. LD
The tapered side surface of the optical transmission plate 2 has a wavelength of 809 nm of the excitation light.
, A dielectric multilayer film having high reflectance is deposited.
The surface of the solid-state laser medium 3 on the side of the cooling plate 4 is N
d: A mirror coating that provides high reflection for the oscillation wavelength of 1.06 μm of YAG is applied, and the output mirror 5 forms a laser resonator.

【0023】この構成により固体レーザの出力は、5〜
6Wの出力を実現でき、端面励起方法では、固体レーザ
媒質内の温度差が通常30℃程度になるが、この実施例
では10℃程度に抑えられる。
With this configuration, the output of the solid state laser is 5 to
In the end-pumping method, a temperature difference in the solid-state laser medium is usually about 30 ° C., but in this embodiment, it can be suppressed to about 10 ° C.

【0024】次に、本発明の第2の実施の形態について
図2、図3を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.

【0025】図2は、第2の実施の形態の平面図であ
り、図3は、図2のLD励起固体レーザの断面図であ
る。
FIG. 2 is a plan view of the second embodiment, and FIG. 3 is a sectional view of the LD-pumped solid-state laser of FIG.

【0026】本実施の形態は、上述の第1の実施の形態
におけるLD1とLD光伝送板2の組みを、固体レーザ
媒質3の周りに放射状に4個配置する。
In this embodiment, four sets of the LD 1 and the LD light transmission plate 2 in the first embodiment are radially arranged around the solid-state laser medium 3.

【0027】各LD1は冷却プレート4の同一高さの面
上に平行に設置されている。
Each LD 1 is installed in parallel on a plane of the same height of the cooling plate 4.

【0028】また、各LD1に対応するLD光伝送体2
も、冷却プレート4の同一面上に設置されている。各L
D光伝送板2の出射端は、固体レーザ媒質の直径よりわ
ずかに狭い幅を有しており、各LD光伝送板2の出射端
は固体レーザ媒質3の側面に、それぞれ隣のLD光伝送
体2と90度異なる方向からオプティカルコンタクトで
接している。
Further, an LD optical transmission body 2 corresponding to each LD 1
Are also provided on the same surface of the cooling plate 4. Each L
The emission end of the D light transmission plate 2 has a width slightly smaller than the diameter of the solid-state laser medium, and the emission end of each LD light transmission plate 2 is located on the side surface of the solid-state laser medium 3 and adjacent to the LD light transmission plate. It is in contact with the body 2 by an optical contact from a direction different by 90 degrees.

【0029】また、図3に示すように、固体レーザ媒質
3の冷却プレート4に接する側と反対側に出力鏡5が配
置され、冷却プレート4側の面に施されたミラーコーテ
ィングと出力鏡5とでレーザ共振器を構成する。
As shown in FIG. 3, an output mirror 5 is disposed on the side of the solid-state laser medium 3 opposite to the side in contact with the cooling plate 4, and a mirror coating and an output mirror 5 are provided on the surface on the side of the cooling plate 4. A laser resonator is constituted by the above.

【0030】これにより、励起入力を増加し、LD1の
個数の増加に比例して簡便にTEMooモード出力の増
加が可能になる。また、周方向にほぼ等間隔に複数の励
起光を照射するので、側面の一部のみではなく側面全体
が均一に温度上昇し、温度勾配は主に厚み方向に発生す
るため、熱レンズ効果や熱複屈折の効果が第1の実施の
形態よりさらに小さい。また、励起光を照射する数は4
以上の出力手段を固体レーザ媒質3の周囲に設置するこ
とによりさらに高出力のレーザ出力を得ることができ
る。この場合、固体レーザ媒質3の直径は、LD光伝送
板2同士が干渉しないように出射端面より十分大きな径
とする必要がある。または、固体レーザ媒質3の直径
を、LD光伝送板2の出射端面と同等にする場合は、固
体レーザ媒質3の出力光の方向の長さを2倍にし、上段
部分を照射するLD光伝送板2及びLD1の組と下段部
分を照射する組とを交互に異なる高さに冷却プレート4
上に配置するようにしてもよい。
As a result, the excitation input is increased, and the TEMoo mode output can be easily increased in proportion to the increase in the number of LD1s. In addition, since a plurality of excitation lights are radiated at substantially equal intervals in the circumferential direction, not only a part of the side surface but also the entire side surface uniformly rises in temperature, and a temperature gradient mainly occurs in the thickness direction. The effect of the thermal birefringence is smaller than in the first embodiment. The number of irradiations with excitation light is 4
By installing the above output means around the solid-state laser medium 3, a higher output laser output can be obtained. In this case, the diameter of the solid-state laser medium 3 needs to be sufficiently larger than the emission end face so that the LD light transmission plates 2 do not interfere with each other. Alternatively, when the diameter of the solid laser medium 3 is made equal to the emission end face of the LD light transmission plate 2, the length of the solid laser medium 3 in the direction of the output light is doubled, and the LD light transmission for irradiating the upper part is performed. The cooling plate 4 is set so that the set of the plate 2 and the LD 1 and the set for irradiating the lower part are alternately set at different heights
It may be arranged above.

【0031】また、固体レーザ媒質3の側面を、LD光
伝送板2の出射端の形状にあわせてLD1の数の正多角
形としてもよい。逆に、LD光伝送板2の出射端の形状
を固体レーザ媒質3の側面形状にあわせてシリンドリカ
ル面としてもよい。これにより、固体レーザ媒質3とL
D光伝送板2との接触性が良くなり、励起光の伝達効率
がよくなり、高出力化が可能となる。また、一つのLD
により励起する場合でも、固体レーザ媒質3を正多角柱
としてもかまわない。
Further, the side surface of the solid-state laser medium 3 may be a regular polygon having the number of LDs 1 according to the shape of the emission end of the LD light transmission plate 2. Conversely, the shape of the emission end of the LD light transmission plate 2 may be a cylindrical surface according to the side surface shape of the solid-state laser medium 3. Thereby, the solid-state laser medium 3 and L
The contact property with the D light transmission plate 2 is improved, the transmission efficiency of the excitation light is improved, and high output can be achieved. Also one LD
, The solid-state laser medium 3 may be a regular polygonal prism.

【0032】また、LD光伝送体2のテーパの角度を、
所定の角度以下にすると、LD1から入射した光はすべ
て、側面で高反射率で全反射されるので、誘電体多層膜
等のコーティングが不要となり、低コスト化が可能とな
る。
Further, the taper angle of the LD light transmission body 2 is
When the angle is equal to or less than the predetermined angle, all the light incident from the LD 1 is totally reflected at a high reflectance on the side surface, so that a coating such as a dielectric multilayer film is not required, and the cost can be reduced.

【0033】また、この場合、屈折率が大きい材質のも
のがテーパの角度をそれほど小さくしなくてもよく、L
D光伝送板の長さを短くでき、望ましいまた、入射面、
出射面ともに無反射コーティングを施してもよい。
In this case, a material having a large refractive index does not need to make the taper angle so small.
D The length of the light transmission plate can be shortened.
An anti-reflection coating may be applied to both the emission surface.

【0034】また、他の波長でレーザ発振するような固
体レーザ媒質、ミラーコーティング、LDのあらゆる組
み合わせにおいて、LD光伝送体の材質をその波長を高
透過率で透過する材質とし、また、側面にその波長を高
反射率で反射するコーティングを施したものも本発明に
含まれる。
In any combination of a solid laser medium, a mirror coating, and an LD that oscillates at other wavelengths, the material of the LD light transmitting body is made of a material that transmits the wavelength at a high transmittance. The present invention also includes a coating provided with a coating that reflects the wavelength at a high reflectance.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
厚さ1mm程度以下の、側面がテーパ状になったLD光
伝送板と、LD光伝送板と同程度の厚みの固体レーザ媒
質とを接触させ、アレー型高出力LDをLD光伝送板の
入射端に近接させるという簡易な光学系で固体レーザ媒
質の高効率な励起が可能となり、簡易な光学系でTEM
ooモードでの高出力化を高効率で実現できる。
As described above, according to the present invention,
An LD optical transmission plate having a thickness of about 1 mm or less and having a tapered side surface is brought into contact with a solid laser medium having the same thickness as the LD optical transmission plate, and an array-type high-power LD is incident on the LD optical transmission plate. A simple optical system close to the edge enables highly efficient excitation of the solid-state laser medium, and a simple optical system enables TEM
High output in the oo mode can be realized with high efficiency.

【0036】また、LD光伝送板により、固体レーザ媒
質に照射される励起光が水平方向に均一となるため、端
面励起方式のような局所的な温度上昇が起こらない。
In addition, since the LD light transmission plate makes the excitation light applied to the solid-state laser medium uniform in the horizontal direction, a local temperature rise unlike the end face excitation method does not occur.

【0037】さらに、薄い板状の固体レーザ媒質を用い
ているため、冷却効果が高く、熱レンズ効果や熱複屈折
による共振器内部の光学的損失が小さく、固体レーザの
ビーム品質が向上する。
Further, since a thin plate-shaped solid laser medium is used, the cooling effect is high, the optical loss inside the resonator due to the thermal lens effect and the thermal birefringence is small, and the beam quality of the solid laser is improved.

【0038】また、LD1とLD光伝送板2の組みを、
固体レーザ媒質3の周りに放射状に複数配置することに
より、励起入力を増加し高出力とすることが可能となる
とともに側面全体が均一に温度上昇するので熱レンズ効
果や熱複屈折の効果が小さくビーム品質がよくなる。
The combination of the LD 1 and the LD light transmission plate 2 is
By radially arranging a plurality of pieces around the solid-state laser medium 3, it becomes possible to increase the pumping input and to obtain a high output, and the temperature of the entire side surface is uniformly increased, so that the thermal lens effect and the thermal birefringence effect are small. Beam quality is improved.

【0039】また、LD光伝送板2とLD1の間隔、上
下左右の位置合わせは、高い精度で位置決めしなくても
LD伝送板2の出射端から出射される励起光に及ぼす影
響がレンズ光学系にくらべて少なく、組み立て時及びL
D交換時の取り付け位置調整が容易である。
In addition, the distance between the LD light transmission plate 2 and the LD 1 and the vertical, horizontal, and horizontal alignments are not affected by the effect on the excitation light emitted from the emission end of the LD transmission plate 2 even if positioning is not performed with high accuracy. Less than in assembly, L
It is easy to adjust the mounting position when replacing D.

【0040】また、固体レーザ媒質が薄くレーザ発振器
を構成するミラー間の距離が短くできるのでQスイッチ
レーザに利用すると、スイッチパルスを短くすることが
可能となり高出力のパルスレーザを出力することが出き
る。
Further, since the solid laser medium is thin and the distance between the mirrors constituting the laser oscillator can be shortened, when used for a Q-switched laser, the switch pulse can be shortened and a high-power pulsed laser can be output. Wear.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の構造を示す図であ
り、(a)は平面図であり、(b)は側面図である。
FIG. 1 is a diagram showing a structure according to a first embodiment of the present invention, wherein (a) is a plan view and (b) is a side view.

【図2】本発明の第2の実施の形態の構造を示す平面図
である。
FIG. 2 is a plan view showing a structure according to a second embodiment of the present invention.

【図3】図3のLD励起固体レーザ装置の断面図であ
る。
FIG. 3 is a sectional view of the LD-pumped solid-state laser device of FIG. 3;

【符号の説明】[Explanation of symbols]

1 LD 2 LD光伝送板 3 固体レーザ媒質 4 冷却プレート DESCRIPTION OF SYMBOLS 1 LD 2 LD light transmission plate 3 Solid-state laser medium 4 Cooling plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】固体レーザ媒質を励起する励起光を出射す
るアレー型の半導体レーザと、 前記半導体レーザのアレー方向の発光幅に対応する幅を
もつ入射端面と固体レーザ媒質のTEMooモード発振
領域の幅に近い幅をもつ出射端面とを有し半導体レーザ
のアレー方向と垂直方向の発光幅に対応する厚さの光伝
送板と、 前記光伝送板の出射端面に接して設置され前記光伝送板
に対応する厚さを有する円板または正多角柱の固体レー
ザ媒質とを有することを特徴とする半導体レーザ励起固
体レーザ装置。
1. An array-type semiconductor laser for emitting excitation light for exciting a solid-state laser medium, an incident end face having a width corresponding to an emission width of the semiconductor laser in an array direction, and a TEMoo mode oscillation region of the solid-state laser medium. An optical transmission plate having an emission end face having a width close to the width and having a thickness corresponding to the emission width in the direction perpendicular to the array direction of the semiconductor laser; and the optical transmission plate installed in contact with the emission end face of the optical transmission plate A solid-state laser medium having a circular plate or a regular polygonal prism having a thickness corresponding to the above.
【請求項2】固体レーザ媒質を励起する励起光を出射す
る複数のアレー型の半導体レーザと、前記半導体レーザ
とそれぞれ対応して設置され、前記半導体レーザのアレ
ー方向の発光幅に対応する幅をもつ入射端面と固体レー
ザ媒質のTEMooモード発振領域の幅に近い幅をもつ
出射端面とを有し半導体レーザのアレー方向と垂直方向
の発光幅に対応する厚さの前記半導体レーザのアレー方
向の発光幅に対応する幅をもつ平面状の入射端面と固体
レーザ媒質のTEMooモード発振領域の幅に近い幅を
もつ出射端面とを有し半導体レーザのアレー方向と垂直
方向の発光幅に対応する厚さの光伝複数の光伝送板と、
前記複数の前記光伝送板及び複数の前記半導体レーザを
前記固体レーザ媒質を中心に放射状にほぼ等間隔にかつ
前記複数の光伝送板の出射端面に接して設置され、前記
光伝送板に対応する厚さを有する円板または正多角柱の
固体レーザ媒質とを有することを特徴とする半導体レー
ザ励起固体レーザ装置。
2. A plurality of array-type semiconductor lasers for emitting excitation light for exciting a solid-state laser medium, and a plurality of semiconductor lasers installed corresponding to the semiconductor lasers, the width corresponding to the emission width of the semiconductor lasers in the array direction. And an emission end face having a width close to the width of the TEMoo mode oscillation region of the solid-state laser medium having an emission end face having a thickness corresponding to an emission width in a direction perpendicular to the array direction of the semiconductor laser. A thickness corresponding to the emission width of the semiconductor laser in the array direction and the vertical direction, having a planar incident end face having a width corresponding to the width and an emitting end face having a width close to the width of the TEMoo mode oscillation region of the solid-state laser medium. A plurality of light transmission plates;
The plurality of the light transmission plates and the plurality of the semiconductor lasers are installed at substantially equal intervals radially around the solid-state laser medium and in contact with the emission end faces of the plurality of light transmission plates, and correspond to the light transmission plates. A semiconductor laser-excited solid-state laser device comprising: a solid disk medium having a thickness of a circular disk or a regular polygonal prism.
【請求項3】前記半導体レーザ励起固体レーザ装置を構
成するすべての前記固体レーザ媒質、前記光伝送板及び
前記半導体レーザを固定し冷却する単一の冷却プレート
を更に有することを特徴とする請求項1または2に記載
の半導体レーザ励起固体レーザ装置。
3. The semiconductor laser-excited solid-state laser device further comprises a single cooling plate for fixing and cooling all of the solid-state laser medium, the optical transmission plate, and the semiconductor laser. 3. The semiconductor laser-excited solid-state laser device according to 1 or 2.
【請求項4】前記光伝送板の前記側面は、前記励起光の
波長に対して高反射率となる誘電体多層膜又は金属膜を
蒸着等の手段でコーティングを有することを特徴とする
請求項1ないし3のいずれかに記載の半導体レーザ励起
固体レーザ装置。
4. The optical transmission plate according to claim 1, wherein the side surface of the optical transmission plate is coated with a dielectric multilayer film or a metal film having a high reflectance with respect to the wavelength of the excitation light by means such as vapor deposition. 4. The semiconductor laser-excited solid-state laser device according to any one of 1 to 3.
【請求項5】前記光伝送板は、前記入射端面からの入射
光を全反射する角度で出射端面に向かって間隔が狭まる
ことを特徴とする請求項1ないし3のいずれかに記載の
半導体レーザ励起固体レーザ装置。
5. The semiconductor laser according to claim 1, wherein said optical transmission plate has a narrower interval toward an output end face at an angle for totally reflecting incident light from said input end face. Excitation solid-state laser device.
【請求項6】前記光伝送板は、厚さが1mm以下であ
り、前記固体レーザ媒質は、直径が約3mmである請求
項1ないし5のいずれかに記載の半導体レーザ励起固体
レーザ装置。
6. The semiconductor laser pumped solid-state laser device according to claim 1, wherein said optical transmission plate has a thickness of 1 mm or less, and said solid-state laser medium has a diameter of about 3 mm.
JP8668998A 1998-03-31 1998-03-31 Semiconductor laser excited solid laser device Pending JPH11284257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8668998A JPH11284257A (en) 1998-03-31 1998-03-31 Semiconductor laser excited solid laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8668998A JPH11284257A (en) 1998-03-31 1998-03-31 Semiconductor laser excited solid laser device

Publications (1)

Publication Number Publication Date
JPH11284257A true JPH11284257A (en) 1999-10-15

Family

ID=13893958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8668998A Pending JPH11284257A (en) 1998-03-31 1998-03-31 Semiconductor laser excited solid laser device

Country Status (1)

Country Link
JP (1) JPH11284257A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033539A (en) * 2000-07-18 2002-01-31 Nec Corp Drilling apparatus for green sheet
WO2005011075A1 (en) * 2003-07-29 2005-02-03 Mitsubishi Denki Kabushiki Kaisha Solid laser exciting module and laser oscillator
WO2005069454A1 (en) * 2004-01-16 2005-07-28 Mitsubishi Denki Kabushiki Kaisha Solid-state laser pumped module and laser oscillator
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2006032768A (en) * 2004-07-20 2006-02-02 Ricoh Co Ltd Ld-excited solid-state laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033539A (en) * 2000-07-18 2002-01-31 Nec Corp Drilling apparatus for green sheet
WO2005011075A1 (en) * 2003-07-29 2005-02-03 Mitsubishi Denki Kabushiki Kaisha Solid laser exciting module and laser oscillator
WO2005069454A1 (en) * 2004-01-16 2005-07-28 Mitsubishi Denki Kabushiki Kaisha Solid-state laser pumped module and laser oscillator
WO2006001063A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Denki Kabushiki Kaisha Solid-state laser excitation module
JP2006032768A (en) * 2004-07-20 2006-02-02 Ricoh Co Ltd Ld-excited solid-state laser device
JP4496029B2 (en) * 2004-07-20 2010-07-07 株式会社リコー LD pumped solid state laser device

Similar Documents

Publication Publication Date Title
US7839908B2 (en) Mode control waveguide laser device
US6785304B2 (en) Waveguide device with mode control and pump light confinement and method of using same
US6111900A (en) Solid-state laser apparatus and method with second harmonic wave features
EP1646117B1 (en) Optical amplifier comprising an end pumped zig-zag slab gain medium
US5410559A (en) Diode pumped laser with strong thermal lens crystal
US5623510A (en) Tunable, diode side-pumped Er: YAG laser
GB2313951A (en) Single longitudinal mode frequency-converted laser
WO2004045034A1 (en) Diode-pumped solid-state thin slab laser
JPH08181368A (en) Solid state laser amplifier and solid state laser device
WO2016080252A1 (en) External resonator-type semiconductor laser
JP2000133863A (en) Solid-state laser
US6628692B2 (en) Solid-state laser device and solid-state laser amplifier provided therewith
KR101857751B1 (en) Slab solid laser amplifier
CA2855913C (en) Semiconductor laser excitation solid-state laser
JP2000012935A (en) Laser exciting device
JPH11284257A (en) Semiconductor laser excited solid laser device
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
US20060285571A1 (en) Diode-pumped, solid-state laser with chip-shaped laser medium and heat sink
EP1670104B1 (en) Solid-state laser pumped module and laser oscillator
JP2000077750A (en) Solid laser
JP3052546B2 (en) Semiconductor-pumped solid-state laser device
JP2005510067A (en) Diode-pumped solid slab laser
JPH07307507A (en) Solid laser
WO2007129074A1 (en) Side-pumped laser or amplifier device
KR100796100B1 (en) Mode control waveguide laser

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010508