JPH05259540A - Light excitation solid-state laser - Google Patents

Light excitation solid-state laser

Info

Publication number
JPH05259540A
JPH05259540A JP5131692A JP5131692A JPH05259540A JP H05259540 A JPH05259540 A JP H05259540A JP 5131692 A JP5131692 A JP 5131692A JP 5131692 A JP5131692 A JP 5131692A JP H05259540 A JPH05259540 A JP H05259540A
Authority
JP
Japan
Prior art keywords
solid
state
light
medium
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5131692A
Other languages
Japanese (ja)
Inventor
Kimiharu Yasui
公治 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5131692A priority Critical patent/JPH05259540A/en
Publication of JPH05259540A publication Critical patent/JPH05259540A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate a laser beam, which is stable, has a high output and is good in quality, at a high efficiency by a low-cost constitution. CONSTITUTION:A solid-state element 3 containing an active solid medium is arranged in a condenser 8, whose inner surface is constituted of a light diffusion reflective surface, an excitation light source 4 is installed outside of the condenser 8, excitation light 40 is introduced in the condenser 8 through an opening part 80 opened in the condenser 8, the element 3 is light-excited from the side surface of the condenser 8 and a laser beam 70 is taken out by a laser resonator constituted of mirrors 1 and 2. In such a way, a light excitation solid-state laser is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、安価な構成で、安定
に高品質なレーザビームを高効率で発生させることがで
きる光励起固体レーザ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optically pumped solid-state laser device which is inexpensive and can stably generate a high-quality laser beam with high efficiency.

【0002】[0002]

【従来の技術】図10は、例えば文献(Solid-State La
ser Engineering、Springer-Verlag、p.119-120)に示
された、従来の光励起固体レーザ装置を示す側面構成図
である。図において、1は反射ミラー、2は部分反射ミ
ラー、3は活性固体媒質を含む固体素子で、ヤグレーザ
を例にとれば活性固体媒質としてNdをドーピングしたN
d: YAG(Yttrium Aluminum Garnet)、4は光源で、例え
ばGaAlAsを主成分とする半導体レーザ、5は光源4を駆
動する電源、6は集光レンズ、7はミラー1、2により
構成されたレーザ共振器内に発生したレーザビーム、1
0は反射ミラー1がレーザビーム7に対して全反射、半
導体レーザの光に対して全透過となるようにする光学薄
膜、40は半導体レーザ4から発せられた光、70は部
分反射ミラー2により外部に取り出されたレーザビーム
である。100は基台である。
2. Description of the Related Art FIG. 10 shows, for example, a document (Solid-State La).
Ser Engineering, Springer-Verlag, p.119-120), which is a side view showing a conventional optically pumped solid state laser device. In the figure, 1 is a reflection mirror, 2 is a partial reflection mirror, and 3 is a solid-state element including an active solid medium. In the case of a YAG laser, N is doped with Nd as the active solid medium.
d: YAG (Yttrium Aluminum Garnet), 4 is a light source, for example, a semiconductor laser whose main component is GaAlAs, 5 is a power source for driving the light source 4, 6 is a condenser lens, and 7 is a laser including mirrors 1 and 2. Laser beam generated in the resonator, 1
Reference numeral 0 is an optical thin film that makes the reflection mirror 1 totally reflect the laser beam 7 and totally transmit the light of the semiconductor laser, 40 is the light emitted from the semiconductor laser 4, and 70 is the partial reflection mirror 2. It is a laser beam extracted to the outside. 100 is a base.

【0003】従来の光励起固体レーザ装置は上記のよう
に構成されており、電源5により点灯された半導体レー
ザ4の光を、集光レンズ6により固体媒質3の端面より
導入し、これを励起してレーザ媒質とする。レーザ媒質
より発生された自然放出光は、ミラー1とミラー2によ
り構成される共振器間を往復する間に増幅され、レーザ
ビーム7となり、一定以上の大きさに達すると、指向性
の良いレーザビーム70として外部に放出される。
The conventional photoexcitation solid-state laser device is constructed as described above, and the light of the semiconductor laser 4 turned on by the power supply 5 is introduced from the end face of the solid medium 3 by the condenser lens 6 to excite it. As a laser medium. The spontaneous emission light generated from the laser medium is amplified while traveling back and forth between the resonators formed by the mirror 1 and the mirror 2, and becomes a laser beam 7. When reaching a certain size or more, a laser with good directivity is obtained. It is emitted to the outside as a beam 70.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来のレ
ーザ装置では、半導体レーザの光を端面より固体素子に
導く構成としたために、端面中心部が強く励起され、高
出力を発生させようとして出力の大きい半導体レーザに
より励起すると、固体素子断面内に光の強度分布が発生
しビーム形状が崩れた。さらに、固体素子の吸収率は半
導体レーザの波長に依存するために、安定な動作をさせ
るには半導体レーザの波長を固体素子の吸収波長に合わ
せる必要があった。図11はNd:YAGレーザを例に取り、
半導体レーザの波長と励起効率の関係を示すが、励起発
振効率を一定に保った安定な動作には、中心波長が 810
nmの半導体レーザを選択して、さらにその温度コントロ
ールを行う必要がある。これにより装置の構成が複雑に
なるのに加え、半導体レーザの製造における歩留まりを
悪くし、その価格を押し上げ、高価な装置になるという
問題があった。
In the conventional laser device as described above, since the light of the semiconductor laser is guided from the end surface to the solid-state element, the central portion of the end surface is strongly excited to generate a high output. When excited by a semiconductor laser with a large output, a light intensity distribution was generated in the cross section of the solid state element, and the beam shape was destroyed. Further, since the absorption rate of the solid-state element depends on the wavelength of the semiconductor laser, it is necessary to match the wavelength of the semiconductor laser with the absorption wavelength of the solid-state element for stable operation. Figure 11 is an example of Nd: YAG laser,
The relationship between the wavelength of the semiconductor laser and the pumping efficiency is shown. For stable operation with the pumping oscillation efficiency kept constant, the central wavelength is 810
It is necessary to select a semiconductor laser of nm and further control its temperature. This not only complicates the structure of the device, but also deteriorates the yield in the manufacture of semiconductor lasers, raises the price, and makes the device expensive.

【0005】この発明は、かかる問題点を解決するため
になされたものであり、固体素子中に光を均一に導き、
均一なレーザ媒質を得るとともに、光源の波長が変化し
ても出力の変動が少なく、安定に高出力かつ品質の良い
レーザビームを高効率で発生することができる光励起固
体レーザ装置を得ることを目的としている。
The present invention has been made to solve the above problems, and uniformly guides light into a solid state element,
An object is to obtain a photo-excited solid-state laser device that can obtain a uniform laser medium and can stably generate a high-output and high-quality laser beam with high efficiency, with little fluctuation in output even if the wavelength of the light source changes. I am trying.

【0006】[0006]

【課題を解決するための手段】この発明に係る光励起固
体レーザ装置は、活性固体媒質を含む固体素子を、内面
が光拡散反射面から構成される集光器内に配置し、励起
光源を集光器外に設置し、集光器にあけた開口部から励
起光を集光器内に導入して、固体素子を側面より光励起
するようにしたものである。
In the photoexcited solid-state laser device according to the present invention, a solid-state element containing an active solid medium is arranged in a condenser whose inner surface is a light diffusive reflection surface to collect an excitation light source. It is arranged outside the optical device, and excitation light is introduced into the light collector through an opening formed in the light collector so that the solid-state element is optically excited from the side surface.

【0007】また、活性固体媒質を含む固体素子を覆
う、第二の固体素子を備えたものである。
Further, a second solid-state element covering the solid-state element containing the active solid medium is provided.

【0008】また、活性固体媒質を含む固体素子の断面
が円形、第二の固体素子は環状であり、その第二の固体
素子の外直径を活性固体媒質を含む固体素子の外直径よ
り q=(第二の固体素子の材質の屈折率/集光器内に詰め
られた媒体の屈折率) の割合以上に大きくなるように構成したものである。
Further, the cross section of the solid element containing the active solid medium is circular, the second solid element is annular, and the outer diameter of the second solid element is q = the outer diameter of the solid element containing the active solid medium. The refractive index of the material of the second solid element / the refractive index of the medium packed in the condenser is larger than the ratio.

【0009】また、活性固体媒質を含む固体素子と第二
の固体素子の間に、第二の固体素子の厚みよりも十分小
さい薄膜状の媒体を挿入して構成したものである。
Further, a thin film medium which is sufficiently smaller than the thickness of the second solid element is inserted between the solid element containing the active solid medium and the second solid element.

【0010】[0010]

【作用】上記のように構成された光励起固体レーザ装置
においては、半導体レーザの光は集光器の開口部から集
光器内に導かれ、集光器内で広がる過程で固体素子を側
面より励起する。固体素子に吸収されなかった光は集光
器内面で拡散反射し、再び固体素子を側面より均一に励
起する。また、上記のように構成された光励起固体レー
ザ装置においては、半導体レーザの波長が変化し、固体
素子の吸収率が低下しても、励起効率の変化は緩やかで
あるため、より広い範囲の波長をもつ光源を使用でき
る。
In the photo-excited solid-state laser device configured as described above, the light of the semiconductor laser is guided from the opening of the condenser into the condenser, and the solid-state element is moved from the side surface in the process of spreading in the condenser. To excite. The light not absorbed by the solid-state element is diffused and reflected on the inner surface of the light collector, and again excites the solid-state element uniformly from the side surface. Further, in the photoexcited solid-state laser device configured as described above, even if the wavelength of the semiconductor laser changes and the absorptance of the solid-state element decreases, the change in excitation efficiency is gradual, so that a wider range of wavelengths is used. A light source with can be used.

【0011】また、上記固体素子を覆う環状の第二の固
体素子は、半導体レーザの光をその表面で屈折させて集
光して、上記固体素子に効率良く導く。
Further, the annular second solid-state element which covers the solid-state element refracts the light of the semiconductor laser on its surface to collect the light and efficiently guide it to the solid-state element.

【0012】また、その外直径が活性固体媒質を含む固
体素子の外直径より q=(第二の固体素子の材質の屈折率/集光器内に詰め
られた媒体の屈折率) の割合以上に大きくなるように構成された第二の固体素
子は、その周囲に入射した光を断面内で扇型にひろげ、
その扇のなかに活性固体媒質を含む固体素子を含ませる
ことによりこれを均一に励起する。
The outer diameter of the solid element containing the active solid medium is greater than or equal to q = (refractive index of the material of the second solid element / refractive index of the medium packed in the condenser). The second solid-state element, which is configured to be large, spreads the light incident on its periphery into a fan shape in the cross section,
This is uniformly excited by including a solid-state element containing an active solid medium in the fan.

【0013】また、活性固体媒質を含む固体素子と第二
の固体素子の間に挿入された薄膜状の媒体は、上記固体
素子の周囲からの熱の放散を周上で均一に第二の固体素
子に導き、従って上記固体素子の熱分布をその周囲方向
で均一化する。
Further, the thin film medium inserted between the solid element containing the active solid medium and the second solid element is designed so that the heat radiation from the surroundings of the solid element is evenly distributed around the second solid element. It leads to the element and thus homogenizes the heat distribution of the solid element in its circumferential direction.

【0014】[0014]

【実施例】実施例1.図1はこの発明の一実施例を示す
構成図であり、(a)(b)は各々側面構成図、断面構
成図である。また、1、2、3、4、5、7、40、7
0、100は上記従来装置と全く同一のものである。8
は内面が拡散反射面よりなる集光器、80は集光器8の
開口部である。
EXAMPLES Example 1. FIG. 1 is a configuration diagram showing an embodiment of the present invention, and (a) and (b) are a side configuration diagram and a sectional configuration diagram, respectively. Also 1, 2, 3, 4, 5, 7, 40, 7
0 and 100 are exactly the same as those of the conventional device. 8
Is a condenser whose inner surface is a diffuse reflection surface, and 80 is an opening of the condenser 8.

【0015】上記のように構成されたレーザ装置におい
ては、活性固体媒質を含む固体媒質3は、内面が拡散反
射面よりなる集光器8内に配置され、開口部80から導
入された、電源5により点灯された半導体レーザ4から
発せられた光40により励起されレーザ媒質となる。レ
ーザ媒質より発生された自然放出光は、ミラー1とミラ
ー2により構成される共振器間を往復する間に増幅さ
れ、レーザビーム7となり、一定以上の大きさに達する
と指向性の良いレーザビーム70として外部に放出され
る。
In the laser device configured as described above, the solid medium 3 including the active solid medium is arranged in the condenser 8 whose inner surface is a diffuse reflection surface, and is introduced from the opening 80 to the power source. A laser medium is excited by the light 40 emitted from the semiconductor laser 4 which is turned on by the laser diode 5. The spontaneous emission light generated from the laser medium is amplified while traveling back and forth between the resonators formed by the mirror 1 and the mirror 2, and becomes a laser beam 7. When reaching a certain size or more, the laser beam having a good directivity is obtained. It is released to the outside as 70.

【0016】上記構成において、固体素子3により吸収
されなかった半導体レーザの光は、固体素子を通過後、
集光器内面で拡散反射し、再び固体素子を均一に励起す
る。この場合の励起効率は、固体素子に最終的に吸収さ
れるまでの、拡散反射内面での光の反射回数の確率を考
慮して計算できる。図2は固体素子の励起効率を、集光
器内面の反射率、固体素子を励起光が一回のみ通過する
とした場合の励起効率(吸収率)の関数として計算した
結果を示す。励起光である、例えば半導体レーザの波長
が変化し、固体素子の吸収率が20ー100%と変化し
ても、励起効率の変化は緩やかであることがわかる。こ
のことは、従来例に比較してより広い範囲の波長をもつ
光源を使用できること示す。
In the above structure, the light of the semiconductor laser which is not absorbed by the solid-state element 3 passes through the solid-state element,
Diffuse reflection is performed on the inner surface of the light collector, and the solid-state element is uniformly excited again. The excitation efficiency in this case can be calculated in consideration of the probability of the number of times the light is reflected on the inner surface of the diffuse reflection until it is finally absorbed by the solid-state element. FIG. 2 shows the result of calculating the excitation efficiency of the solid state element as a function of the reflectance of the inner surface of the light collector and the excitation efficiency (absorption rate) when the excitation light passes through the solid state element only once. It can be seen that even if the wavelength of the excitation light, for example, the semiconductor laser changes, and the absorptance of the solid-state element changes from 20 to 100%, the change in the excitation efficiency is gradual. This indicates that a light source having a wider wavelength range can be used as compared with the conventional example.

【0017】さらに、上記構成においては励起光を発す
る光源4を集光器8外に設置しているため、光源の筺体
は拡散反射面からの光にさらされず、従って、集光器内
に導かれた上記励起光は拡散反射面で複数回の反射の
後、ロスすることなく固体素子3に導かれる。
Further, in the above-mentioned structure, since the light source 4 which emits the excitation light is installed outside the condenser 8, the housing of the light source is not exposed to the light from the diffuse reflection surface, so that it is guided into the condenser. The excited light thus emitted is guided to the solid-state element 3 without loss after being reflected by the diffuse reflection surface a plurality of times.

【0018】実施例2.図3に示す例においては、活性
固体媒質を含む固体素子(第一の固体素子)3を第二の
固体素子30によりおおっている。これは第一には、第
一の固体素子3の屈折率がその周囲媒体、例えば空気よ
りも屈折率が高いために、励起光が固体素子3表面で屈
折し、固体素子中央部が選択的に強く励起され、このた
めに発生するレーザビームの形状が崩れるのを防ぐため
である。第二には固体素子30周辺に入射する光を、第
二の固体素子30表面での屈折により集光して第一の固
体素子3に効率良く導くためのものである。図4に示す
ように、第二の固体素子30の表面で扇状に広げられた
励起光の中心部に活性固体媒質を含む第一の固体素子3
を配置して、その中の強度分布を均一に保つことができ
る。この場合、第一の固体素子3の外径は、第二の固体
素子30に比べて q0=(第二の固体素子の材質の屈折率/集光器内に詰
められた媒体の屈折率) 倍小さくとるとほとんど暗部のない発光分布を第一の固
体素子中に発生させることができる。
Example 2. In the example shown in FIG. 3, the solid-state element (first solid-state element) 3 containing the active solid medium is covered with the second solid-state element 30. Firstly, since the refractive index of the first solid-state element 3 is higher than that of the surrounding medium, for example, air, the excitation light is refracted on the surface of the solid-state element 3, and the central portion of the solid-state element is selectively. This is to prevent the shape of the laser beam generated due to the strong excitation of the laser beam from collapsing. Secondly, the light incident on the periphery of the solid-state element 30 is condensed by refraction on the surface of the second solid-state element 30 and efficiently guided to the first solid-state element 3. As shown in FIG. 4, the first solid-state element 3 including an active solid medium in the central portion of the excitation light fanned out on the surface of the second solid-state element 30.
Can be arranged to keep the intensity distribution therein uniform. In this case, the outer diameter of the first solid-state element 3 is larger than that of the second solid-state element 30 by q 0 = (refractive index of material of second solid-state element / refractive index of medium packed in concentrator) ) When it is made twice smaller, a light emission distribution with almost no dark part can be generated in the first solid-state device.

【0019】実施例3.図5に示す例においては、第一
の固体素子3と第二の固体素子30の間に、第二の固体
素子の厚みよりも十分小さい薄膜状の媒体9を挿入して
いる。薄膜のない状態では、固体素子間のすきまの分布
が発生することがあるが、一定の厚みの薄膜によりすき
まを一定になるようにしている。さらに、薄膜をゲルま
たは水などの液体状にすれば均一性が増すのは言うまで
もない。
Example 3. In the example shown in FIG. 5, a thin film medium 9 that is sufficiently smaller than the thickness of the second solid element is inserted between the first solid element 3 and the second solid element 30. In the state without the thin film, the distribution of the clearance between the solid elements may occur, but the clearance is made constant by the thin film having a constant thickness. Further, it goes without saying that if the thin film is made into a liquid such as gel or water, the uniformity is increased.

【0020】実施例4.また、図1では開口部80は一
つで穴状のものの例を示したが、図6に示すように複数
でもよく、さらに個体素子3の長手方向に、スリット状
の開口部を設け、アレイ状の光源により励起してもよ
い。このようにすればより高出力の光励起が行え、結果
として高出力のレーザビームが得られる。
Example 4. Further, although FIG. 1 shows an example in which one opening 80 has a hole shape, a plurality of openings may be provided as shown in FIG. 6, and a slit-shaped opening is provided in the longitudinal direction of the solid-state element 3 to form an array. It may be excited by a light source having a circular shape. In this way, higher power photoexcitation can be performed, and as a result, a higher power laser beam can be obtained.

【0021】実施例5.また、図7に示すように、光源
の光40をセルフォックレンズ45などの集光光学系に
より集光器内に導くようにすると、開口部80壁面での
光の損失が減少して励起効率が向上する。
Embodiment 5. Further, as shown in FIG. 7, when the light 40 of the light source is guided to the inside of the condenser by the condensing optical system such as the SELFOC lens 45, the loss of light on the wall surface of the opening 80 is reduced and the excitation efficiency is reduced. Is improved.

【0022】実施例6.また、励起光40は図8、9に
示すように、集光器内面で拡散反射後、固体素子3を励
起するようにしても良く、こうすれば固体素子はより均
一に周囲から励起されることになり、発生するレーザビ
ームの均一性が向上する。
Embodiment 6. Alternatively, as shown in FIGS. 8 and 9, the excitation light 40 may be diffused and reflected on the inner surface of the light collector and then excite the solid-state element 3, so that the solid-state element is more uniformly excited from the surroundings. As a result, the uniformity of the generated laser beam is improved.

【0023】なお上記いずれの実施例においても、固体
素子は断面が円形のものについて説明したが円形に限る
ものでなく、矩形、楕円でもよい。
In each of the above-mentioned embodiments, the solid-state element has a circular cross section, but it is not limited to a circular shape and may be a rectangular shape or an elliptical shape.

【0024】また、上記いずれの実施例においても特に
説明しなかったが、光学素子のうち特に指示のない部分
にも、レーザビームが通過する部分には、通常の光学素
子のように無反射薄膜を施せば共振器内のロスが減少
し、効率の良いレーザ発振を実現することができる。
Although not particularly described in any of the above-mentioned embodiments, a non-reflective thin film is provided in a portion of the optical element where there is no particular instruction, in a portion through which the laser beam passes, like an ordinary optical element. By applying the above, the loss in the resonator can be reduced, and efficient laser oscillation can be realized.

【0025】[0025]

【発明の効果】以上のように、この発明によれば活性固
体媒質を含む固体素子を、固体素子を囲むように配置し
た内面が光拡散反射面から構成される集光器内に配置
し、励起光源を集光器外に設置し、集光器にあけた開口
部から励起光を導入して上記固体素子を励起するように
したので、固体素子に吸収されない光は再び集光器内面
で拡散反射して固体素子を均一照射することができ、結
果、照射が保障されると共に、励起光の波長の変動が固
体素子の励起効率に与える影響を小さくでき、励起光の
光の波長の変動に影響を受けにくい安定なレーザ装置が
実現できる。このために、励起光として例えば半導体レ
ーザを用いた場合を特に例に取ると、発振波長を制御す
るための温度コントロールが不要となり、装置が簡単と
なり、さらに許される発振波長の範囲が広がることによ
り製作における歩留まりが上昇し、結果として安価なレ
ーザ装置が実現できる。また、集光器内面を拡散反射面
より構成したので、光源からの光を固体素子の周囲に均
等に分配して導くことができ、より断面内で均一に発光
するレーザ媒質が得られ、これからレーザ共振器を用い
て、極めて高品質なレーザビームが安定に得られる。ま
た、励起光を発する光源を集光器外に設置しているた
め、光源の筺体は拡散反射面からの光にさらされず、従
って、集光器内に導かれた上記励起光は拡散反射面で複
数回の反射の後、ロスすることなく固体素子に導かれ、
効率のよいレーザ装置が得られる。
As described above, according to the present invention, the solid-state element including the active solid medium is arranged in the light collector in which the inner surface arranged so as to surround the solid-state element is composed of the light diffuse reflection surface, The excitation light source was installed outside the condenser, and the excitation light was introduced from the opening opened in the condenser to excite the above-mentioned solid-state element, so that the light not absorbed by the solid-state element is again inside the condenser. It is possible to irradiate the solid-state device uniformly by diffuse reflection, and as a result, it is possible to secure the irradiation and reduce the influence of the fluctuation of the excitation light wavelength on the excitation efficiency of the solid-state device. It is possible to realize a stable laser device that is hardly affected by. For this reason, when a semiconductor laser is used as the excitation light, for example, a temperature control for controlling the oscillation wavelength is not required, the device is simplified, and the range of the permitted oscillation wavelength is expanded. The production yield is increased, and as a result, an inexpensive laser device can be realized. Further, since the inner surface of the condenser is composed of the diffuse reflection surface, the light from the light source can be evenly distributed and guided around the solid-state element, and a laser medium that emits more uniformly in the cross section can be obtained. An extremely high quality laser beam can be stably obtained by using the laser resonator. Further, since the light source that emits the excitation light is installed outside the condenser, the housing of the light source is not exposed to the light from the diffuse reflection surface, and therefore the excitation light guided into the condenser is diffuse reflection surface. After being reflected multiple times, it is guided to the solid state element without loss,
An efficient laser device can be obtained.

【0026】また、上記構成のものに対してさらに、活
性固体媒質を含む固体素子を覆う第二の固体素子を設け
れば、断面内でほぼ均一に発光するレーザ媒質が得ら
れ、これからレーザ共振器を用いて高品質なレーザビー
ムが安定に得られる。
Further, if a second solid-state element covering the solid-state element containing the active solid-state medium is further provided in addition to the above-mentioned structure, a laser medium that emits light almost uniformly in the cross section can be obtained. A high-quality laser beam can be stably obtained by using the device.

【0027】また、第二の固体素子の外直径が活性固体
媒質を含む固体素子の外直径より q=(第二の固体素子の材質の屈折率/集光器内に詰め
られた媒体の屈折率) の割合以上に大きくなるように構成すれば、その周囲に
入射した光を断面内で扇型にひろげ、その扇のなかに活
性固体媒質を含む固体素子を含ませることができ、固体
素子を確実に均一励起し、断面内でほぼ均一に発光する
レーザ媒質を得、これからレーザ共振器を用いて高品質
なレーザビームが安定に得られる。
Further, the outer diameter of the second solid-state element is calculated from the outer diameter of the solid-state element containing the active solid medium by q = (refractive index of material of second solid-state element / refraction of medium packed in concentrator). If it is configured to be larger than the ratio, the light incident on the periphery can be fan-shaped in the cross section, and a solid-state element containing an active solid medium can be included in the fan. Is reliably excited to obtain a laser medium that emits light almost uniformly in the cross section. From this, a high-quality laser beam can be stably obtained using a laser resonator.

【0028】また、上記活性固体媒質を含む固体素子と
第二の固体素子の間に薄膜状の媒体を挿入すれば、固体
素子の熱分布を周方向に均一化し、安定に断面内でほぼ
均一に発光するレーザ媒質が得られ、これからレーザ共
振器を用いて高品質なレーザビームが安定に得られる。
If a thin film medium is inserted between the solid element containing the active solid medium and the second solid element, the heat distribution of the solid element is made uniform in the circumferential direction, and it is stable and substantially uniform in the cross section. A laser medium that emits light is obtained, and a high-quality laser beam can be stably obtained from this by using a laser resonator.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す側面構成図及び断面
構成図である。
FIG. 1 is a side view and a sectional view showing a first embodiment of the present invention.

【図2】この発明の実施例1による光励起固体レーザ装
置の動作を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating an operation of the photoexcitation solid-state laser device according to the first embodiment of the present invention.

【図3】この発明の実施例2を示す側面構成図及び断面
構成図である。
3A and 3B are a side view and a sectional view showing a second embodiment of the present invention.

【図4】この発明の実施例2による光励起固体レーザ装
置の動作を説明する説明図である。
FIG. 4 is an explanatory view explaining the operation of the optically pumped solid state laser device according to the second embodiment of the present invention.

【図5】この発明の実施例3を示す側面構成図及び断面
構成図である。
5A and 5B are a side view and a cross-sectional view showing a third embodiment of the present invention.

【図6】この発明の実施例4を示す側面構成図及び断面
構成図である。
6A and 6B are a side view and a cross-sectional view showing a fourth embodiment of the present invention.

【図7】この発明の実施例5を示す側面構成図及び断面
構成図である。
7A and 7B are a side view and a sectional view showing a fifth embodiment of the present invention.

【図8】この発明の実施例6を示す側面構成図及び断面
構成図である。
FIG. 8 is a side view and a sectional view showing a sixth embodiment of the present invention.

【図9】この発明の実施例6を示す側面構成図及び断面
構成図である。
9A and 9B are a side view and a sectional view showing a sixth embodiment of the present invention.

【図10】従来の光励起固体レーザ装置を示す側面構成
図である。
FIG. 10 is a side view showing a configuration of a conventional optically pumped solid state laser device.

【図11】従来の光励起固体レーザ装置の動作を説明す
る説明図である。
FIG. 11 is an explanatory diagram for explaining the operation of the conventional optically pumped solid-state laser device.

【符号の説明】[Explanation of symbols]

1 反射ミラー 2 部分反射ミラー 3 固体素子 4 光源 7 レーザビーム 8 集光器 9 媒体 30 第二の固体素子 40 励起光 70 レーザビーム 80 開口部 1 Reflection Mirror 2 Partial Reflection Mirror 3 Solid State Element 4 Light Source 7 Laser Beam 8 Condenser 9 Medium 30 Second Solid State Element 40 Excitation Light 70 Laser Beam 80 Opening

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性固体媒質を含む固体素子、この固体
素子を囲むように配置され、内面が光拡散反射面から構
成される集光器、この集光器にあけられた開口部、上記
集光器外に配置され、上記開口部から導入されて上記固
体素子を励起する光を発する光源、及び上記個体素子か
ら光を取り出す光共振器を備えた光励起固体レーザ装
置。
1. A solid-state element containing an active solid medium, a condenser arranged so as to surround the solid-state element and having an inner surface made of a light diffusive / reflecting surface, an opening formed in the condenser, and the above-mentioned collector. An optically pumped solid-state laser device comprising a light source that is disposed outside the optical device, emits light that is introduced from the opening to excite the solid-state element, and an optical resonator that extracts light from the solid-state element.
【請求項2】 固体素子の周囲を第二の固体素子により
被覆したことを特徴とする請求項1記載の光励起固体レ
ーザ装置。
2. The optically pumped solid-state laser device according to claim 1, wherein the periphery of the solid-state element is covered with a second solid-state element.
【請求項3】 活性固体媒質を含む固体素子の断面が円
形で、第二の固体素子は筒状であり、第二の固体素子の
外直径は活性固体媒質を含む上記固体素子の外直径より q=(第二の固体素子の材質の屈折率/集光器内に詰め
られた媒体の屈折率) の割合以上に大きいことを特徴とする請求項2記載の光
励起固体レーザ装置。
3. The cross section of the solid element containing the active solid medium is circular, the second solid element is cylindrical, and the outer diameter of the second solid element is larger than the outer diameter of the solid element containing the active solid medium. 3. The photoexcited solid-state laser device according to claim 2, wherein q = (refractive index of material of second solid-state element / refractive index of medium packed in light collector).
【請求項4】 活性固体媒質を含む固体素子と第二の固
体素子の間に第二の固体素子の厚みよりも十分小さい薄
膜状の媒体を挿入したことを特徴とする請求項1ないし
3のいずれかに記載の光励起固体レーザ装置。
4. A thin film medium sufficiently smaller than the thickness of the second solid element is inserted between the solid element containing the active solid medium and the second solid element. The optically pumped solid-state laser device according to any one of claims.
JP5131692A 1992-03-10 1992-03-10 Light excitation solid-state laser Pending JPH05259540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5131692A JPH05259540A (en) 1992-03-10 1992-03-10 Light excitation solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5131692A JPH05259540A (en) 1992-03-10 1992-03-10 Light excitation solid-state laser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000006597A Division JP2000150994A (en) 2000-01-01 2000-01-14 Optically pumped solid-state laser device

Publications (1)

Publication Number Publication Date
JPH05259540A true JPH05259540A (en) 1993-10-08

Family

ID=12883516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5131692A Pending JPH05259540A (en) 1992-03-10 1992-03-10 Light excitation solid-state laser

Country Status (1)

Country Link
JP (1) JPH05259540A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661738A (en) * 1994-12-22 1997-08-26 Mitsubishi Denki Kabushiki Kaisha Solid-state laser amplifying apparatus and solid-state laser apparatus capable of oscillating high-power laser beam under stable condition
WO2002017443A3 (en) * 2000-08-25 2002-05-30 Lambda Physik Ag Diode-pumped solid state laser
US6614584B1 (en) 2000-02-25 2003-09-02 Lambda Physik Ag Laser frequency converter with automatic phase matching adjustment
WO2007074400A2 (en) 2005-12-28 2007-07-05 Kilolambda Technologies Ltd. Diode-pumped cavity
US7522651B2 (en) * 2004-03-10 2009-04-21 Pavilion Integration Corporation Solid-state lasers employing incoherent monochromatic pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661738A (en) * 1994-12-22 1997-08-26 Mitsubishi Denki Kabushiki Kaisha Solid-state laser amplifying apparatus and solid-state laser apparatus capable of oscillating high-power laser beam under stable condition
US6614584B1 (en) 2000-02-25 2003-09-02 Lambda Physik Ag Laser frequency converter with automatic phase matching adjustment
WO2002017443A3 (en) * 2000-08-25 2002-05-30 Lambda Physik Ag Diode-pumped solid state laser
US6608852B2 (en) 2000-08-25 2003-08-19 Lameda Physik Ag Gain module for diode-pumped solid state laser and amplifier
US7522651B2 (en) * 2004-03-10 2009-04-21 Pavilion Integration Corporation Solid-state lasers employing incoherent monochromatic pump
WO2007074400A2 (en) 2005-12-28 2007-07-05 Kilolambda Technologies Ltd. Diode-pumped cavity
US8270443B2 (en) 2005-12-28 2012-09-18 Israel Aerospace Industries Ltd. Diode-pumped cavity

Similar Documents

Publication Publication Date Title
RU2190910C2 (en) Vertical-cavity laser with radiation output through surface; set of lasers and method for raising laser efficiency
US5307365A (en) Cavity pumped, solid state lasers
US3725810A (en) Optical stimulated emission devices employing split optical guides
US5048044A (en) Optically pumped lasers
US4357704A (en) Disc or slab laser apparatus employing compound parabolic concentrator
US3230474A (en) Solid state laser and pumping means therefor using a light condensing system
US3890578A (en) Dye laser excited by a diode laser
US5339328A (en) Solid-state laser
US6721346B2 (en) Solid state laser apparatus
US6351477B1 (en) Optically pumped intensifying agent, in particular a solid intensifying agent
JPH05259540A (en) Light excitation solid-state laser
JP3053273B2 (en) Semiconductor pumped solid-state laser
USH1673H (en) Cooling device for solid state laser
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
JP3333849B2 (en) Solid state laser device
JPH10261825A (en) Semiconductor laser light shaping optical system and semiconductor laser-excited solid-state laser device
JP2765351B2 (en) Laser-pumped solid-state laser
JP3214056B2 (en) Optically pumped solid-state laser device
US6188713B1 (en) Solid-state laser apparatus
JP2000150994A (en) Optically pumped solid-state laser device
KR100385094B1 (en) A DIODE-PUMPED Yb:YAG DISK LASER UTILIZING A COMPOUND PARABOLIC CONCENTRATOR
JP3043645U (en) Butt-coupling pumped single-mode solid-state laser with fiber-coupled diode
JPH11284256A (en) Solid laser device
JPH033379A (en) Solid-state laser device
JPH07307507A (en) Solid laser