JPH029242B2 - - Google Patents

Info

Publication number
JPH029242B2
JPH029242B2 JP7289881A JP7289881A JPH029242B2 JP H029242 B2 JPH029242 B2 JP H029242B2 JP 7289881 A JP7289881 A JP 7289881A JP 7289881 A JP7289881 A JP 7289881A JP H029242 B2 JPH029242 B2 JP H029242B2
Authority
JP
Japan
Prior art keywords
panel
boiler
economizer
header
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7289881A
Other languages
Japanese (ja)
Other versions
JPS57188904A (en
Inventor
Masakatsu Maeda
Tsuneo Watabe
Fumio Koda
Iwao Kusaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP7289881A priority Critical patent/JPS57188904A/en
Publication of JPS57188904A publication Critical patent/JPS57188904A/en
Publication of JPH029242B2 publication Critical patent/JPH029242B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 この発明はボイラ起動時にいわゆるウオーター
ハンマを生ずることがなく、しかも給水の制御が
容易な廃熱回収ボイラに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste heat recovery boiler that does not cause so-called water hammer when starting up the boiler and can easily control water supply.

最近の電力需要の変化に伴いピーク負荷用とし
てガスタービンを採用する傾向が高まつている
が、このガスタービンに対して運動エネルギーを
与えた高温ガスの熱を廃熱ボイラにおいて回収
し、さらに廃熱ボイラによつて発生した蒸気によ
り蒸気タービンを駆動して発電を行う複合発電が
実施され省エネルギー化を図つている。
With recent changes in electricity demand, there is a growing trend to adopt gas turbines for peak loads.The heat of the high-temperature gas that provides kinetic energy to the gas turbine is recovered in a waste heat boiler, and further Combined power generation, in which steam generated by a heat boiler drives a steam turbine to generate electricity, is being implemented to save energy.

第1図は廃熱回収ボイラ(以下単に「ボイラ」
と称する)の概略を示す。図において1はガスタ
ービンであつて、空気Aと燃料Fにより生じた高
温の燃焼ガスはガスタービン1を作動させて発電
を行つた後廃ガスとしてボイラ2に供給され、過
熱器3、蒸発器4および節炭器5の順に伝熱した
後系外に排出される。一方発生した蒸気はボイラ
ドラム6から過熱器3に流入し所定の温度まで過
熱された後蒸気タービン7に供給され第二の発電
を行い、使用された蒸気は復水器8で水に戻され
た後給水Wとして再度ボイラに供給される。
Figure 1 shows a waste heat recovery boiler (hereinafter simply referred to as "boiler").
The following is an outline of the In the figure, reference numeral 1 denotes a gas turbine, in which high-temperature combustion gas generated by air A and fuel F operates the gas turbine 1 to generate electricity, and then is supplied as waste gas to a boiler 2, to a superheater 3 and an evaporator. 4 and the economizer 5, and then discharged to the outside of the system. On the other hand, the generated steam flows into the superheater 3 from the boiler drum 6, is superheated to a predetermined temperature, and is then supplied to the steam turbine 7 to generate the second power generation, and the used steam is returned to water in the condenser 8. After that, it is supplied to the boiler again as feed water W.

以上の構成のボイラは発生した熱を有効に利用
し省エネルギー化が図れる反面次の如き問題があ
る。
Although the boiler with the above configuration can effectively utilize the generated heat and save energy, it has the following problems.

すなわちガスタービンは負荷追従性が非常に良
好であるためピーク負荷用として使用されるわけ
であるが、この結果ガスタービンの起動、停止回
数が多く、かつ急激な負荷変動もしばしば行われ
る。廃熱回収ボイラもこの負荷変化に対応して起
動停止を行うわけであるが、ボイラ停止時もしく
は急激な負荷減少の際に節炭器内の給水が一部蒸
発してボイラ起動時にいわゆるウオーターハンマ
を生ずる。第2図により節炭器内で蒸気が発生す
る状態を説明する。
That is, gas turbines are used for peak loads because they have very good load followability, but as a result, gas turbines are started and stopped many times and often undergo rapid load fluctuations. The waste heat recovery boiler also starts and stops in response to this load change, but when the boiler stops or when the load suddenly decreases, part of the water supplied in the economizer evaporates, causing what is called water hammer when the boiler starts. will occur. The state in which steam is generated within the economizer will be explained with reference to FIG.

通常節炭器出口の給水温度は飽和温度以下(曲
線Aは飽和温度曲線を示す)、例えば圧力、温度
条件を曲線Bに沿い運用される。今ボイラを圧力
P2で運転していたものを圧力P1まで降下させる
とする。この場合圧力の降下が緩やかな場合には
加熱された水の温度も圧力の降下に対応してT2
からT1に徐々にB線に沿い降下するため給水は
飽和温度以上となることはない。これに対して圧
力の降下が急激な場合には給水の温度降下は圧力
の降下に対応できず温度T2に近い状態で圧力P1
に降下することになる。このため圧力P1におい
て給水温度がT2からT′1の間は給水は飽和温度以
上となり給水の一部は蒸発し節炭器内を流れ、運
転停止のときは滞留する。この状態の変化はボイ
ラ圧が減少する上述の場合よりもボイラの運転を
急激に停止した場合にさらに激しく生ずる。
Normally, the water supply temperature at the outlet of the economizer is below the saturation temperature (curve A indicates the saturation temperature curve), and for example, the pressure and temperature conditions are operated along curve B. Now pressure the boiler
Suppose that a device that was operating at P 2 is reduced to pressure P 1 . In this case, if the pressure drop is gradual, the temperature of the heated water will also decrease T 2 in response to the pressure drop.
Since the water gradually descends along line B from T1 to T1 , the water supply never reaches a saturation temperature or higher. On the other hand, if the pressure drop is rapid, the temperature drop of the feed water cannot correspond to the pressure drop, and the pressure drops to P 1 when the temperature is close to T 2 .
It will descend to. For this reason, when the feed water temperature is between T 2 and T' 1 at pressure P 1 , the feed water is at or above the saturation temperature, and part of the feed water evaporates and flows through the energy saver, and when the operation is stopped, it stagnates. This change in state occurs more drastically when the boiler operation is abruptly stopped than in the above-mentioned case where the boiler pressure decreases.

また以上に説明した理由の外に、ボイラ停止直
後は廃ガスダクト内部に相当量の熱が残留してお
り、この残留した熱を節炭器内に滞留した給水が
吸収することにより昇温し蒸気の発生を促進す
る。
In addition to the reasons explained above, a considerable amount of heat remains inside the waste gas duct immediately after the boiler is stopped, and the feed water accumulated in the economizer absorbs this residual heat, causing the temperature to rise and steam to form. promote the occurrence of

これらの理由により生じた蒸気が残留した状態
でボイラを再起動させると節炭器中の給水流れの
変動による所謂ウオーターハンマを生じ管振動に
よる管体損傷をしたり、ボイラドラムに対する給
水供給量が不安定となつたりする。特に給水流が
下降する場合には下降する給水を上昇する蒸気が
衝突して激しいウオーターハンマを生ずる。
If the boiler is restarted with residual steam generated due to these reasons, water hammer may occur due to fluctuations in the water flow in the economizer, resulting in damage to the pipe body due to pipe vibration, or the amount of water supplied to the boiler drum may be reduced. It becomes unstable. Particularly when the feedwater flow is descending, the descending feedwater collides with the rising steam, resulting in severe water hammer.

このため発明者等は直管の上下の端部を各々ヘ
ツダで接続して一枚の伝熱パネルを構成し、この
伝熱パネルの複数枚の上ヘツダのみを共通ヘツダ
で接続することにより節炭器として一体に形成し
たものを提供した。この形式の節炭器においては
給水は各パネルの直管を上昇するのみであるため
管内に蒸気が発生してもウオーターハンマは殆ん
ど生じない反面次の如き問題がある。すなわち給
水は各パネルを常に上昇しながら吸熱廃ガスと熱
交換するので次段のパネルへは必ず下降する流れ
部を必要としパネルの上ヘツダには蒸気滞留を生
ずる機会をもつこととなる。
For this reason, the inventors constructed a single heat transfer panel by connecting the upper and lower ends of the straight pipes with headers, and connected only the upper headers of the plurality of heat transfer panels with a common header to save money. We provided a one-piece charcoal pot. In this type of energy saver, the water supply only ascends through the straight pipes of each panel, so even if steam is generated in the pipes, water hammer hardly occurs, but there are the following problems. That is, since the feed water constantly ascends through each panel while exchanging heat with the endothermic waste gas, a flow section is required that always descends to the next panel, and there is an opportunity for steam to accumulate in the upper headers of the panels.

この発明の目的は上述した問題点を除去し、管
内に残留した蒸気によるウオーターハンマを防止
し、かつボイラ運転中は給水の制御を容易に行う
ことのできる廃熱回収ボイラを提供することにあ
る。
An object of the present invention is to provide a waste heat recovery boiler that eliminates the above-mentioned problems, prevents water hammer due to steam remaining in the pipes, and allows easy control of water supply during boiler operation. .

要するにこの発明は廃ガスダクト内に配置した
複数本の伝熱管の上下端を各々ヘツダで接続して
一枚のパネルを形成し、このパネルの複数枚を廃
ガスダクト外に配置した下降管で接続することに
より一体の節炭器を構成して節炭器内の給水を貫
流させ、熱効率を高めると共に給水制御を容易に
し、かつ給水下降部はダクト外に配置することに
より廃ガスによる受熱を防止して給水の下降を良
好にすると共にウオーターハンマを防止するよう
構成したものである。
In short, this invention connects the upper and lower ends of a plurality of heat transfer tubes placed inside the waste gas duct with headers to form one panel, and connects the plurality of panels with downcomers placed outside the waste gas duct. By doing so, an integrated energy saver is constructed, allowing the feed water inside the energy saver to flow through, increasing thermal efficiency and facilitating water supply control, and by locating the feed water descending section outside the duct, heat reception from waste gas is prevented. This structure is designed to improve the downward movement of water supply and prevent water hammer.

以下この発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図において矢印10はガスダクト11内に
配置した節炭器である。符号10aは節炭器10
を構成する伝熱管パネルを示す。このパネルはガ
スダクト11内に複数本配置した直管30と、こ
の直管30の両端をガスダクト外で接続する上部
ヘツダ12および下部ヘツダ13から成り、この
様に形成した複数本のパネルを平行に位置させ
る。このパネルのうち、給水流れの上流側に位置
するパネルの上部ヘツダ12と、このパネルに隣
接する下流側パネルの下部ヘツダ13は下降管3
1により接続され全体として一体の節炭器10と
して構成してある。なお下降管31はガスダクト
11の外部に配置してあり、廃ガスの熱を吸収し
ないよう構成してある。符号16は共通ヘツダで
あつて前記各パネルの上部ヘツダ12は制御弁1
4を有する管路15によりこの上部ヘツダ16に
接続している。次に20はボイラドラムであり前
記節炭器10の給水出口部は管路19によりボイ
ラドラム20内のエコノマイザサイクロン21と
接続している。27はボイラドラム20に接続し
た降水管であり、この降水管27に対しては再循
環流量制御弁25を有する再循環管路26が接続
しており、再循環管路26の出口側は前記節炭器
に給水を供給する給水供給管路23に接続する。
22は給水流量を制御する弁、24は給水ポンプ
である。
In FIG. 3, an arrow 10 indicates an economizer placed within the gas duct 11. Reference numeral 10a is a carbon saver 10
This figure shows the heat exchanger tube panels that make up the heat exchanger tube panel. This panel consists of a plurality of straight pipes 30 arranged inside the gas duct 11, and an upper header 12 and a lower header 13 that connect both ends of the straight pipes 30 outside the gas duct, and the plurality of panels formed in this way are arranged in parallel. position. Among these panels, the upper header 12 of the panel located on the upstream side of the water supply flow and the lower header 13 of the downstream panel adjacent to this panel are connected to the downcomer pipe 3.
1 to form an integrated energy saver 10 as a whole. Note that the downcomer pipe 31 is disposed outside the gas duct 11 and is configured so as not to absorb heat from the waste gas. Reference numeral 16 is a common header, and the upper header 12 of each panel is a control valve 1.
It is connected to this upper header 16 by a conduit 15 having 4. Next, 20 is a boiler drum, and the water supply outlet of the economizer 10 is connected to an economizer cyclone 21 in the boiler drum 20 through a pipe 19. 27 is a downcomer pipe connected to the boiler drum 20, and a recirculation pipe 26 having a recirculation flow rate control valve 25 is connected to this downcomer pipe 27, and the outlet side of the recirculation pipe 26 is connected to the downcomer pipe 27. It is connected to a water supply pipe line 23 that supplies water to the economizer.
22 is a valve that controls the water supply flow rate, and 24 is a water supply pump.

28は記憶と指令信号を発する制御箱であつて
上部ヘツダ12に各々設けた温度検知器29と回
路接続する外、前記制御弁14,22,25およ
び管路19に設けた制御弁40と回路接続し、こ
れら制御弁を操作する。
Reference numeral 28 denotes a control box for storing memory and emitting command signals, which is connected in circuit to the temperature detectors 29 provided in each of the upper headers 12, and also in circuit with the control valves 14, 22, 25 and the control valve 40 provided in the conduit 19. connection and operate these control valves.

以上の装置において、ボイラ運転中は弁14
(各上ヘツダの上部に位置する弁を総称する)を
全閉とした状態で給水Wを節炭器に供給する。こ
れにより節炭器内に流入した給水Wは直管30を
上昇し、続いて下降管31を下降し、この上昇下
降を繰返して節炭器出口に至り、管路19を経て
ボイラドラム20に流入する。この場合、廃ガス
Gとの熱交換は給水が上昇する直管30において
のみ行なわれ、下降管31においては昇温しない
ので、下降管31内で蒸気が発生することはな
い。
In the above device, when the boiler is operating, the valve 14
Water supply W is supplied to the economizer with the valves (generally referred to as valves located at the top of each upper header) fully closed. As a result, the feed water W flowing into the economizer rises through the straight pipe 30, then descends through the descending pipe 31, repeats this upward and downward movement, reaches the outlet of the economizer, and then passes through the pipe line 19 to the boiler drum 20. Inflow. In this case, heat exchange with the waste gas G is performed only in the straight pipe 30 where the feed water rises, and the temperature does not rise in the downcomer pipe 31, so no steam is generated in the downcomer pipe 31.

ボイラ運転休止に際してはドラム内圧力の低下
によることとダクト内ガス及びダクト壁からの放
射熱により節炭器パネル内で蒸気が発生すると、
節炭器内に水の流れがないこととより、発生した
蒸気は各パネルの上部に留り、この部の温度がド
ラム内圧に対応する飽和蒸気温度より高いものと
なるので温度検知器29で検知し制御箱28の指
令で必要とする弁14を開として蒸気を共通ヘツ
ダ16、弁40を経てドラムへ放出し起動時のウ
オーターハンマ防止をする。なおこの場合再循環
管路26の弁25も同時に開とし節炭器10に補
給水を供給する。
When the boiler is shut down, steam is generated in the economizer panel due to the drop in pressure inside the drum and the radiant heat from the gas in the duct and the duct wall.
Since there is no water flow inside the economizer, the generated steam remains at the top of each panel, and the temperature in this area is higher than the saturated steam temperature corresponding to the drum internal pressure, so the temperature sensor 29 detects Upon detection, the required valve 14 is opened according to a command from the control box 28, and steam is released to the drum via the common header 16 and valve 40, thereby preventing water hammer at the time of startup. In this case, the valve 25 of the recirculation pipe 26 is also opened at the same time to supply makeup water to the economizer 10.

また管路26に再循環ポンプ32を設けるとき
は起動に際しボイラ水をドラム20から給水ポン
プ24の出口管路に供給し節炭器による給水温度
の上昇を早めることができる。
Further, when a recirculation pump 32 is provided in the pipe line 26, boiler water is supplied from the drum 20 to the outlet pipe line of the water feed pump 24 upon startup, thereby making it possible to hasten the rise in the temperature of the feed water by the energy saver.

この発明を実施することにより停止中において
節炭器内の蒸気を除去することができ起動に際し
てのウオーターハンマを防止することができる。
By implementing the present invention, steam in the economizer can be removed during stoppage, and water hammer can be prevented when starting up.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の廃熱回収ボイラの系統図、第2
図は飽和蒸気温度との圧力の関係を示す線図、第
3図はこの発明に係るボイラの系統図である。 10……節炭器、10a……パネル、11……
廃ガスダクト、12……上部ヘツダ、13……下
部ヘツダ、14……制御弁、16……共通ヘツ
ダ、20……ボイラドラム、22……給水制御
弁、25……再循環流量制御弁、26……再循環
管路、27……降水管、28……制御箱、29…
…温度検知器。
Figure 1 is a system diagram of a conventional waste heat recovery boiler, Figure 2 is a system diagram of a conventional waste heat recovery boiler.
The figure is a diagram showing the relationship between pressure and saturated steam temperature, and FIG. 3 is a system diagram of the boiler according to the present invention. 10... Economizer, 10a... Panel, 11...
Waste gas duct, 12... Upper header, 13... Lower header, 14... Control valve, 16... Common header, 20... Boiler drum, 22... Water supply control valve, 25... Recirculation flow rate control valve, 26 ... Recirculation pipe line, 27 ... Downcomer pipe, 28 ... Control box, 29 ...
...Temperature detector.

Claims (1)

【特許請求の範囲】 1 廃ガスダクト内に配置した直管を上部ヘツダ
および下部ヘツダで接続してパネルを形成し、こ
のパネルの複数個により節炭器を構成するものに
おいて、これらのパネルを相互に平行に配置し、
かつ給水流れの上流側のパネルの上部ヘツダと、
このパネルに隣接する下流側パネルの下部ヘツダ
とを廃ガスダクト外に配置した下降管で接続する
ことにより節炭器を構成し、各パネルの上部ヘツ
ダは制御弁を有する管路により共通ヘツダと接続
し、記憶と指令信号を発する制御箱に対しこれら
各制御弁を回路接続したことを特徴とするウオー
ターハンマを防止する廃熱回収ボイラ。 2 ボイラドラムに接続する降水管と、給水を節
炭器に供給する管路を制御弁を有する再循環管路
で接続し、この制御弁を制御箱に回路接続したこ
とを特徴とする特許請求の範囲第1項記載のウオ
ーターハンマを防止する廃熱回収ボイラ。 3 上部ヘツダに温度検知器を設け、この温度検
知器を制御箱に回路接続したことを特徴とする特
許請求の範囲第1項または第2項記載のウオータ
ーハンマを防止する廃熱回収ボイラ。
[Claims] 1. In a system in which straight pipes arranged in a waste gas duct are connected by an upper header and a lower header to form a panel, and a plurality of these panels constitute an economizer, these panels are interconnected. placed parallel to
and the upper header of the panel on the upstream side of the water supply flow;
An economizer is constructed by connecting this panel to the lower header of the downstream panel adjacent to it through a downcomer pipe placed outside the waste gas duct, and the upper header of each panel is connected to the common header through a conduit with a control valve. A waste heat recovery boiler for preventing water hammer, characterized in that each of these control valves is circuit-connected to a control box that emits memory and command signals. 2. A patent claim characterized in that a downcomer pipe connected to a boiler drum and a pipe line for supplying water to an economizer are connected by a recirculation pipe line having a control valve, and this control valve is connected in a circuit to a control box. A waste heat recovery boiler that prevents water hammer as described in item 1. 3. A waste heat recovery boiler for preventing water hammer according to claim 1 or 2, characterized in that a temperature sensor is provided in the upper header, and this temperature sensor is circuit-connected to a control box.
JP7289881A 1981-05-16 1981-05-16 Recovery boiler for waste heat preventing water hammer Granted JPS57188904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7289881A JPS57188904A (en) 1981-05-16 1981-05-16 Recovery boiler for waste heat preventing water hammer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7289881A JPS57188904A (en) 1981-05-16 1981-05-16 Recovery boiler for waste heat preventing water hammer

Publications (2)

Publication Number Publication Date
JPS57188904A JPS57188904A (en) 1982-11-20
JPH029242B2 true JPH029242B2 (en) 1990-03-01

Family

ID=13502621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7289881A Granted JPS57188904A (en) 1981-05-16 1981-05-16 Recovery boiler for waste heat preventing water hammer

Country Status (1)

Country Link
JP (1) JPS57188904A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI101737B (en) * 1996-10-24 1998-08-14 Pipemasters Oy Ltd Regulating exhaust boiler
JP5066504B2 (en) 2008-09-30 2012-11-07 本田技研工業株式会社 Internal combustion engine and motorcycle with variable valve gear
JP5113007B2 (en) 2008-09-30 2013-01-09 本田技研工業株式会社 Internal combustion engine with variable valve gear
JP5113005B2 (en) 2008-09-30 2013-01-09 本田技研工業株式会社 Internal combustion engine with variable valve gear
JP5113006B2 (en) 2008-09-30 2013-01-09 本田技研工業株式会社 Internal combustion engine with variable valve gear

Also Published As

Publication number Publication date
JPS57188904A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
RU2124672C1 (en) Waste-heat boiler and method of its operation
US3789806A (en) Furnace circuit for variable pressure once-through generator
KR100367919B1 (en) Heat recovery steam generator
US5419285A (en) Boiler economizer and control system
US20110023487A1 (en) Method for controlling a steam generator and control circuit for a steam generator
KR20010074471A (en) Heat recovery steam generator
JP2024526396A (en) Flexible operation system of thermal power generating units based on molten salt thermal storage
JPH029242B2 (en)
US4274259A (en) Superheated steam power plant with steam to steam reheater
KR20000062293A (en) A control scheme for large circulating fluid bed steam generators(cfb)
JP2001108201A (en) Multiple pressure waste heat boiler
JP5448883B2 (en) Once-through exhaust heat recovery boiler
JPH028201B2 (en)
CN207584746U (en) A kind of gas fired-boiler stand-by heat activation system
JP2944783B2 (en) Natural circulation type waste heat recovery boiler
JPH03117801A (en) Exhaust heat recovery boiler
JPS6229603Y2 (en)
JPH0445301A (en) Natural circulation waste heat recovery heat exchanger
JP2971629B2 (en) Waste heat recovery boiler
JPH11304102A (en) Natural circulation system vertical gas flow exhaust gas boiler
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system
KR20240067726A (en) Once-through evaporator of vertical heat recovery steam generator and heat recovery steam generator including the same
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JPH0335562B2 (en)
JPH0238841B2 (en)