JPH028201B2 - - Google Patents

Info

Publication number
JPH028201B2
JPH028201B2 JP7289981A JP7289981A JPH028201B2 JP H028201 B2 JPH028201 B2 JP H028201B2 JP 7289981 A JP7289981 A JP 7289981A JP 7289981 A JP7289981 A JP 7289981A JP H028201 B2 JPH028201 B2 JP H028201B2
Authority
JP
Japan
Prior art keywords
header
panel
boiler
gas turbine
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7289981A
Other languages
Japanese (ja)
Other versions
JPS57188901A (en
Inventor
Masakatsu Maeda
Tsuneo Watabe
Fumio Koda
Iwao Kusaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP7289981A priority Critical patent/JPS57188901A/en
Publication of JPS57188901A publication Critical patent/JPS57188901A/en
Publication of JPH028201B2 publication Critical patent/JPH028201B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 この発明は廃熱回収ボイラに係り、特にボイラ
起動時にはウオーターハンマを生ずることがなく
かつボイラ運転時には給水の加熱を良好に行うこ
とのできる節炭器を有する廃熱回収ボイラに関す
る。
Detailed Description of the Invention The present invention relates to a waste heat recovery boiler, and in particular to a waste heat recovery boiler equipped with a energy saver that does not cause water hammer when the boiler is started and can heat the feed water well when the boiler is operating. Regarding boilers.

最近の電力需要の変化に伴いピーク負荷用とし
てガスタービンを採用する傾向が高まつている
が、このガスタービンに対して運動エネルギーを
与えた高温ガスの熱を廃熱ボイラにおいて回収
し、さらに廃熱ボイラによつて発生した蒸気によ
り蒸気タービンを駆動して発電を行う複合発電が
実施され省エネルギー化を図つている。
With recent changes in electricity demand, there is a growing trend to adopt gas turbines for peak loads.The heat of the high-temperature gas that provides kinetic energy to the gas turbine is recovered in a waste heat boiler, and further Combined power generation, in which steam generated by a heat boiler drives a steam turbine to generate electricity, is being implemented to save energy.

第1図は廃熱回収ボイラ(以下単に「ボイラ」
と称する)の概略を示す。図において1はガスタ
ービンであつて、空気Aと燃料Fにより生じた高
温の燃焼ガスはガスタービン1を作動させて発電
を行つた後廃ガスとしてボイラ2に供給され、過
熱器3,蒸発器4および節炭器5の順に伝熱した
後系外に排出される。一方発生した蒸気はボイラ
ドラム6から過熱器3に流入し所定の温度まで過
熱された後蒸気タービン7に供給され第二の発電
を行い、使用された蒸気は復水器8で水に戻され
た後給水Wとして再度ボイラに供給される。
Figure 1 shows a waste heat recovery boiler (hereinafter simply referred to as "boiler").
The following is an outline of the In the figure, 1 is a gas turbine, in which high-temperature combustion gas generated by air A and fuel F operates the gas turbine 1 to generate electricity, and then is supplied as waste gas to a boiler 2, which is then sent to a superheater 3 and an evaporator. 4 and the economizer 5, and then discharged to the outside of the system. On the other hand, the generated steam flows into the superheater 3 from the boiler drum 6, is superheated to a predetermined temperature, and is then supplied to the steam turbine 7 to generate the second power generation, and the used steam is returned to water in the condenser 8. After that, it is supplied to the boiler again as feed water W.

以上の構成のボイラは発生した熱を有効に利用
し省エネルギー化が図られる反面次の如き問題が
ある。
Although the boiler with the above configuration effectively utilizes the generated heat and saves energy, it has the following problems.

すなわちガスタービンは負荷追従性が非常に良
好であるためピーク負荷用として使用されるわけ
であるが、この結果ガスタービンの起動,停止回
数が多く、かつ急激な負荷変動もしばしば行われ
る。廃熱回収ボイラもこの負荷変化に対応して起
動停止を行うわけであるが、ボイラ停止時もしく
は急激な負荷減少の際に節炭器内の給水が一部蒸
発してボイラ起動時にいわゆるウオーターハンマ
を生ずる。第2図により節炭器内で蒸気が発生す
る状態を説明する。
That is, gas turbines are used for peak loads because they have very good load followability, but as a result, gas turbines are started and stopped many times and often undergo rapid load fluctuations. The waste heat recovery boiler also starts and stops in response to this load change, but when the boiler stops or when the load suddenly decreases, part of the water supplied in the economizer evaporates, causing what is called water hammer when the boiler starts. will occur. The state in which steam is generated within the economizer will be explained with reference to FIG.

通常節炭器出口の給水温度は飽和温度以下(曲
線Aは飽和温度曲線を示す)、例えば曲線Bに示
す温度で運用される。今ボイラを圧力P2で運転
していたものを圧力P1まで降下させるとする。
この場合圧力の降下が緩やかな場合には熱水の温
度も圧力の降下に対応してT2からT1に徐々に降
下するため給水は飽和温度以上となることはな
い。これに対して圧力の降下が急激な場合には給
水の温度降下は圧力の降下に対応できず温度T2
に近い状態で圧力P1に降下することとなる。こ
のため圧力Pにおいて給水温度がT2からT1′の間
は給水は飽和温度以上となり給水の一部は蒸発し
節炭器内に滞留する。この状態の変化はボイラ圧
が減少する上述の場合よりもボイラの運転を急激
に停止した場合にさらに激しく生ずる。
Normally, the water supply temperature at the outlet of the economizer is operated at a temperature below the saturation temperature (curve A shows the saturation temperature curve), for example, at the temperature shown in curve B. Suppose that the boiler was currently operating at pressure P 2 and is now reduced to pressure P 1 .
In this case, if the pressure drop is gradual, the temperature of the hot water will also gradually drop from T 2 to T 1 in response to the pressure drop, so the feed water will never rise above the saturation temperature. On the other hand, if the pressure drop is rapid, the temperature drop of the feed water cannot correspond to the pressure drop, and the temperature T 2
The pressure will drop to P 1 in a state close to . For this reason, when the feed water temperature is between T 2 and T 1 ' at pressure P, the feed water becomes equal to or higher than the saturation temperature, and a portion of the feed water evaporates and remains in the energy saver. This change in state occurs more drastically when the boiler operation is abruptly stopped than in the above-mentioned case where the boiler pressure decreases.

また以上に説明した理由の外に、ボイラ停止直
後は廃ガスダクト内部に相当量の熱が残留してお
り、この残留した熱を節炭器内に滞留した給水が
吸収して昇温し蒸気を発生する事態も生ずる。
In addition to the reasons explained above, a considerable amount of heat remains inside the waste gas duct immediately after the boiler is stopped, and the feed water accumulated in the economizer absorbs this residual heat, raising the temperature and producing steam. Situations that occur also occur.

これらの理由により生じた蒸気が残留した状態
でボイラを再起動させると節炭器中の給水が激し
く管壁に衝突して管体に大きな衝撃を与えウオー
ターハンマを生じ、管体を損傷したり、ボイラド
ラムに対する給水供給量が不安定となつたりす
る。特に給水が下降する場合には下降する給水と
上昇する蒸気が衝突して激しいウオーターハンマ
を生ずる。
If the boiler is restarted with residual steam generated due to these reasons, the water supplied in the economizer will violently collide with the pipe wall, causing a large impact on the pipe body and causing water hammer, which may damage the pipe body. , the amount of water supplied to the boiler drum becomes unstable. Particularly when the water supply is descending, the descending water supply collides with the rising steam, resulting in severe water hammer.

このため発明者等は直管の上下の端部を各々ヘ
ツダで接続して一枚の伝熱パネルを構成してこの
伝熱パネルの複数枚を上下の共通ヘツダで接続し
て一体とし節炭器としたものを提供した。この形
式の節炭器においては給水は各パネルの直管を上
昇するのみであるため、管内に蒸気が発生しても
ウオーターハンマは殆んど生じない反面次の如き
問題がある。すなわち給水は各パネルの直管を上
昇した後共通ヘツダに集められ上胴に送られてし
まうので廃ガスとの熱交換が不十分となる虞れが
あり、かつ給水の温度調節は各伝熱管の流量を制
御することにより行うため制御が複雑となる。つ
まりウオーターハンマの問題を無視すれば節炭器
の伝熱管は長尺の管体を曲折して伝熱管一本当り
の伝熱面積を増大した方が熱効率も良好でかつ制
御も容易となる。
For this reason, the inventors connected the upper and lower ends of the straight pipes with headers to form a single heat transfer panel, and connected multiple heat transfer panels with the upper and lower common headers to save energy. I provided something suitable. In this type of economizer, the water supply only ascends through the straight pipes of each panel, so even if steam is generated in the pipes, water hammer hardly occurs, but there are the following problems. In other words, the supply water rises through the straight pipes of each panel, is collected in a common header, and is sent to the upper shell, so there is a risk that heat exchange with the waste gas will be insufficient, and the temperature of the supply water is controlled by each heat exchanger tube. The control is complicated because it is performed by controlling the flow rate of the water. In other words, if the problem of water hammer is ignored, thermal efficiency will be better and control will be easier if the heat transfer tube of the economizer is made by bending the long tube body to increase the heat transfer area of each heat transfer tube.

この発明の目的は上述した問題点に鑑み、ボイ
ラ運転中は熱回収効率が良好かつ制御が容易で、
ボイラ起動時にはウオーターハンマを生ずること
のない廃熱回収ボイラを提供することにある。
In view of the above-mentioned problems, the purpose of this invention is to provide good heat recovery efficiency and easy control during boiler operation.
To provide a waste heat recovery boiler that does not generate water hammer when starting the boiler.

要するにこの発明は複数枚の伝熱パネルを上下
の共通ヘツダで接続することにより一体の節炭器
を構成し、かつ各伝熱パネルを下降管で接続し、
ボイラ運転中はこの下降管を介して給水を貫流さ
せ、ボイラ運転停止中は伝熱パネルの直管のみに
より給水はすべて上昇流とし、発生した蒸気の排
除を容易にしてウオーターハンマを防止するよう
構成したものである。
In short, this invention configures an integrated energy saver by connecting a plurality of heat transfer panels with upper and lower common headers, and connects each heat transfer panel with a downcomer pipe.
When the boiler is in operation, the feed water flows through this downpipe, and when the boiler is not in operation, all the feed water flows upward through the straight pipe of the heat transfer panel, making it easy to remove generated steam and prevent water hammer. It is composed of

以下この発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図はこの発明の実施例を示す。 FIG. 3 shows an embodiment of the invention.

図において矢印10はガスダクト11内に配置
した節炭器である。符号10aは節炭器10を構
成する伝熱管パネルを示す。このパネルはガスダ
クト11内に複数本配置した直管30と、この直
管30の両端をガスダクト外で接続する上部ヘツ
ダ12および下部ヘツダ13から成る。31は給
水流れの上流側のパネルの上部ヘツダ12と、こ
のパネルに隣接する給水流れ下流側のパネルの下
部ヘツダ13を接続する下降管であつて、節炭器
10を構成する各パネルをこの下降管31で接続
することにより節炭器を一体に形成する。
In the figure, an arrow 10 indicates an economizer placed within the gas duct 11. Reference numeral 10a indicates a heat exchanger tube panel constituting the economizer 10. This panel consists of a plurality of straight pipes 30 arranged inside the gas duct 11, and an upper header 12 and a lower header 13 that connect both ends of the straight pipes 30 outside the gas duct. 31 is a downcomer pipe that connects the upper header 12 of the panel on the upstream side of the water supply flow and the lower header 13 of the panel on the downstream side of the water supply flow adjacent to this panel, and each panel constituting the energy saver 10 is connected to this downcomer. By connecting with the downcomer pipe 31, the economizer is integrally formed.

この様に形成した複数枚のパネルを平行に位置
させることにより節炭器10を構成する。この各
パネル10aのうち上部ヘツダ12は制御弁14
を有する管路15により上部共通ヘツダ16に接
続している。一方下部ヘツダ13は制御弁32を
有する管路17により下部共通ヘツダ18に接続
している。次に上部共通ヘツダ16は管路19に
より上胴20内のエコノマイザサイクロン21と
接続し、下部共通ヘツダ18の一端は給水制御弁
22を有する給水供給管路23により給水ポンプ
24と接続し、他端は再循環流量制御弁25を有
する再循環管路26により上胴20の降水管27
と接続している。次に上部ヘツダ12に対しては
温度検知器29が設置してある。28は記憶と指
令信号を発する制御箱であつて、前記制御弁1
4,給水制御弁22,再循環流量制御弁25,下
部共通ヘツダ18に設けたブロー弁33および温
度検知器29と各々回路接続している。
The energy saver 10 is constructed by arranging a plurality of panels formed in this way in parallel. The upper header 12 of each panel 10a has a control valve 14
It is connected to an upper common header 16 by a conduit 15 having a diameter. On the other hand, the lower header 13 is connected to the lower common header 18 by a conduit 17 having a control valve 32. Next, the upper common header 16 is connected to the economizer cyclone 21 in the upper shell 20 through a pipe 19, and one end of the lower common header 18 is connected to a water supply pump 24 through a water supply pipe 23 having a water supply control valve 22, and the other end is connected to a water supply pump 24 through a water supply pipe 23 having a water supply control valve 22. The end is connected to the downcomer pipe 27 of the upper shell 20 by a recirculation line 26 having a recirculation flow control valve 25.
is connected to. Next, a temperature sensor 29 is installed on the upper header 12. 28 is a control box for storing memory and issuing command signals;
4, the water supply control valve 22, the recirculation flow rate control valve 25, the blow valve 33 provided in the lower common header 18, and the temperature sensor 29, respectively, are connected in circuits.

以上の装置において、ボイラ運転中は制御箱2
8の指令信号により弁14はすべて全閉としてお
く。これにより給水ポンプ24から給送された給
水Wは給水流れの最上流側のパネルの直管30を
上昇して上部ヘツダ12に至る。この場合制御弁
14は閉となつているため給水は下降管31を経
て隣接するパネルの下部ヘツダ13に至り、この
上昇,下降を繰り返すことにより最下流側の上部
ヘツダ12から上部共通ヘツダ16に至り管路1
9を経て上胴20に流入する。この場合上部共通
ヘツダ16は管路19側を上方として符号16の
如く斜めに配置すれば内部の流体の排出をより良
好に行える。ボイラ運転中は以上の如く給水Wを
各直管30および下降管31を貫流させることに
より熱効率が上昇し、かつ給水Wの流量も弁22
のみで行うことができる。また制御箱28はボイ
ラ運転中温度検知器29により上部ヘツダ12内
の給水温度を検知し、この検知結果に応じて弁1
4及び32を調節する。この弁14,32の調節
により29にて検知した後流側の下降管31を経
由させずに下部ヘツダ18を介して管路30への
上昇流を形成し弁14を経て上部ヘツダ16に供
給するようにする。この操作により下降管におけ
るウオータハンマ等の流動不安定を防止する。
In the above equipment, during boiler operation, the control box 2
All valves 14 are fully closed by the command signal No. 8. Thereby, the water supply W fed from the water supply pump 24 ascends the straight pipe 30 of the panel on the most upstream side of the water supply flow and reaches the upper header 12. In this case, since the control valve 14 is closed, the water supply reaches the lower header 13 of the adjacent panel via the downcomer pipe 31, and by repeating this upward and downward movement, it flows from the upper header 12 on the most downstream side to the upper common header 16. Leading pipe 1
9 and flows into the upper body 20. In this case, if the upper common header 16 is arranged obliquely as shown by reference numeral 16 with the pipe line 19 side facing upward, the internal fluid can be better discharged. During boiler operation, the thermal efficiency is increased by allowing the feed water W to flow through each of the straight pipes 30 and the descending pipes 31 as described above, and the flow rate of the feed water W is also controlled by the valve 22.
It can be done only by In addition, the control box 28 detects the temperature of the feed water in the upper header 12 using the temperature detector 29 during boiler operation, and depending on the detection result, the valve 1
Adjust 4 and 32. By adjusting these valves 14 and 32, an upward flow is formed through the lower header 18 to the conduit 30 without passing through the descending pipe 31 on the downstream side detected at 29, and is supplied to the upper header 16 through the valve 14. I'll do what I do. This operation prevents flow instability such as water hammer in the downcomer.

次にガスタービンの停止によりボイラの運転も
停止せねばならない場合には給水ポンプ24も停
止し節炭器10内の給水の流動を停止する。この
ためボイラ内圧力が急激に降下すると節炭器内の
給水温度が飽和温度以上となり給水の一部が蒸発
する。また圧力の降下が急激でなくともガスダク
ト11等に滞留した給水の温度が上昇し一部が蒸
発する事態も考えられる。
Next, when the operation of the boiler must also be stopped due to the stoppage of the gas turbine, the feedwater pump 24 is also stopped, and the flow of feedwater in the energy saver 10 is stopped. For this reason, when the pressure inside the boiler suddenly drops, the temperature of the feed water in the economizer becomes higher than the saturation temperature, and a portion of the feed water evaporates. Further, even if the pressure does not drop suddenly, the temperature of the supply water stagnant in the gas duct 11 etc. may rise and some of the water may evaporate.

制御箱28はボイラの運転を停止した場合には
制御弁25,32,14を開とする。これにより
節炭器の直管30および下降管31内に発生した
蒸気は上昇し各上部ヘツダ12を経て上部共通ヘ
ツダ16に流入し、さらに管路19を経て上胴2
0側にパージされる。つまり給水の供給を停止す
ることにより節炭器内で発生した蒸気および節炭
器内の給水はすべて上昇流となり、蒸気のパージ
を良好に行い、ボイラ再起動時にウオーターハン
マが生じるのを防止し、缶水を起動時に給水ポン
プ出口に供給し給水温度の上昇を早めボイラの立
ち上りを早いものとすることができる。
The control box 28 opens the control valves 25, 32, and 14 when the operation of the boiler is stopped. As a result, the steam generated in the straight pipe 30 and the downcomer pipe 31 of the economizer rises, passes through each upper header 12, flows into the upper common header 16, and further passes through the pipe line 19 to the upper shell 2.
It is purged to the 0 side. In other words, by stopping the supply of water, the steam generated in the economizer and the water supply inside the economizer all flow upward, allowing for good steam purging and preventing water hammer from occurring when the boiler is restarted. By supplying canned water to the water supply pump outlet at startup, the temperature of the water supply can be increased quickly, and the boiler can be started up quickly.

この発明を実施することによりボイラの再起動
時に節炭器内に残留した蒸気によりウオーターハ
ンマが生じるのを効果的に防止でき、かつボイラ
運転中は熱効率を高め、しかも給水の制御を容易
に行える。
By implementing this invention, it is possible to effectively prevent water hammer from occurring due to steam remaining in the economizer when the boiler is restarted, increase thermal efficiency during boiler operation, and easily control water supply. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の廃熱回収ボイラの系統図、第2
図は圧力と飽和蒸気温度との関係を示す線図、第
3図はこの発明に係る廃熱回収ボイラの系統図で
ある。 10……節炭器、10a……パネル、11……
廃ガスダクト、12……上部ヘツダ、13……下
部ヘツダ、14……制御弁、16……上部共通ヘ
ツダ、18……下部共通ヘツダ、22……給水制
御弁、24……給水ポンプ、25……再循環量制
御弁、27……降水管、28……制御箱、29…
…温度検知器、30……直管、31……下降管、
32……制御弁、W……給水。
Figure 1 is a system diagram of a conventional waste heat recovery boiler, Figure 2 is a system diagram of a conventional waste heat recovery boiler.
The figure is a diagram showing the relationship between pressure and saturated steam temperature, and FIG. 3 is a system diagram of the waste heat recovery boiler according to the present invention. 10... Economizer, 10a... Panel, 11...
Waste gas duct, 12... Upper header, 13... Lower header, 14... Control valve, 16... Upper common header, 18... Lower common header, 22... Water supply control valve, 24... Water supply pump, 25... ...Recirculation amount control valve, 27... Downpipe, 28... Control box, 29...
...Temperature detector, 30... Straight pipe, 31... Downpipe,
32...Control valve, W...Water supply.

Claims (1)

【特許請求の範囲】 1 ガスタービン廃ガスダクト内に位置する直管
を上部ヘツダおよび下部ヘツダで接続してパネル
を形成し、このパネルをパネル面を平行にして廃
ガスダクト内に複数個位置させ、給水流れについ
ての上流側パネルの上部ヘツダと、このパネルに
隣接する下流側パネルの下部ヘツダとを下降管で
接続することを繰返して一の給水管路を形成する
ことにより節炭器を構成し、各パネルの上部ヘツ
ダは制御弁を介して上部共通ヘツダと管路接続
し、同様に下部ヘツダも制御弁を介して下部共通
ヘツダと管路接続し、さらに下部共通ヘツダは再
循環制御弁を介してボイラ下降管と管路接続し、
ガスタービン休止時には節炭器管である直管およ
び下降管に給水の上昇流のみを生ずるよう構成し
たことを特徴とするガスタービン廃熱回収ボイ
ラ。 2 各パネルの上部ヘツダに温度検知器を設けそ
の温度信号を受ける記憶と指令信号を発する制御
箱の指令により各パネルの上部および下部ヘツダ
に接続する制御弁を制御し、ガスタービン休止時
にパネル毎の給水流量を調節可能に形成したこと
を特徴とする特許請求の範囲第1項記載のガスタ
ービン廃熱回収ボイラ。
[Scope of Claims] 1 Straight pipes located in a gas turbine waste gas duct are connected by an upper header and a lower header to form a panel, and a plurality of these panels are placed in the waste gas duct with the panel surfaces parallel, An energy saver is constructed by repeatedly connecting the upper header of the upstream panel for water supply flow and the lower header of the downstream panel adjacent to this panel with a downcomer pipe to form one water supply pipe. , the upper header of each panel is connected via a control valve to the upper common header, and the lower header is also connected via a control valve to the lower common header, and the lower common header is connected via a recirculation control valve. Connect the boiler downcomer and pipe line through
A gas turbine waste heat recovery boiler characterized in that the gas turbine waste heat recovery boiler is configured to generate only an upward flow of feed water in straight pipes and downcomer pipes that are energy saving pipes when the gas turbine is stopped. 2 A temperature sensor is installed on the upper header of each panel, and the control valves connected to the upper and lower headers of each panel are controlled by the memory that receives the temperature signal and the command from the control box that issues the command signal. 2. The gas turbine waste heat recovery boiler according to claim 1, wherein the gas turbine waste heat recovery boiler is configured to be able to adjust the flow rate of the water supply.
JP7289981A 1981-05-16 1981-05-16 Recovery boiler for waste heat from gas turbine Granted JPS57188901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7289981A JPS57188901A (en) 1981-05-16 1981-05-16 Recovery boiler for waste heat from gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7289981A JPS57188901A (en) 1981-05-16 1981-05-16 Recovery boiler for waste heat from gas turbine

Publications (2)

Publication Number Publication Date
JPS57188901A JPS57188901A (en) 1982-11-20
JPH028201B2 true JPH028201B2 (en) 1990-02-22

Family

ID=13502650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7289981A Granted JPS57188901A (en) 1981-05-16 1981-05-16 Recovery boiler for waste heat from gas turbine

Country Status (1)

Country Link
JP (1) JPS57188901A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663606B2 (en) * 1983-05-23 1994-08-22 ソウラ− タ−ビンズ インコ−ポレ−テツド Steam generator controller
JPS6126902U (en) * 1984-07-20 1986-02-18 バブコツク日立株式会社 Boiler capable of rapid boosting
US20160102926A1 (en) * 2014-10-09 2016-04-14 Vladimir S. Polonsky Vertical multiple passage drainable heated surfaces with headers-equalizers and forced circulation

Also Published As

Publication number Publication date
JPS57188901A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
JP4540719B2 (en) Waste heat boiler
US4799461A (en) Waste heat recovery boiler
US6237542B1 (en) Heat recovery boiler and hot banking releasing method thereof
US5762031A (en) Vertical drum-type boiler with enhanced circulation
US5419285A (en) Boiler economizer and control system
US5285627A (en) Method for operating a gas and steam turbine plant and a plant for performing the method
US6499440B2 (en) Fossil-fired steam generator
JPH028201B2 (en)
JP2001108201A (en) Multiple pressure waste heat boiler
JPH029242B2 (en)
JP2971629B2 (en) Waste heat recovery boiler
CN219034829U (en) Combined operation system of gas boiler generator set and sintering waste heat generator set
JPH11304102A (en) Natural circulation system vertical gas flow exhaust gas boiler
JP3133183B2 (en) Combined cycle power plant
JPH03117801A (en) Exhaust heat recovery boiler
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JPH0384301A (en) Naturally circulating waste heat recovery boiler
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
KR20240067726A (en) Once-through evaporator of vertical heat recovery steam generator and heat recovery steam generator including the same
JP3176435B2 (en) Steam generator
JPH0335562B2 (en)
KR200311524Y1 (en) Combined array recovery boiler for even flow without guide vanes or perforated plates
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system
JPH1114007A (en) Reheat steam temperature controller of boiler