JPS6229603Y2 - - Google Patents

Info

Publication number
JPS6229603Y2
JPS6229603Y2 JP1981190957U JP19095781U JPS6229603Y2 JP S6229603 Y2 JPS6229603 Y2 JP S6229603Y2 JP 1981190957 U JP1981190957 U JP 1981190957U JP 19095781 U JP19095781 U JP 19095781U JP S6229603 Y2 JPS6229603 Y2 JP S6229603Y2
Authority
JP
Japan
Prior art keywords
steam
pipe
fluidized bed
regulating valve
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981190957U
Other languages
Japanese (ja)
Other versions
JPS5896002U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19095781U priority Critical patent/JPS5896002U/en
Publication of JPS5896002U publication Critical patent/JPS5896002U/en
Application granted granted Critical
Publication of JPS6229603Y2 publication Critical patent/JPS6229603Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は流動層ボイラに係り、特に流動層ボイ
ラの緊急停止時にこの層内に配置された蒸気管の
保護装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluidized bed boiler, and more particularly to a protection device for steam pipes disposed within the fluidized bed boiler during emergency shutdown.

重油、石炭などを燃料とする流動層ボイラの層
内温度は通常800〜900℃とされ、この層内に伝熱
管、蒸気管を埋設した流動層ボイラにおいては、
この伝熱管、蒸気管の層中伝熱量(熱伝達率)が
従来形ボイラのガス流のみからの伝熱量に比べて
5〜10倍程度大きく、大量の伝熱量をもたらす特
徴がある。
The temperature inside the bed of a fluidized bed boiler that uses heavy oil, coal, etc. as fuel is usually 800 to 900°C.
The amount of heat transfer (heat transfer coefficient) in the layer of these heat transfer tubes and steam tubes is about 5 to 10 times greater than the amount of heat transferred only from the gas flow of a conventional boiler, and is characterized by a large amount of heat transfer.

そして、流動層ボイラは層中での伝熱特性が優
れていることから、従来はぼた山に投棄していた
スラツジ炭のような低品位炭であつても流動層ボ
イラの燃料として有効に活用することができ、し
かもこれら低品位炭を焼却することによつて低品
位炭の減容にも役立つことから、近年流動層ボイ
ラは脚光をあびている。
Furthermore, since fluidized bed boilers have excellent heat transfer characteristics in the bed, even low-grade coal such as sludge coal, which was traditionally dumped into piles, can be effectively used as fuel for fluidized bed boilers. In recent years, fluidized bed boilers have been attracting attention because they can reduce the volume of low-grade coal by incinerating these low-grade coals.

ところが、流動層ボイラは層内温度800〜900℃
と高く、層中伝熱量が従来形ボイラのガス流のみ
からの伝熱量に比べて大量の伝熱量をもたらす特
徴はあるが、例えば蒸気タービンが故障したり、
或いは停電によつてボイラプラントを緊急停止す
る場合には、タービンへの蒸気供給を停止すると
共に、流動層ボイラへの燃料供給、給水供給等も
ただちに停止し流動層ボイラの運転を停止した場
合には問題がある。
However, in a fluidized bed boiler, the temperature inside the bed is 800 to 900℃.
Although the amount of heat transferred in the layer is large compared to the amount of heat transferred only from the gas flow in conventional boilers, for example, if the steam turbine breaks down,
Alternatively, in the event of an emergency shutdown of the boiler plant due to a power outage, the steam supply to the turbine will be stopped, and the fuel supply, water supply, etc. to the fluidized bed boiler will also be immediately stopped. is problematic.

それは、流動層ボイラへの給水が停止された状
態で層内温度が800〜900℃の流動層内に流動層ボ
イラの伝熱管、蒸気管が配置されているために、
これら伝熱管、蒸気管が流動層の保有熱量によつ
て一方的に加熱され、ついには熱変形や焼損事故
にもつながるからである。
This is because the heat exchanger tubes and steam tubes of the fluidized bed boiler are placed inside the fluidized bed, where the temperature inside the bed is 800 to 900℃ when the water supply to the fluidized bed boiler is stopped.
This is because these heat transfer tubes and steam tubes are unilaterally heated by the amount of heat held in the fluidized bed, which eventually leads to thermal deformation and burnout accidents.

本考案はかかる従来の欠点を解消しようとする
もので、その目的とするところは、緊急停止時に
起こる流動層内に埋設された蒸気管の熱変形や焼
損事故を防止しようとするものである。
The present invention attempts to eliminate such conventional drawbacks, and its purpose is to prevent thermal deformation and burnout of steam pipes buried in the fluidized bed that occur during emergency shutdowns.

この目的を達成するため、本考案は、流動層
と、給水を蒸発させる伝熱管と、その伝熱管に接
続されたドラムと、前記流動層内に配置されてド
ラムから送気された蒸気を過熱する蒸気管と、前
記ドラムとこの蒸気管とを連絡し途中に調整弁を
有する連絡管と、前記蒸気管からの過熱蒸気を主
蒸気弁を経てタービンへ供給する主蒸気管と、前
記蒸気管からの過熱蒸気を調整弁を経て復水器へ
供給することのできるタービンバイパス配管と、
主蒸気管の緊急遮断時に前記連絡管の調整弁なら
びにタービンバイパス配管の調整弁に信号を出力
する発信器とを備える。
To achieve this objective, the present invention comprises a fluidized bed, a heat exchanger tube for evaporating feed water, a drum connected to the heat exchanger tube, and a drum disposed within the fluidized bed to superheat steam fed from the drum. a communication pipe that connects the drum and the steam pipe and has a regulating valve in the middle, a main steam pipe that supplies superheated steam from the steam pipe to the turbine via a main steam valve, and the steam pipe. turbine bypass piping that can supply superheated steam from the turbine to the condenser via a regulating valve;
A transmitter is provided that outputs a signal to the regulating valve of the communication pipe and the regulating valve of the turbine bypass piping in the event of an emergency shutdown of the main steam pipe.

そして前記主蒸気弁の緊急遮断時には、前記発
信器から出力される信号に基づいて前記連絡管の
調整弁ならびにタービンバイパス配管の調整弁を
所定の状態に開き、ドラムに溜つている蒸気を連
絡管を介して前記流動層内の蒸気管に通気し、該
蒸気管を流通する蒸気によつて管内部から冷却す
るように構成して、蒸気管を保護するものであ
る。
When the main steam valve is shut off in an emergency, the regulating valve of the communicating pipe and the regulating valve of the turbine bypass pipe are opened to predetermined states based on the signal output from the transmitter, and the steam accumulated in the drum is transferred to the communicating pipe. The steam pipe in the fluidized bed is ventilated through the steam pipe, and the steam pipe is cooled from inside by the flowing steam, thereby protecting the steam pipe.

以下第1図を用いて流動層ボイラの概要につい
て説明する。
The outline of a fluidized bed boiler will be explained below using FIG. 1.

流動層ボイラ1の底部には多孔板2を配置し、
この多孔板2上には媒体投入管3から投入された
流動媒体によつて流動層4を形成する。この流動
層4内には蒸気管5、伝熱管7が配置され、この
流動層4上の空塔部6には伝熱管7がそれぞれ廃
熱回収の目的で配置されている。
A perforated plate 2 is arranged at the bottom of the fluidized bed boiler 1,
A fluidized bed 4 is formed on the perforated plate 2 by the fluidized medium introduced from the medium input pipe 3. A steam pipe 5 and a heat transfer tube 7 are disposed within the fluidized bed 4, and a heat transfer tube 7 is disposed in the empty tower section 6 above the fluidized bed 4 for the purpose of recovering waste heat.

一方、フアン8によつて供給される流動化用空
気、燃焼用空気は空気予熱器9によつて予熱され
風道10より流動化用空気は風道11を経て流動
層ボイラ1の空気室12へ、他方燃焼用空気は風
道10より風道13を経て燃料管14よりの燃料
と混合されて多孔板2の底部から流動層4内へ供
給される。
On the other hand, the fluidizing air and combustion air supplied by the fan 8 are preheated by the air preheater 9, and the fluidizing air is sent from the air passage 10 through the air passage 11 to the air chamber 12 of the fluidized bed boiler 1. On the other hand, the combustion air is mixed with fuel from the fuel pipe 14 from the air passage 10 through the air passage 13, and is supplied into the fluidized bed 4 from the bottom of the perforated plate 2.

他方、流動層4内で燃焼した燃料及び粉化した
流動媒体は流動層4、空塔部6で蒸気管5、伝熱
管7で熱回収され排ガスとなつて煙道15に至
り、集塵器16でダスト、未燃分が回収されてフ
アン17より煙突18に排出される。
On the other hand, the fuel combusted in the fluidized bed 4 and the powdered fluidized medium are heat-recovered in the fluidized bed 4, the sky section 6, the steam pipe 5, and the heat transfer tube 7, become exhaust gas, reach the flue 15, and pass through the dust collector. At 16, dust and unburned substances are collected and discharged from a fan 17 to a chimney 18.

なお、19は未燃分、ダストを焼却する流動層
ボイラで、流動層20には伝熱管21が配置され
ている。
Note that 19 is a fluidized bed boiler for incinerating unburned matter and dust, and a heat exchanger tube 21 is arranged in the fluidized bed 20.

この様な構造において流動層ボイラ1の正常運
転時における給水の流れを第2図を用いて説明す
る。
The flow of water supply during normal operation of the fluidized bed boiler 1 in such a structure will be explained using FIG. 2.

図示していないボイラ循環ポンプからの給水は
給水管21からドラム22へ供給され、空筒部6
の伝熱管7及び流動層4の伝熱管7へ入口連絡管
23aより供給される。
Water from a boiler circulation pump (not shown) is supplied from a water supply pipe 21 to a drum 22, and the hollow cylinder 6
and the heat exchanger tubes 7 of the fluidized bed 4 from the inlet communication pipe 23a.

この伝熱管7で加熱された給水は出口連絡管2
3bよりドラム22へ還流し、ドラム22で蒸気
と水に分離され、水は伝熱管7へ再び供給される
が、蒸気は蒸気連絡管24より蒸気管5へ供給さ
れ流動層4で層中伝熱によつて蒸気は過熱され主
蒸気管25よりタービン26へ供給される。
The feed water heated by this heat transfer tube 7 is transferred to the outlet connecting tube 2.
3b to the drum 22, separated into steam and water by the drum 22, and the water is supplied again to the heat transfer tube 7, while the steam is supplied to the steam tube 5 from the steam communication tube 24 and is transferred in the fluidized bed 4. The steam is superheated by the heat and is supplied to the turbine 26 through the main steam pipe 25.

この蒸気はタービン26でエネルギーを放出
し、復水器28で復水して復水管路29より再び
給水管21へ供給される。
This steam releases energy in the turbine 26, is condensed in the condenser 28, and is again supplied to the water supply pipe 21 through the condensate pipe 29.

なお、27は発電機で31は主蒸気弁である。 Note that 27 is a generator and 31 is a main steam valve.

この様に流動層ボイラ1の正常運転時には給
水、蒸気が蒸気管5、伝熱管7内へ流れるが、タ
ービン26の故障時には蒸気管5、伝熱管7への
給水、蒸気は一時的に停止される。
In this way, during normal operation of the fluidized bed boiler 1, water supply and steam flow into the steam pipes 5 and heat transfer tubes 7, but when the turbine 26 fails, the water supply and steam to the steam pipes 5 and heat transfer tubes 7 are temporarily stopped. Ru.

以下タービン26が故障した場合の作動につい
て第2図を用いて説明する。
The operation when the turbine 26 fails will be explained below using FIG. 2.

タービン26が故障した場合には、主蒸気弁3
1を全閉としてタービン26への蒸気の供給を完
全に停止し、蒸気連絡管24の調整弁32も全閉
として蒸気管5への蒸気供給を一旦停止する。
If the turbine 26 fails, the main steam valve 3
1 is fully closed to completely stop the supply of steam to the turbine 26, and the regulating valve 32 of the steam communication pipe 24 is also fully closed to temporarily stop the supply of steam to the steam pipe 5.

もとよりこの時点においては流動層ボイラ1へ
の燃料管14からの燃料、給水管21からの給水
も完全に停止させる。
Of course, at this point, the fuel supply from the fuel pipe 14 and the water supply from the water supply pipe 21 to the fluidized bed boiler 1 are also completely stopped.

この様に給水管21からの給水、蒸気連絡管2
4からの蒸気を一時的に停止すれば、流動層ボイ
ラ1の蒸発管5、伝熱管7は流動層4の排熱、層
中伝熱によつて一方的に過熱されることになる
が、伝熱管7はドラム22と入口連絡管23a、
出口連絡管23bによつて連結されているため
に、ドラム22内の給水がこの伝熱管7へ流れて
冷却されるために熱変形したり、焼損事故から保
護することができる。
In this way, the water supply from the water supply pipe 21 and the steam communication pipe 2
If the steam from the fluidized bed boiler 1 is temporarily stopped, the evaporation tube 5 and the heat transfer tube 7 of the fluidized bed boiler 1 will be unilaterally overheated by the waste heat of the fluidized bed 4 and heat transfer in the bed. The heat exchanger tube 7 is connected to the drum 22 and the inlet communication tube 23a,
Since the drum 22 is connected by the outlet connecting pipe 23b, the water supplied in the drum 22 flows to the heat transfer tube 7 and is cooled, thereby protecting the drum 22 from thermal deformation and burnout.

また停電事故によつてボイラ循環ポンプ(図示
していない)が停止してもこのボイラ循環ポンプ
に代えてスチーム駆動によるウオシントンポン
プ、スチームタービンポンプ等によつて給水管2
1からドラム22へ給水が供給できるために、伝
熱管7は保護することができる。
Furthermore, even if the boiler circulation pump (not shown) stops due to a power outage, the water supply pipe 2 is replaced by a steam-driven Worthington pump, steam turbine pump, etc. in place of the boiler circulation pump.
1 to the drum 22, the heat exchanger tubes 7 can be protected.

ところが、流動層4内の蒸気管5へは調整弁3
2が全閉されて蒸気が停止され、蒸気管5は流動
層4の層内伝熱によつて一方的に過熱されること
になる。
However, the regulating valve 3 is connected to the steam pipe 5 in the fluidized bed 4.
2 is completely closed and steam is stopped, and the steam pipe 5 is unilaterally overheated by the intralayer heat transfer of the fluidized bed 4.

そこで本考案は第2図に示す如く、流動層ボイ
ラ1の緊急停止時には主蒸気弁31は全閉し、調
整弁32,33を半開き程度開いてドラム22が
保有する蒸気を流動層4内の蒸気管5へ供給し、
この蒸気によつて蒸気管5を管内部から冷却する
ようにしたのである。なお、蒸気管5を冷却した
蒸気は、主蒸気弁31の上流から調整弁33を有
するタービンバイパス配管30を経て復水器28
へ流す。
Therefore, in the present invention, as shown in FIG. 2, when the fluidized bed boiler 1 is stopped in an emergency, the main steam valve 31 is fully closed, and the regulating valves 32 and 33 are opened to a half-open degree to direct the steam held by the drum 22 into the fluidized bed 4. Supplied to steam pipe 5,
This steam cools the steam pipe 5 from inside the pipe. Note that the steam that has cooled the steam pipe 5 is passed from upstream of the main steam valve 31 to the turbine bypass piping 30 having a regulating valve 33 to the condenser 28.
flow to

つまり、流動層ボイラ1の緊急停止時には、主
蒸気弁31は全閉して蒸気タービン26への蒸気
は停止させると共に、発信器34の信号35によ
つて調整弁32,33を開いてドラム22が保有
する蒸気(流動層4の層内温度より低い温度を有
する蒸気)を流動層4に埋設されている蒸気管5
へ流すのである。
That is, in the event of an emergency stop of the fluidized bed boiler 1, the main steam valve 31 is fully closed to stop the steam flowing to the steam turbine 26, and the regulating valves 32 and 33 are opened by the signal 35 from the transmitter 34 to supply the drum 22. (vapor having a temperature lower than the temperature inside the fluidized bed 4) is transferred to the steam pipe 5 buried in the fluidized bed 4.
It flows to

すなわち、蒸気管5へ最低流量(定格蒸気量の
25〜50%容量)の蒸気をドラム22から蒸気連絡
管24、蒸気管5、主蒸気管25、タービンバイ
パス配管30を経て復水器28へ流すことによつ
て、流動層4内の蒸気管5はこの蒸気によつて冷
却され、層中伝熱からの一方的な過熱による熱変
形や焼損事故から保護することができるのであ
る。
In other words, the minimum flow rate (of the rated steam amount) to the steam pipe 5 is
25 to 50% capacity) from the drum 22 through the steam communication pipe 24, the steam pipe 5, the main steam pipe 25, and the turbine bypass pipe 30 to the condenser 28. 5 is cooled by this steam, and can be protected from thermal deformation and burnout caused by unilateral overheating due to heat transfer in the layer.

本考案によればボイラの緊急停止時であつても
ボイラの保有蒸気量によつて流動層内の蒸気管を
冷却するようにしたので、蒸気管の熱変形や焼損
事故は防止でき、しかも蒸気の保有熱量を有効に
活用することができる。
According to the present invention, even during an emergency shutdown of the boiler, the steam pipes in the fluidized bed are cooled by the amount of steam retained in the boiler, so it is possible to prevent thermal deformation and burnout of the steam pipes. can effectively utilize the amount of heat it has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流動層ボイラのフローシートを示し、
第2図は本考案の実施例を示した流動層ボイラの
詳細図である。 1……流動層ボイラ、4……流動層、5……蒸
気管、7……伝熱管、25……主蒸気管、26…
…タービン、28……復水器、30……タービン
バイパス配管、31……主蒸気弁、32,33…
…調整弁、34……発信器、35……信号。
Figure 1 shows the flow sheet of a fluidized bed boiler.
FIG. 2 is a detailed diagram of a fluidized bed boiler showing an embodiment of the present invention. 1...Fluidized bed boiler, 4...Fluidized bed, 5...Steam pipe, 7...Heat transfer tube, 25...Main steam pipe, 26...
... Turbine, 28 ... Condenser, 30 ... Turbine bypass piping, 31 ... Main steam valve, 32, 33 ...
...Adjustment valve, 34...Transmitter, 35...Signal.

Claims (1)

【実用新案登録請求の範囲】 流動層と、給水を蒸発させる伝熱管と、その伝
熱管に接続されたドラムと、前記流動層内に配置
されてドラムから送気された蒸気を過熱する蒸気
管と、前記ドラムとこの蒸気管とを連絡し途中に
調整弁を有する連絡管と、前記蒸気管からの過熱
蒸気を主蒸気弁を経てタービンへ供給する主蒸気
管と、前記蒸気管からの過熱蒸気を調整弁を経て
復水器へ供給することのできるタービンバイパス
配管と、主蒸気弁の緊急遮断時に前記連絡管の調
整弁ならびにタービンバイパス配管の調整弁に信
号を出力する発信器とを備え、 前記主蒸気弁の緊急遮断時には、前記発信器か
ら出力される信号に基づいて前記連絡管の調整弁
ならびにタービンバイパス配管の調整弁を所定の
状態に開き、ドラムに溜つている蒸気を連絡管を
介して前記流動層内の蒸気管に通気し、該蒸気管
を流通する蒸気によつて管内部から冷却するよう
に構成されたことを特徴とする流動層ボイラ。
[Claims for Utility Model Registration] A fluidized bed, a heat exchanger tube for evaporating feed water, a drum connected to the heat exchanger tube, and a steam tube disposed within the fluidized bed for superheating steam sent from the drum. a connecting pipe that connects the drum and the steam pipe and has a regulating valve in the middle; a main steam pipe that supplies superheated steam from the steam pipe to the turbine via a main steam valve; It includes a turbine bypass pipe that can supply steam to the condenser via a regulating valve, and a transmitter that outputs a signal to the regulating valve of the communication pipe and the regulating valve of the turbine bypass pipe in the event of an emergency shutdown of the main steam valve. In the event of an emergency shutdown of the main steam valve, the regulating valve of the communicating pipe and the regulating valve of the turbine bypass piping are opened to predetermined states based on the signal output from the transmitter, and the steam accumulated in the drum is diverted to the communicating pipe. A fluidized bed boiler, characterized in that the steam pipe in the fluidized bed is ventilated through the steam pipe, and the steam pipe is cooled from inside the pipe by the steam flowing through the pipe.
JP19095781U 1981-12-23 1981-12-23 fluidized bed boiler Granted JPS5896002U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19095781U JPS5896002U (en) 1981-12-23 1981-12-23 fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19095781U JPS5896002U (en) 1981-12-23 1981-12-23 fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPS5896002U JPS5896002U (en) 1983-06-29
JPS6229603Y2 true JPS6229603Y2 (en) 1987-07-30

Family

ID=30104447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19095781U Granted JPS5896002U (en) 1981-12-23 1981-12-23 fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPS5896002U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406200A1 (en) * 1984-02-21 1985-08-22 Deutsche Babcock Werke AG, 4200 Oberhausen STEAM GENERATOR WITH A STATIONARY FLUID BURN FIRING
JPS6123001U (en) * 1984-07-10 1986-02-10 バブコツク日立株式会社 Burnout prevention type fluidized bed boiler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729167U (en) * 1971-04-27 1972-12-02
JPS5335802A (en) * 1976-09-16 1978-04-03 Hitachi Ltd Control device of turbine bypass valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729167U (en) * 1971-04-27 1972-12-02
JPS5335802A (en) * 1976-09-16 1978-04-03 Hitachi Ltd Control device of turbine bypass valve

Also Published As

Publication number Publication date
JPS5896002U (en) 1983-06-29

Similar Documents

Publication Publication Date Title
US5442908A (en) Combined combustion and steam turbine power plant
BRPI0609999A2 (en) liquor recovery boiler used in the pulp and paper industry and method for producing energy in a pulp mill
WO2005003628A1 (en) Reheat/regenerative type thermal power plant using rankine cycle
CN107270274A (en) The new Starting mode of ultra-supercritical coal-fired units realizes that the denitration of unit full load is put into
JPS6153530B2 (en)
JPH11218005A (en) Combined power generation system utilizing waster as fuel
JPS6229603Y2 (en)
CN206281365U (en) A kind of high-temp waste gas afterheat utilizing system
EP0662191B1 (en) Method and plant for producing high steam temperatures when burning problematic fuels
CN209557055U (en) High-efficiency refuse power generation by waste combustion system
JPH029242B2 (en)
JPH07243305A (en) Waste heat recovery combined plant for garbage burning incinerator
CN216079743U (en) Efficient and stable-operation boiler system
JPS6113533B2 (en)
JPH0612161B2 (en) Heat recovery device for boiler exhaust gas
JP2815296B2 (en) Operating method of waste heat utilization combined plant of refuse incinerator
JPH0559905A (en) Refuse incinerating gas turbine composite plate
JPS6016802Y2 (en) Two-stage pressure type exhaust gas economizer
CN111735061A (en) Step-by-step steam generation sludge incineration system
JP3218175B2 (en) Exhaust gas treatment equipment
JPH0788926B2 (en) Boiler equipment
JP2980384B2 (en) Steam power plant repowering system
JP2769271B2 (en) Garbage incineration equipment
CN116892734A (en) Pulverized coal heating equipment coupled with steam extraction type back pressure machine
CN109958486A (en) High-efficiency refuse power generation by waste combustion system