JPH0288460A - Production of carbon fiber-reinforced carbon material - Google Patents
Production of carbon fiber-reinforced carbon materialInfo
- Publication number
- JPH0288460A JPH0288460A JP63236225A JP23622588A JPH0288460A JP H0288460 A JPH0288460 A JP H0288460A JP 63236225 A JP63236225 A JP 63236225A JP 23622588 A JP23622588 A JP 23622588A JP H0288460 A JPH0288460 A JP H0288460A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- impregnation
- treatment
- carbonization
- impregnated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 14
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000011148 porous material Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000011295 pitch Substances 0.000 claims description 92
- 238000005470 impregnation Methods 0.000 claims description 89
- 238000011282 treatment Methods 0.000 claims description 86
- 238000003763 carbonization Methods 0.000 claims description 78
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 8
- 229910052753 mercury Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 abstract description 32
- 239000002131 composite material Substances 0.000 abstract description 18
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 11
- 239000004917 carbon fiber Substances 0.000 abstract description 11
- 229920005989 resin Polymers 0.000 abstract description 6
- 239000011347 resin Substances 0.000 abstract description 6
- 239000011159 matrix material Substances 0.000 abstract description 5
- 239000002243 precursor Substances 0.000 abstract description 5
- 238000007796 conventional method Methods 0.000 abstract description 4
- 238000010000 carbonizing Methods 0.000 abstract description 3
- 238000000748 compression moulding Methods 0.000 abstract description 2
- 238000005087 graphitization Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000011049 filling Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011271 tar pitch Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 101100209694 Danio rerio vdra gene Proteins 0.000 description 1
- 241000282806 Rhinoceros Species 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、炭素繊維で強化された炭素材料の製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a carbon material reinforced with carbon fibers.
[従来の技術]
炭素繊維で強化された炭素材料、すなわち炭素繊維強化
炭素材料(C/C複合材)は、軽量(比重1.5〜2.
09/i>で機械的強度が高く、耐熱性に著しく優れて
いる(耐熱温度2,500〜3.000℃)ほか、高温
での機械的性質、耐熱ショック性、寸法安定性等の熱的
安定性に優れており、耐酸化性を除いて化学的にも安定
であり、しかも、機械的強度や電気及び熱伝導性につい
である程度コントロールが可能であるという優れた種々
の性能を有する。このため、このC/C複合材は、特に
高温に晒される部品や製品の材料として有用であり、例
えば、耐熱材料としてスペースシャトルのノーズコーン
やリーディングエツジ、ロケットノズル、リエントリ一
部品、タービン、ホットプレス鋳型等の^温型材等の用
途に、摩擦材料として航空機や高速車両のディスクブレ
ーキ、クラッチ等の用途に、耐蝕、導電材料として反応
装置、電極等の用途に、また、生体材料として人工骨、
関節、歯根等の用途にそれぞれ応用されており、今後ま
すますその用途の拡大が期待されている。[Prior Art] Carbon materials reinforced with carbon fibers, that is, carbon fiber-reinforced carbon materials (C/C composite materials), are lightweight (specific gravity 1.5-2.
09/i>, has high mechanical strength and excellent heat resistance (heat resistance temperature 2,500 to 3,000℃), and has excellent thermal properties such as mechanical properties at high temperatures, heat shock resistance, and dimensional stability. It has excellent stability, is chemically stable except for oxidation resistance, and has various excellent properties such as mechanical strength and electrical and thermal conductivity that can be controlled to a certain extent. Therefore, this C/C composite material is particularly useful as a material for parts and products exposed to high temperatures.For example, as a heat-resistant material, it can be used for space shuttle nose cones and leading edges, rocket nozzles, reentry parts, turbines, etc. It is used as a hot mold material such as hot press molds, it is used as a friction material in disc brakes and clutches for aircraft and high-speed vehicles, it is used as a corrosion-resistant and conductive material in reaction devices, electrodes, etc., and it is used as an artificial biomaterial. Bone,
It has been applied to joints, tooth roots, etc., and its applications are expected to further expand in the future.
そして、このC/C複合材は、予め炭素繊維に樹脂やピ
ッチ等の有機質マトリックスプレカーリ゛−を含浸又は
塗布し、射出成形等の手段で成形し、勧化させた後、こ
れを炭素化し黒鉛化したり、あるいは、予め炭素繊維で
最終製品に近い形状に織った織物(スケルトン)に含浸
材を含浸させ、次いで炭素化し黒鉛化させる樹脂含浸法
や、炭素繊維織物の繊維間に直接熱分解炭素を沈積させ
る化学気相蒸着法(CVD法)等の方法によって製造さ
れている(炭素1983(NO,115)、 p196
−208)。This C/C composite material is made by impregnating or coating carbon fibers with an organic matrix precursor such as resin or pitch in advance, molding them by means such as injection molding, and then carbonizing them. Alternatively, there are resin impregnation methods in which carbon fibers are woven in advance into a shape similar to the final product (skeleton), which is impregnated with an impregnating material, and then carbonized and graphitized. Direct thermal decomposition between the fibers of carbon fiber fabrics It is manufactured by methods such as chemical vapor deposition (CVD) that deposits carbon (Carbon 1983 (NO, 115), p196
-208).
しかしながら、CVD法は、均一で緻密な組織を製造す
ることができ、例えば医療用材料の製造には必要な製造
方法であるが、炭素繊維織物の繊維間に必要なだけのC
VDrA素を沈積させるのに長時間を要し、形状の大き
なC/C複合材を製造するには不向きである。However, the CVD method can produce a uniform and dense structure, and is a necessary manufacturing method for the production of medical materials, for example, but the CVD method can produce only the required amount of C between the fibers of carbon fiber fabric.
It takes a long time to deposit the VDrA element, making it unsuitable for manufacturing large-sized C/C composites.
また、上記樹脂含浸法は、被含浸材に含浸材のマトリッ
クスプレカーサーを含浸させ、これを炭素化し黒鉛化す
ることによりC/C複合材を製造するため、比較的大き
な形状のものを比較的容易に製造することができるが、
通常使用される含浸材の炭化率が低く、炭素化しあるい
はこの炭素化1変に黒鉛化する炭化処理工程で揮発する
成分が多くて製品中に多くの気孔が形成され、1回の炭
素化処理及び黒鉛化処理のみでは高密度で高強度の製品
を得ることが難しく、このために炭素化処理からなる炭
化処理後にあるいはこれに引続く黒鉛化処理を含む炭化
処理後に、再び含浸材を含浸させ、再度炭化処理する含
浸炭化処理工程を所定の密度や強度が達成されるまで数
回繰返して行っている。そして、このような目的で使用
される含浸材としては、ピッチ類やその他の熱可塑性樹
脂、フェノール樹脂やフラン樹脂その他の熱硬化性樹脂
等があり、これらは通常その粘度を調節するために、加
熱したり適当な溶剤で希釈したりして使用されている。In addition, in the resin impregnation method described above, a C/C composite material is produced by impregnating the material to be impregnated with the matrix precursor of the impregnating material, and carbonizing and graphitizing the material, so it is relatively easy to produce a relatively large shape. It can be manufactured in
The carbonization rate of commonly used impregnating materials is low, and there are many components that volatilize during the carbonization process of carbonization or graphitization, resulting in the formation of many pores in the product. It is difficult to obtain a high-density, high-strength product by graphitization treatment alone, and for this reason, after carbonization treatment consisting of carbonization treatment or subsequent carbonization treatment including graphitization treatment, impregnation material is impregnated again. The impregnation and carbonization treatment process, in which the carbonization treatment is performed again, is repeated several times until a predetermined density and strength are achieved. Impregnating materials used for this purpose include pitches, other thermoplastic resins, phenolic resins, furan resins, and other thermosetting resins, and these are usually impregnated in order to adjust their viscosity. It is used by heating it or diluting it with an appropriate solvent.
これらの含浸材のうち、経済性や配向性の観点からピッ
チ類が多用されているが、ピッチ類はそれが熱可塑性で
あるためにこれを含浸材として使用すると、炭化処理工
程での加熱によってピッチ類の粘度が低下し、被含浸材
からピッチが流出し、炭化後に10x以上の大きな細孔
が残る。そして、このピッチの流出量はその軟化点が低
いほど多く、また、軟化点の低いピッチ類は一般にその
炭化率も低いので、1回の含浸炭化処理では充分な含浸
炭化の効果が得られない。これに対して、軟化点の高い
ピッチ類は、その炭化率が比較的高く、含浸後の炭化工
程で流出し離いという利点はあるが、10虜より小さい
細孔内へは充分に浸透せず、含浸炭化後も10−より小
さい細孔が残存する。しかも、このような含浸炭化処理
は、その繰返し回数を増してもその密度の増加が含浸炭
化処理回数の172乗則に従い、含浸炭化処理の回数を
ある程度以上繰返すと被含浸材の閉気孔が増加して密度
の向上が低下する。このため、従来においては、1回の
含浸炭化処理では10Im以上の細孔に対する含浸炭化
の効果は期待せず、軟化点70〜90℃の低軟化点ピッ
チを使用して含浸炭化処理を数回繰返しているのが実状
である。Among these impregnating materials, pitches are often used from the viewpoint of economy and orientation, but since pitches are thermoplastic, if they are used as impregnating materials, they will deteriorate due to heating during the carbonization process. The viscosity of the pitches decreases, the pitch flows out of the impregnated material, and large pores of 10x or more remain after carbonization. The lower the softening point, the greater the amount of pitch flowing out, and pitches with low softening points generally have a low carbonization rate, so a single impregnation carbonization treatment cannot produce a sufficient effect of impregnation carbonization. . On the other hand, pitches with a high softening point have a relatively high carbonization rate and have the advantage of flowing out during the carbonization process after impregnation, but they cannot sufficiently penetrate into pores smaller than 10 mm. First, even after impregnation and carbonization, pores smaller than 10 remain. Moreover, even if the number of repetitions of this impregnation carbonization treatment is increased, the density will increase according to the 172nd power law of the number of impregnation carbonization treatments, and if the number of impregnation carbonization treatments is repeated beyond a certain level, the number of closed pores in the material to be impregnated will increase. density improvement is reduced. For this reason, in the past, one-time impregnation carbonization treatment was not expected to have the effect of impregnation carbonization on pores of 10 Im or more, and impregnation carbonization treatment was performed several times using a low softening point pitch with a softening point of 70 to 90°C. The reality is that it is repeated.
そこで、再含浸炭化処理の効果を上げるために、オート
クレーブで高圧含浸させる方法や、オートクレーブ中で
加圧下に炭化処理する方法等が提案されている。しかし
ながら、これらいずれの方法も、オートクレーブ中での
高圧処理を必要とするために含浸炭化処理を人聞に行う
ことができないという問題がある。Therefore, in order to increase the effect of re-impregnation and carbonization treatment, methods such as high-pressure impregnation in an autoclave and carbonization treatment under pressure in an autoclave have been proposed. However, all of these methods require high-pressure treatment in an autoclave, so there is a problem in that the impregnation carbonization treatment cannot be performed manually.
しかも、炭素化処理と黒鉛化処理を含む炭化処理工程は
、通常10〜30日間という長時間を必要とし、このた
めに如何にして含浸炭化処理の回数を減らすかはエネル
ギーコストの軽減と製造期間の短縮という観点から極め
て重要なことである。Moreover, the carbonization process, which includes carbonization and graphitization, usually takes a long time of 10 to 30 days, so the key to reducing the number of impregnation carbonization treatments is to reduce energy costs and reduce manufacturing time. This is extremely important from the perspective of shortening the
[発明が解決しようとする課題]
本発明は、かかる観点に鑑みて創案されたもので、その
目的とするところは、細孔含有量の少ない高密度C/C
複合材を%A>a−5Jることができる方法を提供する
ことにある。[Problems to be Solved by the Invention] The present invention was devised in view of this point of view, and its purpose is to provide a high-density C/C with a low pore content.
The object of the present invention is to provide a method that allows a composite material to have %A>a-5J.
また、本発明の他の目的は、含浸炭化処理の効率を高め
、少ない処理回数で細孔含有量の少ない高密度C/C複
合材を製造することができる方法を提供することにある
。Another object of the present invention is to provide a method that can improve the efficiency of impregnation carbonization treatment and produce a high-density C/C composite material with a low pore content with a small number of treatments.
ざらに、本発明の他の目的は、より少ない含浸炭化処理
の回数で従来法と同等あるいはそれ以上の高密度C/C
複合材を製造することができる方法を提供することにあ
る。In general, another object of the present invention is to achieve high-density C/C equivalent to or higher than that of the conventional method with fewer impregnation and carbonization treatments.
The object of the present invention is to provide a method by which composite materials can be manufactured.
[課題を解決するための手段]
すなわち、本発明は、ピッチ含浸処理とそれに引続く炭
化処理からなる含浸炭化工程を含む炭素繊維強化炭素材
料の製造方法において、上記ピッチ含浸処理として、少
なくとも1回以上の軟化点150℃以下のピッチを42
0℃以下の温度で含浸させる低軟化点ピッチによるピッ
チ含浸処理と、少なくとも1回以上の軟化点160℃以
上のピッチを420℃以下の温度で含浸させる高軟化点
ピッチによるピッチ含浸処理とを行う炭素繊維強化炭素
材料の製造方法であり、あるいは、ピッチ含浸処理とそ
れに引続く炭化処理からなる含浸炭化工程を含む炭素繊
維強化炭素材料の製造方法において、上記ピッチ含浸処
理として、少なくとも1回以上の水銀ポロシメーターで
測定した測定した10p以上の細孔にピッチを含浸させ
るピッチ含浸処理と、少なくとも1回以上の水銀ポロシ
メーターで測定した測定した10x未満の細孔までピッ
チを含浸させるピッチ含浸処理とを行う炭素繊維強化炭
素材料の製造方法でおる。[Means for Solving the Problems] That is, the present invention provides a method for producing a carbon fiber-reinforced carbon material that includes an impregnating carbonization step consisting of a pitch impregnation treatment and a subsequent carbonization treatment, in which the pitch impregnation treatment is performed at least once. The pitch with a softening point of 150℃ or less is 42
Pitch impregnation treatment using a low softening point pitch that is impregnated at a temperature of 0°C or lower, and pitch impregnation treatment using a high softening point pitch that involves impregnating pitch with a softening point of 160°C or higher at a temperature of 420°C or lower at least once. A method for producing a carbon fiber-reinforced carbon material, or a method for producing a carbon fiber-reinforced carbon material including an impregnation carbonization step consisting of a pitch impregnation treatment and a subsequent carbonization treatment, wherein the pitch impregnation treatment includes at least one or more Pitch impregnation treatment in which pitch is impregnated into pores of 10p or more measured with a mercury porosimeter, and pitch impregnation treatment is performed in which pitch is impregnated into pores of less than 10x measured with a mercury porosimeter at least once. A method for producing a carbon fiber reinforced carbon material.
本発明において、含浸炭化処理に供せられる被含浸材は
、通常の製造方法、すなわら予め炭素繊維に樹脂やピッ
チ等のマトリックスプレカーサーを混合又は含浸又は塗
布し、圧縮成形、割出成形等の手段で成形し、硬化させ
た後、−旦これを炭素化して得られたもの、あるいは、
これをざらに黒鉛化して(ワられたものや、予め炭素繊
維で最終製品に近い形状に織った織物(スケルトン)に
含浸材を含浸させたらの、ざらにこれを炭素化して得ら
れたもの、あるいは、これをざらに黒鉛化して得られた
もの等を挙げることができるほか、必要により炭素化ま
での工程を複数回繰返して得られたしのや黒鉛化までの
工程を複数回繰返して得られたものも含まれる。In the present invention, the material to be impregnated to be subjected to the impregnation carbonization treatment is manufactured using a normal manufacturing method, that is, carbon fibers are mixed, impregnated, or coated with a matrix precursor such as resin or pitch in advance, and then compression molding, index molding, etc. After molding and curing by means of - carbonization, or
This can be roughly graphitized (warped) or carbonized by impregnating a woven fabric (skeleton) woven with carbon fibers in a shape similar to the final product with an impregnating material. Alternatively, in addition to those obtained by roughly graphitizing this, if necessary, the process up to carbonization can be repeated multiple times, and the process up to graphitization can be repeated multiple times. This includes what is obtained.
ピッチ含浸処理としては、少なくとし1回以上の軟化点
150℃以下、好ましくは120℃以下の低軟化点ピッ
チによるピッチ含浸処理と、少なくとも1回以上の軟化
点160℃以上の高軟化点ピッチによるピッチ含浸処理
とを行うものであるが、前者の低軟化点ピッチによるピ
ッチ含浸処理により水銀ポロシメーターで測定した測定
した10犀未満の細孔に、好ましくは1151以下の細
孔にまでピッチを含浸させ、また、侵者の高軟化点ピッ
チによるピッチ含浸処理により水銀ポロシメーターで測
定した測定した10虜以上の細孔にピッチを含浸させる
。そして、12低軟化点ピッチによるピッチ含浸処理と
高軟化点ピッチによるピッチ含浸処理とは、1回の含浸
炭化処理工程で行ってもよく、また、異なる含浸炭化処
理工程で行ってもよい。1回の含浸炭化処理工程で上記
低軟化点ピッチによるピッチ含浸処理と高軟化点ピッチ
によるピッチ含浸処理とを行う場合には、前者の低軟化
点ピッチによるピッチ含浸処理を先に行い、ぞの後含浸
材として使用した低軟化点ピッチの軟化点より100℃
以上高い温度に加熱し、比較的大きな細孔(10p以上
)に含浸されている低軟化点ピッチを予め流出させ、次
いで高軟化点ピッチによるピッチ含浸処理を行うのがよ
い。The pitch impregnation treatment includes at least one pitch impregnation treatment with a pitch with a low softening point of 150°C or less, preferably 120°C or less, and at least one time with a high softening point pitch with a softening point of 160°C or more. Pitch impregnation treatment is carried out, but the pitch impregnation treatment with the former low softening point pitch impregnates the pitch into the measured pores of less than 10 rhinoceros measured with a mercury porosimeter, preferably pores of 1151 or less. In addition, pitch is impregnated into pores with a size of 10 or more as measured by a mercury porosimeter by a pitch impregnation treatment with a pitch having a high softening point. The pitch impregnation treatment using the 12 low softening point pitch and the pitch impregnation treatment using the high softening point pitch may be performed in one impregnation carbonization treatment step, or may be performed in different impregnation carbonization treatment steps. When performing pitch impregnation treatment using the above-mentioned low softening point pitch and pitch impregnation treatment using high softening point pitch in one impregnation carbonization treatment process, the pitch impregnation treatment using the former low softening point pitch is performed first, and then 100℃ below the softening point of the low softening point pitch used as a post-impregnation material
It is preferable to heat the material to a higher temperature than above, to flow out the low softening point pitch impregnated into relatively large pores (10p or more) in advance, and then to perform pitch impregnation treatment with the high softening point pitch.
このピッチ含浸処理は、420℃以下、好ましくは36
0℃以下の温度で行うのがよく、この含浸処理温度が4
20℃を越えると、ピッチの垂縮合反応が起り、このピ
ッチ含浸処理中にピッチの粘度が上昇し、時には固化し
て充分な含浸炭化処理の効果を得ることができない。そ
して、このピッチ含浸処理は加圧下に行ってもよく、特
に低軟化点ピッチによるピッチ含浸処理で水銀ポロシメ
ーターで測定した10u未満の細孔に効果的にピツチを
含浸させる上でこの加圧下のピッチ含浸処理は有効であ
る。This pitch impregnation treatment is carried out at 420°C or below, preferably at 36°C.
It is best to carry out the process at a temperature of 0°C or lower, and this impregnation temperature is 4°C.
If the temperature exceeds 20°C, a condensation reaction of the pitch occurs, and the viscosity of the pitch increases during the pitch impregnation treatment, and sometimes it solidifies, making it impossible to obtain a sufficient effect of the impregnation carbonization treatment. This pitch impregnation treatment may be performed under pressure, and in particular, pitch impregnation treatment with a low softening point pitch is effective in impregnating pitch with pitch of less than 10 U as measured by a mercury porosimeter. Impregnation treatment is effective.
このようにしてピッチ含浸処理の済んだ被含浸材は、通
常の製造方法と同様に、炭素化あるいはこの炭素化と引
続き行われる黒鉛化とからなる炭化処理に付される。こ
の際に、炭素化は非酸化性雰囲気下に450〜1,10
0℃の温度範囲で徐々に加熱して行われ、また、必要に
応じて行われる黒鉛化は不活性雰囲気下に1.800〜
2,800℃の温度範囲で徐々に加熱して行われる。The material to be impregnated which has been subjected to the pitch impregnation treatment in this manner is subjected to a carbonization treatment consisting of carbonization or carbonization followed by graphitization, in the same manner as in a normal manufacturing method. At this time, carbonization is carried out under a non-oxidizing atmosphere at 450 to 1,10
Graphitization is carried out by gradual heating in the temperature range of 0 °C, and graphitization is carried out as necessary in an inert atmosphere at temperatures ranging from 1.800 °C to 0 °C.
It is carried out by gradual heating in a temperature range of 2,800°C.
この含浸炭化処理の回数は1回以上行えばよく、この含
浸炭化の効果はその回数をΦねるごとに小さくなるので
、通常4回以下で充分である。本発明方法を適用するこ
とにより、1回の含浸炭化処理で大きな細孔まで充填さ
れるので、複数回の含浸炭化処理を行う場合、そのうち
の少なくとも1回を本発明方法で行い、それ以外につい
ては従来法で行ってもよい。This impregnation carbonization treatment may be performed one or more times, and since the effect of this impregnation carbonization decreases as the number of times increases, it is usually sufficient to perform the impregnation carbonization treatment four times or less. By applying the method of the present invention, even large pores can be filled with one impregnation carbonization treatment, so when performing multiple impregnation carbonization treatments, at least one of them is performed by the method of the present invention, and the other may be performed using conventional methods.
本発明方法は、含浸炭化処理工程を含む全てのC/C複
合材の製造方法に適用することができる。The method of the present invention can be applied to all C/C composite manufacturing methods including an impregnation carbonization treatment step.
航空機用ブレーキ、自動車用ブレーキ、発熱体、ホット
プレス鋳型等を製造する際に採用される、炭素INとマ
トリックスプレカーサーとを混合してから成形する製造
方法においては、その最初の炭素化が終了した後の含浸
炭化処理の工程のうち少なくとも1回以上の工程に本発
明方法を適用すればよく、また、ノーズコーン、リーデ
ィングエツジ、ロケットノズル等を製造する際に採用さ
れる、炭素繊維で織った最終製品に近い形状の織物(ス
ケルトン)を使用する方法においては、その後の含浸炭
化処理工程のうち少なくとも1回以上の■稈に本発明方
法を適用すればよい。In the manufacturing method that is used to manufacture aircraft brakes, automobile brakes, heating elements, hot press molds, etc., in which carbon IN and matrix precursor are mixed and then molded, the initial carbonization has been completed. The method of the present invention may be applied to at least one of the subsequent impregnation and carbonization steps. In a method using a woven fabric (skeleton) having a shape close to that of the final product, the method of the present invention may be applied to the culm in at least one of the subsequent impregnation and carbonization treatment steps.
本発明方法にかかる含浸炭化処理の操作を行うと、被含
浸材の気孔を充填する効果が大きく、嵩密度の上昇が大
きい。そして、従来法ではこの含浸炭化処理を10回以
上繰返して1.7〜1.89 / ctA程度の嵩密度
に到達していたが、本発明方法によれば嵩密度を2.0
g/−程度にまで上げることもできるほか、含浸炭化処
理の回数も減少させることができる。When the impregnation carbonization treatment according to the method of the present invention is performed, the effect of filling the pores of the material to be impregnated is large, and the bulk density is greatly increased. In the conventional method, this impregnation carbonization treatment was repeated 10 times or more to reach a bulk density of about 1.7 to 1.89/ctA, but according to the method of the present invention, the bulk density can be reduced to 2.0/ctA.
In addition to being able to increase the amount to about 100 g/-, it is also possible to reduce the number of impregnation carbonization treatments.
[作 用]
軟化点の高いピッチはその炭化率が大きく、また、炭化
時の粘度低下か小さく、大きい細孔からの流出量が少な
いが、含浸Ii4にその粘度を低くすることができず、
小さい細孔にまで浸透さけることが難しい。これに対し
て、軟化点の低いピッチは、含浸時の粘度を低くするこ
とができて小さな細孔まで浸透させることができるが、
炭化時の粘度低下が大きく、大きな細孔から流出する量
も多くなり、また、炭化率も小さいので炭化後の密度上
昇の効果が小さい。[Function] Pitch with a high softening point has a large carbonization rate, and also has a small viscosity drop during carbonization, and the amount of outflow from large pores is small, but the viscosity cannot be lowered during impregnation Ii4,
Difficult to penetrate into small pores. On the other hand, pitch with a low softening point can lower the viscosity during impregnation and can penetrate into small pores.
The viscosity decreases greatly during carbonization, the amount flowing out from large pores increases, and the carbonization rate is small, so the effect of increasing density after carbonization is small.
本発明方法は、これら軟化点の低いピッチと軟化点の高
いピッチの双方を含浸材として使用し、小さな細孔に対
しては軟化点の低いピッチを含浸させ、大きな細孔に対
しては軟化点の高いピッチを含浸させ、これによって被
含浸材の各細孔内に効率良くピッチを含浸せしめ、1回
の含浸炭化の効率を格段に向上させることができたもの
と考えられる。The method of the present invention uses both pitches with a low softening point and pitches with a high softening point as impregnating materials, and impregnates small pores with the pitch with a low softening point, while impregnating large pores with the pitch with a low softening point. It is believed that by impregnating the pitch with high points, the pitch was efficiently impregnated into each pore of the material to be impregnated, and the efficiency of one-time impregnation carbonization was able to be significantly improved.
[実施例]
以下、実施例及び比較例に基いて、本発明方法を具体的
に説明覆る。[Examples] Hereinafter, the method of the present invention will be specifically explained based on Examples and Comparative Examples.
実施例1
)) A N系炭素繊維とレゾール型フェノール樹脂と
を原料とし、ディスク状の形状を有する嵩密度1.29
99/cd及び開気孔率51.6%のC/C複合材を調
製してこれを被含浸材とした。Example 1)) A made from N-based carbon fiber and resol type phenolic resin, has a disk-like shape, and has a bulk density of 1.29.
A C/C composite material with 99/cd and an open porosity of 51.6% was prepared and used as a material to be impregnated.
この被含浸材に200℃、15Kg/Cl1I−Gの条
件で軟化点86°Cのタールピッチを含浸せしめ、38
0℃に加熱して流出するタールピッチを除去し、次いで
380℃、’I5に!J/ci−Gの条件で軟化点24
0℃のピッチを含浸せしめ、電気炉に入れて窒素ガス雰
囲気下に110時間で1,100℃まで昇温させ、被含
浸材中に含浸されたピッチを炭素化した。This impregnated material was impregnated with tar pitch having a softening point of 86°C at 200°C and 15 kg/Cl1I-G.
Heat to 0°C to remove the escaping tar pitch, then to 380°C, 'I5! Softening point 24 under J/ci-G conditions
The material was impregnated with pitch at 0°C, placed in an electric furnace, and heated to 1,100°C in a nitrogen gas atmosphere for 110 hours to carbonize the pitch impregnated into the impregnated material.
得られたC/C複合材について、その嵩密度と水銀ポロ
シメーターによる開気孔率(≧10II!Itの気孔率
とく10pの気孔率)を測定し、含浸炭化処理の前後で
減少した気孔率(≧10虜の気孔率と<10pの気孔率
の合計)の差を含浸前の気孔率(≧10虜の気孔率と<
104の気孔率の合計)で割って得られた気孔充填率を
求めた。結果を第1表に示す。The bulk density and open porosity of the obtained C/C composite material were measured using a mercury porosimeter (≧10II!It porosity and 10p porosity), and the porosity decreased before and after impregnation carbonization treatment (≧ The difference between the porosity before impregnation (the sum of the porosity of 10p and the porosity of <10p) is the difference between the porosity of 10p and the porosity of <
The pore filling rate was determined by dividing the total porosity by the total porosity of 104. The results are shown in Table 1.
比較例1
実施例1と同じ被含浸材を使用し、また、実施例1で使
用したと同じ軟化点86℃のピッチを使用し、実施例1
と同様に200℃、15Kg/Cl1t・Gの条件で軟
化点86℃のピッチを含浸させ、加熱流出処理と高軟化
点ピッチによる含浸処理を行うことなく、実施例1と同
様に炭素化し、得られたC/C複合材について、その嵩
密度と開気孔率とを測定し、気孔充填率を求めた。結果
を第1表に示す。Comparative Example 1 The same material to be impregnated as in Example 1 was used, and the same pitch with a softening point of 86°C as used in Example 1 was used.
Similarly, pitch with a softening point of 86°C was impregnated at 200°C and 15Kg/Cl1tG, and carbonized in the same manner as in Example 1 without performing heat flow treatment and impregnation treatment with high softening point pitch. The bulk density and open porosity of the C/C composite material obtained were measured, and the pore filling rate was determined. The results are shown in Table 1.
第1表
この第1表から明らかなように、実施例1の方法で含浸
炭化処理した場合のほうが、得られたC/C複合材の嵩
密度及び気孔充填率が高かった。Table 1 As is clear from Table 1, the bulk density and pore filling rate of the obtained C/C composite material were higher when the impregnation carbonization treatment was performed by the method of Example 1.
実施例2
実施例1と同じ被含浸材を使用し、1回目の含浸炭化処
理には軟化点240℃のピッチを使用し、2回目の含浸
炭化処理には軟化点86℃のピッチを使用し、実施例1
と同様にして含浸炭化処理を行った。Example 2 The same material to be impregnated as in Example 1 was used, and pitch with a softening point of 240°C was used for the first impregnation carbonization treatment, and pitch with a softening point of 86°C was used for the second impregnation carbonization treatment. , Example 1
Impregnation and carbonization treatment was carried out in the same manner as above.
)9られたC/C複合材について、実施例1と同様に、
その嵩密度と開気孔率とを測定し、気孔充填率を求めた
。結果を第2表に示す。) Regarding the C/C composite material prepared in Example 1,
The bulk density and open porosity were measured to determine the pore filling rate. The results are shown in Table 2.
実施例3
1回目の含浸炭化処理に軟化点86℃のピッチを使用し
、2回目の含浸炭化処理に軟化点240°Cのピッチを
使用し、実施例2と同様にして含浸炭化処理を行った。Example 3 Impregnation carbonization treatment was carried out in the same manner as in Example 2, using pitch with a softening point of 86 ° C. for the first impregnation carbonization treatment and using pitch with a softening point of 240 ° C. for the second impregnation carbonization treatment. Ta.
得られたC/C複合材について、実施例1と同様に、そ
の嵩密度と開気孔率とを測定し、気孔充填率を求めた。Regarding the obtained C/C composite material, its bulk density and open porosity were measured in the same manner as in Example 1, and the pore filling rate was determined.
結果を第2表に示す。The results are shown in Table 2.
比較例2
軟化点86℃のピッチを使用し、含浸炭化処理を2回繰
返して行った以外は、上記比較例1と同様にして含浸炭
化処理を行った。Comparative Example 2 Impregnation carbonization treatment was performed in the same manner as in Comparative Example 1 above, except that pitch with a softening point of 86° C. was used and the impregnation carbonization treatment was repeated twice.
1ワられたC/C複合材について、実施例1と同様に、
その嵩密度と開気孔率とを測定し、気孔充填率を求めた
。結果を第2表に示す。As in Example 1, for the C/C composite material which was warped by 1.
The bulk density and open porosity were measured to determine the pore filling rate. The results are shown in Table 2.
第 2 表
炭化処理でよく、これによってC/C複合材製造時のエ
ネルギーコストを大幅に軽減することができ、また、%
A造明期間短縮することができる。Second surface carbonization treatment is sufficient, which can significantly reduce the energy cost during the production of C/C composite materials, and
A: The construction period can be shortened.
Claims (2)
含浸炭化工程を含む炭素繊維強化炭素材料の製造方法に
おいて、上記ピッチ含浸処理として、少なくとも1回以
上の軟化点150℃以下のピッチを420℃以下の温度
で含浸させる低軟化点ピッチによるピッチ含浸処理と、
少なくとも1回以上の軟化点160℃以上のピッチを4
20℃以下の温度で含浸させる高軟化点ピッチによるピ
ッチ含浸処理とを行うことを特徴とする炭素繊維強化炭
素材料の製造方法。(1) In a method for manufacturing a carbon fiber-reinforced carbon material including an impregnation carbonization step consisting of a pitch impregnation treatment and a subsequent carbonization treatment, as the pitch impregnation treatment, pitch with a softening point of 150°C or less is heated to 420°C at least once. Pitch impregnation treatment with low softening point pitch impregnated at the following temperature,
4 pitches with a softening point of 160℃ or more at least once
A method for producing a carbon fiber-reinforced carbon material, which comprises performing a pitch impregnation treatment using a high softening point pitch impregnated at a temperature of 20° C. or lower.
含浸炭化工程を含む炭素繊維強化炭素材料の製造方法に
おいて、上記ピッチ含浸処理として、水銀ポロシメータ
ーで測定した10μm以上の細孔にピッチを含浸させる
ピッチ含浸処理と、水銀ポロシメーターで測定した測定
した10μm未満の細孔までピッチを含浸させるピッチ
含浸処理とを各々少なくとも1回以上行うことを特徴と
する炭素繊維強化炭素材料の製造方法。(2) In a method for producing a carbon fiber-reinforced carbon material including an impregnation carbonization step consisting of a pitch impregnation treatment and a subsequent carbonization treatment, the pitch impregnation treatment involves impregnating pitch into pores of 10 μm or more as measured by a mercury porosimeter. A method for producing a carbon fiber-reinforced carbon material, characterized in that pitch impregnation treatment and pitch impregnation treatment in which pitch is impregnated into pores of less than 10 μm measured with a mercury porosimeter are each performed at least once or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63236225A JPH0288460A (en) | 1988-09-22 | 1988-09-22 | Production of carbon fiber-reinforced carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63236225A JPH0288460A (en) | 1988-09-22 | 1988-09-22 | Production of carbon fiber-reinforced carbon material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0288460A true JPH0288460A (en) | 1990-03-28 |
Family
ID=16997642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63236225A Pending JPH0288460A (en) | 1988-09-22 | 1988-09-22 | Production of carbon fiber-reinforced carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0288460A (en) |
-
1988
- 1988-09-22 JP JP63236225A patent/JPH0288460A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3936535A (en) | Method of producing fiber-reinforced composite members | |
EP0714869B1 (en) | Carbon fiber-reinforced carbon composite material and process for the preparation thereof | |
JPH069270A (en) | Preparation of carbon/carbon composite material part using mesophase powder | |
JP2018052791A (en) | Matrix composition for precursor for carbon/carbon composite material and manufacturing method of prepreg using the same | |
JPH0288460A (en) | Production of carbon fiber-reinforced carbon material | |
JPS6054270B2 (en) | Carbon fiber reinforced carbon friction material | |
JP3138718B2 (en) | Method for producing carbon fiber reinforced carbon material | |
JPH0551257A (en) | Production of carbon fiber reinforced carbon material | |
JPH08245273A (en) | Production of carbon fiber reinforced carbon composite material | |
KR970007019B1 (en) | Process for the preparation of carbon fiber reinforced carbon composite using pitch | |
JP4420371B2 (en) | Manufacturing method of screw member made of C / C material | |
JPH04160059A (en) | Production of carbon fiber reinforcing carbon composite material | |
JP2762461B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JPH03197360A (en) | Production of carbon fiber-reinforced carbon material | |
JP2004323273A (en) | C/c composite and method of manufacturing the same | |
KR0143614B1 (en) | A method for densifying a multi-direction proform of carbon fiber | |
JPH0352426B2 (en) | ||
JPH02283666A (en) | Production of high-density carbon composite reinforced with carbon fiber | |
JPH0426547A (en) | Production of carbon reinforced carbon composite material | |
JPH0455991B2 (en) | ||
JP3345437B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JPH0442857A (en) | Preparation of carbon fiber-reinforced composite material | |
JPH07157371A (en) | Production of prepreg in carbon fiber/carbon composite material | |
JPH01145372A (en) | Production of carbon fiber-reinforced carbonaceous composite | |
JPH03261661A (en) | Production of carbon fiber-reinforced carbon composite material |