JPH0282460A - Control device for fuel cell power generation system - Google Patents

Control device for fuel cell power generation system

Info

Publication number
JPH0282460A
JPH0282460A JP63233897A JP23389788A JPH0282460A JP H0282460 A JPH0282460 A JP H0282460A JP 63233897 A JP63233897 A JP 63233897A JP 23389788 A JP23389788 A JP 23389788A JP H0282460 A JPH0282460 A JP H0282460A
Authority
JP
Japan
Prior art keywords
fuel
flow rate
fuel cell
gas
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63233897A
Other languages
Japanese (ja)
Other versions
JP2695860B2 (en
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63233897A priority Critical patent/JP2695860B2/en
Publication of JPH0282460A publication Critical patent/JPH0282460A/en
Application granted granted Critical
Publication of JP2695860B2 publication Critical patent/JP2695860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to conduct a satisfactory fuel supply to a fuel cell even in sudden load variation, in particular load increase by adding a leading element or leading/delaying element to the reference flow rate of a source gas. CONSTITUTION:A leading element or leading/delaying element 11 is further added to the part 1 generating the reference setting flow rate (b) of a source gas by battery current (a) or a load command. Consequently when load is risen and battery current increased in a fuel cell power generation system, since the supply quantity of the source gas is precedingly increased, such actions, as eliminating the propagation delay of gas in a fuel reform system and preventing the pressure drop in the reform system, is made. Conversely when the load is reduced, since the source gas is precedingly reduced, also such actions, as eliminating the propagation delay of the gas and restraining the pressure rise in the reform system, is made. This enables the pressure in the fuel reform system to be always properly retained, and the fuel supply to the fuel cell satisfactorily retained.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、燃料電池と改質装置とを備えて構成される燃
料電池発電システムに係わり、特に、負荷変動時等にお
ける燃料改質系の圧力の制御性を高め負荷追従性を向上
させようとした燃料電池発電システムの制御装置に関す
る。
[Detailed Description of the Invention] [Purpose of the Invention (Field of Industrial Application) The present invention relates to a fuel cell power generation system comprising a fuel cell and a reformer, and particularly relates to a fuel cell power generation system including a fuel cell and a reformer. The present invention relates to a control device for a fuel cell power generation system that aims to improve controllability of pressure in a fuel reforming system and improve load followability.

(従来の技術) 燃料電池発電システムは、高効率、無公害、低騒音で、
且つ負荷追従性に優れた発電システムと言われている。
(Conventional technology) Fuel cell power generation systems are highly efficient, non-polluting, and low-noise.
It is also said to be a power generation system with excellent load followability.

そして、本システムでは天然ガス、ナフサ等の原料ガス
から燃料電池での電気化学反応に必要な水素ガスを生成
する改質装置を有しており、改質装置に適切な原料ガス
を供給するために負荷や電池電流に応じた基準設定流量
に対し、燃料改質系の代表圧力を安定に維持するために
、本圧力の設定値と検出値の偏差による補正値を与え、
設定流量とする原料ガスの流量制御構成を通常有してい
る。
This system has a reformer that generates the hydrogen gas necessary for the electrochemical reaction in the fuel cell from raw material gases such as natural gas and naphtha. In order to maintain the representative pressure of the fuel reforming system stably with respect to the standard set flow rate according to the load and battery current, a correction value is given based on the deviation between the main pressure set value and the detected value.
It usually has a configuration for controlling the flow rate of the raw material gas to a set flow rate.

第3図は燃料電池発電システムの一従来構成例を示した
ものである。図において、1は原料ガス基準設定流量演
算部、2及び3は調節器、そして4は原料ガス流量調節
弁である。本従来例では、原料ガス基準設定流量演算部
1が電池流量aを入力して、基準設定流量すを発生し、
更に燃料改質系代表部の圧力が適切に保たれるよう、そ
の設定値Cと検出値dとの偏差に基づき調節器2が補正
値eを与え、bとeの加算値を設定流量fとする構成で
ある。更に、本構成では、設定流量fに実流量を追従さ
せるために、設定流量fと検出@gとから、調節器3が
流量調節弁4c二開度指令りを与える構成である。
FIG. 3 shows an example of a conventional configuration of a fuel cell power generation system. In the figure, reference numeral 1 denotes a raw material gas reference setting flow rate calculation section, 2 and 3 regulators, and 4 a raw gas flow rate control valve. In this conventional example, the raw material gas standard setting flow rate calculating section 1 inputs the battery flow rate a and generates the standard setting flow rate S.
Furthermore, in order to maintain the pressure in the representative part of the fuel reforming system appropriately, the regulator 2 gives a correction value e based on the deviation between the set value C and the detected value d, and the sum of b and e is used as the set flow rate f. The configuration is as follows. Furthermore, in this configuration, in order to make the actual flow rate follow the set flow rate f, the regulator 3 gives a second opening command to the flow rate control valve 4c from the set flow rate f and the detection @g.

(発明が解決しようとする課題) 上記構成の燃料電池発電システムにおいては、燃料改質
系におけるガスの流れの伝′!@遅れに起因し、負荷増
加時に燃料改質系、圧力が低下し、燃料電池へ適切に燃
料が供給できなくなる等の問題があった。
(Problems to be Solved by the Invention) In the fuel cell power generation system having the above configuration, the transmission of gas flow in the fuel reforming system is difficult. Due to the delay, there were problems such as the pressure in the fuel reforming system dropping when the load increased, making it impossible to properly supply fuel to the fuel cell.

この間開を第4図を用いて、より具体的に説明する。This opening will be explained in more detail using FIG. 4.

燃料改質系にはリフオーマ5、高温シフター6更に低温
シフター7等の反応装置が直列に配置され、且つ、それ
らが反応触媒層を有するため、流れに対して比較的大き
な抵抗を有する。従って、この系ではガスの流れの伝t
r!!遅れが大きく、原料ガス流量調節弁4でガス流量
を増やしても、それが燃料改質系セパレータ8に伝播す
る迄に、比較的時間を要する。今、負荷が増加しな場合
について考えると、燃料電池への必要燃料量が増加する
ため、電池燃料極燃料流量調節弁9が開き、燃料流量を
増加させるよう動作する。しかしながら、このような構
成では、上記伝播遅れによりセパレータ8の圧力が低下
することにより、調節弁9の一次側圧力が低下し、燃料
電池への十分な燃料供給ができなくなる。なお、従来例
における燃料改質系代表圧力とは、例えば第4図におけ
るセパレータ8の内部あるいは出口圧力などが挙げられ
る。
In the fuel reforming system, reaction devices such as a reformer 5, a high temperature shifter 6, and a low temperature shifter 7 are arranged in series, and since they have a reaction catalyst layer, they have a relatively large resistance to flow. Therefore, in this system, the gas flow propagation t
r! ! The delay is large, and even if the gas flow rate is increased by the raw material gas flow rate control valve 4, it takes a relatively long time for the increase to propagate to the fuel reforming system separator 8. Now, considering the case where the load does not increase, the amount of fuel required for the fuel cell increases, so the cell anode fuel flow control valve 9 opens and operates to increase the fuel flow rate. However, in such a configuration, as the pressure in the separator 8 decreases due to the propagation delay, the primary pressure in the control valve 9 decreases, making it impossible to supply sufficient fuel to the fuel cell. Note that the representative pressure of the fuel reforming system in the conventional example includes, for example, the internal or outlet pressure of the separator 8 in FIG. 4.

本発明は、上記問題点を解決するためになされるもめで
あり、急激な負荷変動、特に負荷増加に対しても、燃料
電池への燃料供給を良好に行なうことができる燃料電池
発電システムの制御装置を提供することを目的としてい
る。
The present invention is an effort to solve the above-mentioned problems, and is a control of a fuel cell power generation system that can satisfactorily supply fuel to a fuel cell even in the face of rapid load fluctuations, especially load increases. The purpose is to provide equipment.

[発明の構成] (課題を解決するための手段) 前記目的を達成するために、本発明では電池電流や負荷
指令から原料ガスの基準設定流量を発生する部分に、更
に進み要素あるいは進み遅れ要素を加えたことを!!;
?徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention further includes a lead element or a lead-lag element in the part that generates the standard set flow rate of raw material gas from the battery current and load command. That we added ! ! ;
? be a sign.

(作 用) 従って、燃料電池発電システムにて負荷が上昇し、電池
電流が増加した場合に、1liX料ガスは先行的に供給
量が増加されるため、燃料改質系におけるガスの伝播遅
れを打ち消し、改質系の圧力低下を防ぐような作用がな
される。逆に、負荷が減少した場合には、原料ガスが先
行的に絞り込まれるため、やはりガスの伝播遅れが打ち
消され、改質系の圧力上昇を抑える作用がある。
(Function) Therefore, when the load increases in the fuel cell power generation system and the cell current increases, the supply amount of 1liX feed gas is increased in advance, thereby reducing the gas propagation delay in the fuel reforming system. The effect is to counteract this and prevent the pressure drop in the reforming system. Conversely, when the load decreases, the raw material gas is narrowed down in advance, which cancels out the gas propagation delay and has the effect of suppressing the pressure rise in the reforming system.

(突方色例) 以下に本発明の実施例について図面を多照して説明する
(Example of solid color) Examples of the present invention will be described below with reference to the drawings.

第1図は、本発明による燃料電池発電システムの制御装
置の実施例を示すものであり、第3図と同一部分には同
一符号を付して、これらについては説明を省略する。
FIG. 1 shows an embodiment of a control device for a fuel cell power generation system according to the present invention, and the same parts as in FIG. 3 are denoted by the same reference numerals, and the explanation thereof will be omitted.

本実施例では、従来の原料ガス基準設定流量すを基に、
これに進み要素あるいは遅れ要素11が基準設定流量i
を発生する構成である。ここで要素11は例えば(1)
式や(2)式で与えられる。
In this example, based on the conventional source gas standard setting flow rate,
The advance element or the delay element 11 is the reference setting flow rate i.
This is a configuration that generates. Here, element 11 is for example (1)
It is given by Equation or Equation (2).

1+T1s           ・・・・・・(1)
(1+72 S)/ <1+T3 S)  ・・・(2
)’r、 、 T2 、 ’r3は定数 Sはラグラス演算子 なお、基準設定流量iから、最終的な設定流量fを求め
る構成及びその設定流量fに追従させるべく開度指令り
を与える構成は、従来の構成例第3図とまったく同一で
ある。
1+T1s ・・・・・・(1)
(1+72 S)/<1+T3 S) ...(2
)'r, , T2, 'r3 are constants S are Lagrass operators. Furthermore, the configuration for determining the final set flow rate f from the standard set flow rate i and the configuration for giving an opening command to follow the set flow rate f are as follows: , which is exactly the same as the conventional configuration example shown in FIG.

次に燃料電池発電システムの制御装置の作用について説
明する。例えば時刻ttからez、i%に負荷あるいは
電池電流が増加した場合を、第2図を用いて説明する。
Next, the operation of the control device of the fuel cell power generation system will be explained. For example, a case where the load or battery current increases from time tt to ez, i% will be explained using FIG.

このような負荷増加に対し、第3図に示した従来構成で
は、FX料ガスは負荷増加に従いF2に示すような増力
日応答を示し、前述した燃料改質系のガス伝播遅れによ
って改質系代表圧力は、F2のように過渡的に低下する
。これに対し、本発明による実施例によれば、原料ガス
は第2図のFlに示すごとく、進んで増加するように作
用するため、改質系の代表圧力はPlのように負荷増加
後の圧力に良好に追従することになる。
In response to such an increase in load, in the conventional configuration shown in Figure 3, the FX feed gas exhibits an increase day response as shown in F2 as the load increases, and due to the gas propagation delay in the fuel reforming system mentioned above, the reforming system The representative pressure decreases transiently like F2. On the other hand, according to the embodiment of the present invention, the raw material gas acts to increase progressively as shown by Fl in FIG. It follows the pressure well.

従って、本発明によれば、より先行的に進んで原料ガス
流量を変化させて燃料改質系の圧力変動を抑えるなめ、
負荷変化に対しても前記圧力を適切に維持し、更には燃
料電池への燃料ガスの供給を良好に行なうことが可能と
なる。
Therefore, according to the present invention, in order to more proactively change the raw material gas flow rate to suppress pressure fluctuations in the fuel reforming system,
It becomes possible to maintain the pressure appropriately even when the load changes, and furthermore, it becomes possible to satisfactorily supply fuel gas to the fuel cell.

[発明の効果] 以上、説明したごとく、本発明によれば負荷変化時によ
り先行的に原料ガス流量を制御させるよう構成したので
、燃料改質系の圧力をいつも適切に保ち、よって燃料電
池への燃料供給を良好に維持することが可能となり、グ
ランドとしての負荷追従性の向上がなされる。
[Effects of the Invention] As explained above, according to the present invention, since the raw material gas flow rate is controlled in advance when the load changes, the pressure in the fuel reforming system is always maintained at an appropriate level, and therefore the fuel cell It becomes possible to maintain a good fuel supply for the ground, and the load followability of the ground is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による燃料電池発電システムの制御装置
の一実施例を示す構成ブロック図、第2図は本発明と従
来例との作用の相違説明図、第3図は従来の燃料電池発
電システムの制御装置を示すブロック図、第4図は従来
の間跋点の説明図である。 1・・・原料ガス基準設定流量演算部 2.3・・・調節器  4・・・原料ガス流量調節弁5
・・・リフオーマ  6・・・高温シフター7・・・低
温シフター 8・・・セパレータ9・・・電池燃料極燃
料流量調節弁 10・・・スチーム供給ライン
Fig. 1 is a configuration block diagram showing one embodiment of a control device for a fuel cell power generation system according to the present invention, Fig. 2 is a diagram illustrating the difference in operation between the present invention and a conventional example, and Fig. 3 is a diagram of a conventional fuel cell power generation system. FIG. 4 is a block diagram showing the control device of the system, and is an explanatory diagram of the conventional failure point. 1... Raw material gas standard setting flow rate calculation section 2.3... Controller 4... Raw material gas flow rate control valve 5
... Reformer 6 ... High temperature shifter 7 ... Low temperature shifter 8 ... Separator 9 ... Battery anode fuel flow control valve 10 ... Steam supply line

Claims (1)

【特許請求の範囲】[Claims] 原料ガスを改質して水素リッチな改質ガスを生成する改
質装置と、この改質装置にて得られた改質ガスを燃料ガ
スとして燃料極へ、また酸化剤ガスを酸化剤極に夫々導
入し、このとき生ずる電気化学的反応により電気エネル
ギーを発生する燃料電池を備え、電池電流あるいは負荷
を基に求めた原料ガス基準流量に対し、燃料改質系の代
表圧力の設定値と検出値との偏差による補正値を与え、
原料ガスを設定流量とする原料ガス流量制御構成の燃料
電池発電システムにおいて、前記原料ガスの基準流量に
対して進み要素あるいは進み遅れ要素を加えることを特
徴とする燃料電池発電システムの制御装置。
A reformer that reforms raw material gas to produce hydrogen-rich reformed gas, the reformed gas obtained by this reformer is used as fuel gas to be sent to the fuel electrode, and the oxidant gas is sent to the oxidizer electrode. Equipped with a fuel cell that generates electrical energy through the electrochemical reaction that occurs, the set value and detection of the representative pressure of the fuel reforming system are performed with respect to the reference flow rate of the raw material gas determined based on the cell current or load. Give a correction value based on the deviation from the value,
1. A control device for a fuel cell power generation system having a raw material gas flow rate control configuration in which a raw material gas is used as a set flow rate, wherein a lead element or a lead/lag element is added to a reference flow rate of the raw material gas.
JP63233897A 1988-09-19 1988-09-19 Control unit for fuel cell power generation system Expired - Lifetime JP2695860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233897A JP2695860B2 (en) 1988-09-19 1988-09-19 Control unit for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233897A JP2695860B2 (en) 1988-09-19 1988-09-19 Control unit for fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH0282460A true JPH0282460A (en) 1990-03-23
JP2695860B2 JP2695860B2 (en) 1998-01-14

Family

ID=16962286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233897A Expired - Lifetime JP2695860B2 (en) 1988-09-19 1988-09-19 Control unit for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2695860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615030A (en) * 2020-12-10 2021-04-06 全球能源互联网研究院有限公司 Control system and control method of fixed fuel cell unit for power generation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128673A (en) * 1982-01-27 1983-08-01 Hitachi Ltd Control of fuel cell power generating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128673A (en) * 1982-01-27 1983-08-01 Hitachi Ltd Control of fuel cell power generating plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615030A (en) * 2020-12-10 2021-04-06 全球能源互联网研究院有限公司 Control system and control method of fixed fuel cell unit for power generation

Also Published As

Publication number Publication date
JP2695860B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US3607419A (en) Fuel cell system control
US5989739A (en) Method for operating a fuel cell system
US5397656A (en) Differential pressure controlling method and apparatus for plate reformer of fuel cell power generation system
US6783879B2 (en) Dynamic fuel processor mechanization and control
JP7050461B2 (en) Fuel cell system and how to stop it
JPH08153532A (en) Controlling method for operation of fuel cell power system
JP4944597B2 (en) Solid oxide fuel cell power generation system and operation control method thereof
JPH0282460A (en) Control device for fuel cell power generation system
JPH03122971A (en) Operation control method for fuel cell power generating system
JPS6318307B2 (en)
JPS6229867B2 (en)
JPS61233979A (en) Controller of fuel cell power generating plant
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JPH03266366A (en) Control unit of fuel cell generating system
JPS63292575A (en) Fuel cell power generating system
JPS6345762A (en) Operation controller of fuel cell power generating plant
JPS58166672A (en) Operation control method of fuel cell
JPS61110969A (en) Operation control of fuel cell
JPH01144569A (en) Pressure and flow control device for fuel cell power generating system
JPS61101970A (en) Fuel flow rate control device for fuel cell generation plant
JPH0547399A (en) Temperature control method and device for reforming device of fuel cell power generating system
JPH0556628B2 (en)
JPS63119164A (en) Fuel cell generating system
JPH0316750B2 (en)
JPH01246770A (en) Output control method for fuel cell of molten carbonate type