JPH0282063A - Control method for absorbing type refrigerator - Google Patents

Control method for absorbing type refrigerator

Info

Publication number
JPH0282063A
JPH0282063A JP23414188A JP23414188A JPH0282063A JP H0282063 A JPH0282063 A JP H0282063A JP 23414188 A JP23414188 A JP 23414188A JP 23414188 A JP23414188 A JP 23414188A JP H0282063 A JPH0282063 A JP H0282063A
Authority
JP
Japan
Prior art keywords
temperature
absorption liquid
liquid
temperature regenerator
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23414188A
Other languages
Japanese (ja)
Other versions
JP2664436B2 (en
Inventor
Kazuhiro Yoshii
吉井 一寛
Toshiyuki Kaneko
敏之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23414188A priority Critical patent/JP2664436B2/en
Publication of JPH0282063A publication Critical patent/JPH0282063A/en
Application granted granted Critical
Publication of JP2664436B2 publication Critical patent/JP2664436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To make it possible to obtain a circulation quantity of absorbing solution equivalent to a heating quantity irrespective of any change in the temperature of cooling water by controlling the quantity of diluted absorbing solution to be fed into a high temperature regenerator so that a concentration difference between a diluted absorbing solution and a conc. absorbing solution may be reduced in proportion to an increase in the heating quantity of said high temperature regenerator. CONSTITUTION:An attempt is made to detect the concentration of a conc. absorbing solution obtained based on signals transmitted from a first temperature detector which detects the temperature of a conc. absorbing solution which flows out from a low temperature regenerator 2 and a second temperature detector 16 which detects the temperature of condensed refrigerant at a condenser 6. An attempt is also made to detect the temperature of a diluted absorbing solution of an absorber 3 based on signals transmitted from a fourth temperature detector which detects the temperature of vaporized refrigerant of a vaporizer 7. An attempt is made to control the quantity of a diluted absorbing solution which flows from the absorber 3 to a high temperature regenerator 1 so that a concentration difference of the diluted absorbing solution obtained based on signals transmitted from a fifth temperature detector 23 may be increased in proportion to a decrease in the heating quantity in the high temperature regenerator 1. Therefore, this construction makes it possible to feed a diluted absorbing solution conforming to the heating quantity to the high temperature regenerator 1 and minimize heat loss in the high temperature regenerator 1, say, the heating value required to vaporized the dilutes absorbing solution in the high temperature regenerator 1.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は高温再生器と低温再生器とを備えた吸収冷凍機
の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of controlling an absorption refrigerator equipped with a high temperature regenerator and a low temperature regenerator.

(ロ)従来の技術 例えば実開昭56−63951号公報、特公昭61−4
8062号公報、又は特開昭60−133279号公報
には、溶液(吸収液)の循環量を冷水温度、高温再生温
液面、高温再生器内圧力度、高温再生器内圧力、吸収器
内液面、蒸発器冷媒液面等に基づいて制御する吸収冷凍
機が開示きれている。
(b) Conventional techniques such as Utility Model Application Publication No. 56-63951, Japanese Patent Publication No. 61-4
No. 8062 or Japanese Patent Application Laid-Open No. 60-133279 describes the circulating amount of solution (absorbing liquid) in terms of cold water temperature, high-temperature regeneration hot liquid level, high-temperature regenerator internal pressure, high-temperature regenerator internal pressure, and absorber internal liquid. Absorption refrigerators that are controlled based on the refrigerant level, evaporator refrigerant level, etc. have been disclosed.

(ハ)発明が解決しようとする課題 上記従来の技術において、冷水温度、高温再生温液面等
の物理量は吸収器及び凝縮器を流れる冷却水の温度変化
、吸収冷凍機内の不凝縮ガスの滞留等により変化し、吸
収冷凍機の高温再生器の加熱量に合った溶液循環量制御
を行うことができなくなる虞れがあった。
(c) Problems to be Solved by the Invention In the above-mentioned conventional technology, physical quantities such as chilled water temperature and high-temperature regeneration hot liquid level are measured by changes in the temperature of cooling water flowing through the absorber and condenser, and retention of non-condensable gas in the absorption refrigerator. etc., and there was a risk that it would not be possible to control the solution circulation amount in accordance with the heating amount of the high-temperature regenerator of the absorption refrigerator.

本発明は加熱量に合った吸収液の循環量を冷却水の温度
変化等に関係なく得ることができる吸収冷凍機を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an absorption refrigerator that can obtain a circulating amount of absorption liquid that matches the amount of heating regardless of changes in the temperature of cooling water.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、高温再生器(1)
、低温再生器(2)、凝縮器(6)、蒸発器(7)、吸
収器(3)、低温熱交換器(5)、及び高温熱交換器(
4)をそれぞれ配管接続し、吸収器(3)で冷媒を吸収
した稀吸収液が低温熱交換器(5)、及び高温熱交換器
(4)で熱交換して昇温し、高温再生器(1)へ送られ
、加熱濃縮されて中間液になり、高温熱交換器(4)で
降温し、低温再生器(2)へ送られ、高温再生器(1)
で発生した冷媒蒸気で中間液が加熱濃縮され濃吸収液に
なり、低温熱交換器(5)で降温し吸収器(3)に散布
され、且つ、蒸発器(7)を流れる冷水温度に応じて高
温再生器(1)の加熱量が制御される吸収冷凍機におい
て、稀吸収液と濃吸収液との濃度差、又は稀吸収液と中
間液との濃度差が高温再生器(1)の加熱量の増加に伴
ない小きくなるように高温再生器(1)へ送られる稀吸
収液の量を制御する吸収冷凍機の制御方法を提供するも
のである。
(d) Means for solving the problems In order to solve the above problems, the present invention provides a high temperature regenerator (1).
, low temperature regenerator (2), condenser (6), evaporator (7), absorber (3), low temperature heat exchanger (5), and high temperature heat exchanger (
4) are connected to each other via piping, and the dilute absorption liquid that has absorbed the refrigerant in the absorber (3) exchanges heat with the low temperature heat exchanger (5) and the high temperature heat exchanger (4) to raise its temperature, and is then transferred to the high temperature regenerator. (1), heated and concentrated to become an intermediate liquid, lowered in temperature in a high temperature heat exchanger (4), sent to a low temperature regenerator (2), and then heated to a high temperature regenerator (1).
The intermediate liquid is heated and condensed by the refrigerant vapor generated in the evaporator to become a concentrated absorption liquid, which is cooled down in the low-temperature heat exchanger (5) and distributed to the absorber (3). In an absorption refrigerator in which the heating amount of the high-temperature regenerator (1) is controlled by This invention provides a method for controlling an absorption refrigerator that controls the amount of dilute absorption liquid sent to a high temperature regenerator (1) so that it decreases as the amount of heating increases.

又、濃吸収液の濃度を凝縮器(6)での冷媒凝縮温度と
、低温再生器(2)の濃吸収液の温度より求め、稀吸収
液の濃度を蒸発器(7)の冷媒液温度と稀吸収液の温度
より求め、中間液の濃度を低温再生器での冷媒凝縮温度
と高温再生器(1)の中間液温度から求める吸収冷凍機
の制御方法を提供するものである。
Also, the concentration of the concentrated absorption liquid is determined from the refrigerant condensation temperature in the condenser (6) and the temperature of the concentrated absorption liquid in the low-temperature regenerator (2), and the concentration of the dilute absorption liquid is calculated from the refrigerant liquid temperature in the evaporator (7). and the temperature of the dilute absorption liquid, and the concentration of the intermediate liquid is determined from the refrigerant condensation temperature in the low-temperature regenerator and the intermediate liquid temperature in the high-temperature regenerator (1).

又、濃吸収液の濃度を凝縮器(6〉内又は低温再生器(
2)内圧力と濃吸収液の温度とから求め、稀吸収液の濃
度を蒸発器(7)内又は吸収器(3)内の圧力と稀吸収
液の温度とから求め、中間液の濃度を高温再生器(1)
内の圧力と高温再生器(1)の中間液温度とから求める
吸収冷凍機の制御方法を提供するものである。
In addition, the concentration of the concentrated absorption liquid can be adjusted in the condenser (6) or in the low-temperature regenerator (6).
2) Determine the concentration of the diluted absorption liquid from the internal pressure and the temperature of the concentrated absorption liquid, determine the concentration of the diluted absorption liquid from the pressure in the evaporator (7) or absorber (3) and the temperature of the diluted absorption liquid, and calculate the concentration of the intermediate liquid. High temperature regenerator (1)
The present invention provides a method for controlling an absorption refrigerator, which is determined from the internal pressure and the intermediate liquid temperature of the high-temperature regenerator (1).

さらに、濃吸収液、稀吸収液、及び中間吸収液の濃度を
それぞれの液の比重と温度とから求める吸収冷凍機の制
御方法を提供するものである。
Furthermore, the present invention provides a method for controlling an absorption refrigerator in which the concentrations of a concentrated absorption liquid, a dilute absorption liquid, and an intermediate absorption liquid are determined from the specific gravity and temperature of each liquid.

(ネ)作用 吸収冷凍機の運転時、稀吸収液と濃吸収液との濃度差、
又は、稀吸収液と中間液との濃度差が加熱量の増加に伴
ない小さくなり、且つ、加熱量の減少に伴ない大きくな
るように、高温再生器(1)へ送られる稀吸収液の量が
制御きれるため、加熱量が減少したときには、濃度差が
一定の場合より高温再生器(1)へ送られる稀吸収液の
量が減少し、加熱量に合った量の稀吸収液が高温再生器
へ流れ、実効効率の向上を図ることが可能になる。
(n) Effect When operating an absorption refrigerator, the concentration difference between the dilute absorption liquid and the concentrated absorption liquid,
Alternatively, the dilute absorption liquid sent to the high temperature regenerator (1) is adjusted such that the concentration difference between the dilute absorption liquid and the intermediate liquid becomes smaller as the amount of heating increases, and increases as the amount of heating decreases. Since the amount can be controlled, when the heating amount decreases, the amount of dilute absorption liquid sent to the high temperature regenerator (1) decreases compared to when the concentration difference is constant, and the amount of dilute absorption liquid that matches the heating amount is heated to a high temperature. It flows to the regenerator, making it possible to improve the effective efficiency.

又、冷却水温度の変化、吸収器(3)への不凝縮ガスの
滞留等の外乱が発生した場合にも、上記濃度差が設定値
になるように吸収器(3)から高温再生器(1)へ流れ
る稀吸収液の量が制御され、加熱量に合った量の稀吸収
液が高温再生器(1)へ送られ、外乱による実効効率の
低下を僅かに抑えることが可能になる。
In addition, even if disturbances occur such as a change in the cooling water temperature or the accumulation of non-condensable gas in the absorber (3), the high temperature regenerator ( The amount of the diluted absorption liquid flowing to the heating element (1) is controlled, and the amount of diluted absorption liquid that matches the amount of heating is sent to the high-temperature regenerator (1), making it possible to slightly suppress the decrease in effective efficiency due to disturbance.

又、濃吸収液、中間液、稀吸収液の濃度を温度のみに基
づいて求めた場合には、冷凍サイクルに温度検出器を設
ければ良く、安価に濃度を求めることが可能になる。
Moreover, when the concentration of the concentrated absorption liquid, intermediate liquid, and dilute absorption liquid is determined based only on temperature, it is sufficient to provide a temperature detector in the refrigeration cycle, and the concentration can be determined at low cost.

又、各濃度を低温再生器内圧力、蒸発器内圧力、高温再
生器内圧力等に基づいて求めた場合、又は、比重等に基
づいて求めた場合には、正確に各濃度を求めることがで
き、高温再生器へ送られる稀吸収液の量を一層正確に制
御することが可能になる。
In addition, if each concentration is determined based on the pressure inside the low temperature regenerator, the pressure inside the evaporator, the pressure inside the high temperature regenerator, etc., or when it is determined based on specific gravity, etc., it is difficult to accurately determine each concentration. This allows for more precise control of the amount of dilute absorption liquid sent to the high temperature regenerator.

(へ)実施例 以下本発明の一実施例を図面に基づいて詳細に説明する
(f) Example Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図において、(1)は高温再生器、(2)は低温再
生器、(3)は吸収器、(4)は高温熱交換器、(5)
は低温熱交換器、(6)は凝縮器、(7)は蒸発器であ
り、それぞれは配管により接続されている。又、(8)
は高温再生器(1)に設けられたバーナ、(10)は凝
縮、低温再生型態、(11)は蒸発、吸収型態である。
In Figure 1, (1) is a high-temperature regenerator, (2) is a low-temperature regenerator, (3) is an absorber, (4) is a high-temperature heat exchanger, and (5) is a high-temperature heat exchanger.
is a low-temperature heat exchanger, (6) is a condenser, and (7) is an evaporator, each of which is connected by piping. Also, (8)
is a burner provided in the high temperature regenerator (1), (10) is a condensation, low temperature regeneration type, and (11) is an evaporation, absorption type.

許らに、(12)は吸収器(3)と高温再生器(1)と
の間に配管された補液管であり、この補液管(12)の
途中には第1ポンプ(13)と流量制御弁(14)とが
設けられている。 <15)は低温再生器(2)から流
出した濃吸収液の温度を検出する第1温度検出器、(1
6)は凝縮器〈6〉での凝縮冷媒温度を検出する第2温
度検出器であり、第1.第2温度検出器(15) 、 
(16)からの信号に基づいて濃吸収液の濃度演算回路
(以下第1演算回路という) (17)が動作して濃吸
収液の濃度が求められる。
(12) is a fluid replacement pipe piped between the absorber (3) and the high temperature regenerator (1), and a first pump (13) and a flow rate pipe are connected in the middle of this fluid replacement pipe (12). A control valve (14) is provided. <15) is a first temperature detector that detects the temperature of the concentrated absorption liquid flowing out from the low temperature regenerator (2);
6) is a second temperature detector that detects the temperature of the refrigerant condensed in the condenser <6>; second temperature detector (15),
Based on the signal from (16), a concentrated absorption liquid concentration calculation circuit (hereinafter referred to as the first calculation circuit) (17) operates to determine the concentration of the concentrated absorption liquid.

(18)は蒸発器(7)にて冷却きれた冷水の温度を検
出する第3温度検出器であり、この第3温度検出器(1
8)は冷水管(19)に接続されている。又、(20)
は蒸発器(7)に配管された冷媒管であり、この冷媒管
(20)の途中には第2ポンプ(21)と、蒸発器(7
)の蒸発冷媒温度を検出する第4温度検出器(22)と
が設けられている。さらに、り23)は清液管(12)
の途中に設けられた第5温度検出器であり、この第5温
度検出器(23)により吸収器(3〉の稀吸収液の温度
が検出される。(24)は稀吸収液の濃度演算回路(以
下第2演算回路という)であり、この第2演算回路(2
4)が第4.第5温度検出器(22) 。
(18) is a third temperature detector that detects the temperature of the cold water completely cooled in the evaporator (7);
8) is connected to the cold water pipe (19). Also, (20)
is a refrigerant pipe piped to the evaporator (7), and a second pump (21) and the evaporator (7) are installed in the middle of this refrigerant pipe (20).
) for detecting the temperature of the evaporated refrigerant. Furthermore, ri 23) is the fresh liquid pipe (12)
This fifth temperature detector (23) detects the temperature of the dilute absorption liquid in the absorber (3). (24) is a concentration calculation of the dilute absorption liquid. circuit (hereinafter referred to as the second arithmetic circuit), and this second arithmetic circuit (hereinafter referred to as the second arithmetic circuit)
4) is the fourth. Fifth temperature detector (22).

(23)からの信号に基づいて動作し、稀吸収液の濃度
が求められる。
It operates based on the signal from (23), and the concentration of the dilute absorption liquid is determined.

(25)は制御器であり、この制御器(25)は第3温
度検出器(18)からの信号に基づいて動作し、制御器
(25)からの信号に基づいてバーナ制御弁(26)の
開度が調整され、バーナ(8)の燃焼量が変化し、高温
再生器(1)の加熱量が調整きれる。又、制御器(25
)は第1演算回路(17)、及び第2演算回路(24)
からの信号に基づいて動作し、濃吸収液の濃度と稀吸収
液の濃度との差が高温再生器(1)での加熱量に応して
予め設定された値になるように流量制御弁(14)へ信
号を出力する。又、(34)及び(35)は吸収液管、
(27〉、及び(28)は冷媒管、(30)は冷却水管
である。
(25) is a controller, and this controller (25) operates based on the signal from the third temperature detector (18), and the burner control valve (26) operates based on the signal from the controller (25). The opening degree of the burner (8) is adjusted, the amount of combustion of the burner (8) is changed, and the amount of heating of the high temperature regenerator (1) can be adjusted. In addition, the controller (25
) are the first arithmetic circuit (17) and the second arithmetic circuit (24)
The flow control valve operates based on a signal from the flow control valve so that the difference between the concentration of the concentrated absorption liquid and the concentration of the dilute absorption liquid becomes a preset value depending on the amount of heating in the high temperature regenerator (1). Output a signal to (14). Also, (34) and (35) are absorption liquid pipes,
(27> and (28) are refrigerant pipes, and (30) is a cooling water pipe.

以F、上記吸収冷凍機の運転動作について説明する。第
1ポンプ(13)の運転に伴ない稀吸収液が吸収器(3
)から補液管(12)を介して高温再生器(1)へ送ら
れる。そして、稀吸収液は高温再生器(1)で加熱され
、蒸発した冷媒は冷媒管(27)を通り低温再生器(2
)を経て凝縮器(6)に入る。凝縮器(6)に入った冷
媒と、低温再生器(2)から凝縮器〈6)へ流れ冷却水
管(30)内の水と熱交換して凝縮した冷媒とは共に冷
媒管(28)を通り蒸発器(7)へ流れる。そして、第
2ポンプ(21)の運転により冷媒が冷水管(19)の
上方から散布され、冷水管(19)内の水と熱交換して
蒸発し、このときに奪う熱により冷水管(19)内の水
の温度が低下する。
Hereinafter, the operation of the absorption refrigerator will be explained. With the operation of the first pump (13), the dilute absorption liquid is pumped into the absorber (3).
) is sent to the high temperature regenerator (1) via the replacement fluid pipe (12). Then, the dilute absorption liquid is heated in the high temperature regenerator (1), and the evaporated refrigerant passes through the refrigerant pipe (27) and the low temperature regenerator (2).
) and enters the condenser (6). The refrigerant that has entered the condenser (6) and the refrigerant that flows from the low-temperature regenerator (2) to the condenser (6) and is condensed by exchanging heat with the water in the cooling water pipe (30) pass through the refrigerant pipe (28). Flows through to the evaporator (7). Then, by operating the second pump (21), the refrigerant is sprayed from above the cold water pipe (19), exchanges heat with the water in the cold water pipe (19), and evaporates. ) decreases in water temperature.

蒸発器(7)にて蒸発した冷媒は吸収器(3)にて濃吸
収液により吸収され、稀吸収液が第1ポンプ(13)の
運転により低温熱交換器(5)、及び高温熱交換器(4
)を経て高温再生器(1)へ送られる。そして、高温再
生器(1)での冷媒の蒸発により濃度が高くなった中間
液が高温熱交換器(4)を経て低温再生器(2)へ送ら
れる。低温再生器(2)にて中間液は冷媒管(27)を
流れる冷媒蒸気と熱交換し、中間液からさらに冷媒が蒸
発する。そして、濃度が高くなった濃吸収液が吸収液管
(34)、低温熱交換器(5〉を介して吸収器(3)へ
送られ、散布される。
The refrigerant evaporated in the evaporator (7) is absorbed by the concentrated absorption liquid in the absorber (3), and the diluted absorption liquid is transferred to the low-temperature heat exchanger (5) and the high-temperature heat exchanger by the operation of the first pump (13). Vessel (4
) and sent to the high temperature regenerator (1). Then, the intermediate liquid whose concentration has increased due to evaporation of the refrigerant in the high-temperature regenerator (1) is sent to the low-temperature regenerator (2) via the high-temperature heat exchanger (4). In the low temperature regenerator (2), the intermediate liquid exchanges heat with refrigerant vapor flowing through the refrigerant pipe (27), and further refrigerant evaporates from the intermediate liquid. Then, the concentrated absorption liquid with increased concentration is sent to the absorber (3) via the absorption liquid pipe (34) and the low-temperature heat exchanger (5>), and is dispersed.

上記のように吸収冷凍機が運転゛されているとき、冷水
管(19)を流れる冷水の温度が例えば低下したときに
は第3温度検出器(18)からの信号に基づいて制御器
(25〉が動作し、バーナ制御弁(26)の開度が小さ
くなり、加熱量が減少する。又、上記冷水の温度が例え
ば上昇したときには、第3温度検出器(18)からの信
号に基づいて制御器(25)が動作し、バーナ制御弁(
26)の開度が大きくなり、加熱量が増加する。
When the absorption refrigerator is operated as described above, if the temperature of the cold water flowing through the cold water pipe (19) drops, for example, the controller (25) is activated based on the signal from the third temperature detector (18). The opening degree of the burner control valve (26) becomes smaller and the amount of heating is reduced.Furthermore, when the temperature of the cold water rises, for example, the controller operates based on the signal from the third temperature detector (18). (25) operates, and the burner control valve (
26) becomes larger and the amount of heating increases.

一方、第2温度検出器(16)から凝縮冷媒温度の信号
を入力した第1演算回路(17)は、入力信号と水の飽
和特性とから凝縮、低温再生器JFI(10)内の圧力
(P、)を計算する。そして、圧力(PI)と第1温度
検出器(15)からの濃吸収液の温度(TI)とから吸
収液の濃度曲線に基づいて濃吸収液の濃度が演算される
。きらに、第4温度検出器(22)から蒸発器(7)の
冷媒液温度の信号を入力した第2演算回路(24)は入
力信号と水の飽和特性とから蒸発、吸収型態(11)内
の圧力(P、)を計算する。そして、圧力(P、)と第
5温度検出器(23)からの稀吸収液の温度(T、)と
から吸収液の濃度曲線に基づいて稀吸収液の濃度が演算
きれる。そして、制御器(25)が第1演算回路(17
)、及び第2演算回路(24)から濃吸収液の濃度信号
、及び、稀吸収液の濃度信号を入力する。制御器(25
)には、高温再生器(1)の加熱量、即ち、制御器(2
5)からバーナ制御弁(26)へ出力される信号に応じ
た濃吸収液の濃度と稀吸収液の濃度との差が予め設定さ
れている。ここで、第2図に示したように、上記濃度差
は例えば加熱量が最大、即ち100%のときには5,5
%、80%のときには6.6%、60%のときには7.
7%、40%のときには8.8%、30%のときには9
.3%になり、加熱量の減少に伴ない濃度差が大きくな
るように設定されている。
On the other hand, the first arithmetic circuit (17) which receives the signal of the condensed refrigerant temperature from the second temperature detector (16) calculates the pressure ( P, ) is calculated. Then, the concentration of the concentrated absorption liquid is calculated based on the concentration curve of the absorption liquid from the pressure (PI) and the temperature (TI) of the concentrated absorption liquid from the first temperature detector (15). Furthermore, the second arithmetic circuit (24) which receives the signal of the refrigerant liquid temperature in the evaporator (7) from the fourth temperature detector (22) determines the evaporation and absorption type (11) from the input signal and the saturation characteristics of water. ) Calculate the pressure (P, ) in ). Then, the concentration of the dilute absorption liquid can be calculated based on the concentration curve of the absorption liquid from the pressure (P, ) and the temperature (T, ) of the dilute absorption liquid from the fifth temperature detector (23). The controller (25) then operates the first arithmetic circuit (17).
), and the concentration signal of the concentrated absorption liquid and the concentration signal of the dilute absorption liquid are input from the second calculation circuit (24). Controller (25
) is the heating amount of the high temperature regenerator (1), that is, the controller (2
5) to the burner control valve (26), the difference between the concentration of the concentrated absorption liquid and the concentration of the diluted absorption liquid is set in advance. Here, as shown in FIG. 2, the above concentration difference is, for example, 5,5 when the heating amount is maximum, that is, 100%.
%, 6.6% when it is 80%, 7. when it is 60%.
7%, 8.8% when 40%, 9 when 30%
.. 3%, and the concentration difference is set to increase as the amount of heating decreases.

吸収冷凍機の運転時、冷水温度の変化に応じて制御器(
25)からバーナ制御弁(26)へ出力きれる信号が変
化し、バーナ(8)の加熱量が例えば80%から60%
に低下した場合には、それに応じて、濃吸収液と稀吸収
液との濃度差が加熱量−80%のときより大きい7.7
%になるよう制御器(25)から流量制御弁(14)へ
信号が出力される。そして、例えば稀吸収液の濃度が第
2図に示したように56%のとき、濃吸収液の濃度が5
6+7.7の63.7%より高く、濃度差が設定値より
大きい場合には流量制御器(25)からの信号に基づい
て流量制御弁(14)の開度が大きくなる。すると、高
温再生器(1)へ流れる稀吸収液の量が増え、濃吸収液
の濃度が低下して濃度差が減少する。又、濃度差が設定
値より小さい場合には制御器からの信号に基づいて流量
制御弁(14)の開度が小さくなる。すると、高温再生
器(1)へ流れる稀吸収液の量が減少し、濃吸収液の濃
度が高くなり、d度差が大きくなる。そして、加熱量の
変化に関係なく濃度差を一定に保つ場合に比べ高温再生
器(1)へ送られる稀吸収液の量が減少する。
When the absorption chiller is operating, the controller (
25) to the burner control valve (26) changes, and the heating amount of the burner (8) changes from 80% to 60%, for example.
7.7, when the concentration difference between the concentrated absorption liquid and the dilute absorption liquid is correspondingly larger than that when the heating amount is -80%.
%, a signal is output from the controller (25) to the flow control valve (14). For example, when the concentration of the dilute absorption liquid is 56% as shown in Figure 2, the concentration of the concentrated absorption liquid is 56%.
When the concentration difference is higher than 63.7% of 6+7.7 and larger than the set value, the opening degree of the flow rate control valve (14) is increased based on the signal from the flow rate controller (25). Then, the amount of the dilute absorption liquid flowing into the high temperature regenerator (1) increases, the concentration of the concentrated absorption liquid decreases, and the concentration difference decreases. Further, when the concentration difference is smaller than the set value, the opening degree of the flow rate control valve (14) is reduced based on a signal from the controller. Then, the amount of the dilute absorption liquid flowing to the high temperature regenerator (1) decreases, the concentration of the concentrated absorption liquid increases, and the d degree difference increases. Then, the amount of dilute absorption liquid sent to the high temperature regenerator (1) is reduced compared to the case where the concentration difference is kept constant regardless of the change in the heating amount.

又、バーナ(8)の加熱量が例えば60%よりさらに低
下すると、それに伴ない制御器(25)に設定された濃
吸収液と稀吸収液との濃度差が増加し、加熱量の変化に
関係なく濃度差を一定に保つ場合に比べ流量制御弁(1
4)の開度が小さくなり、高温再生器(1)へ送られる
稀吸収液の量が減少する。
Furthermore, when the heating amount of the burner (8) further decreases below, for example, 60%, the difference in concentration between the concentrated absorption liquid and the dilute absorption liquid set in the controller (25) increases, and the change in the heating amount increases. Compared to the case where the concentration difference is kept constant regardless of the flow rate control valve (1
4) becomes smaller, and the amount of dilute absorption liquid sent to the high temperature regenerator (1) decreases.

さらに、バーナ(8)の加熱量が増加した場合には、制
御器(25)に設定された濃吸収液と稀吸収液との濃度
差が減少する。そして、高温イ生器(1)へ送られる稀
吸収液の量が増加する。
Furthermore, when the heating amount of the burner (8) increases, the difference in concentration between the concentrated absorption liquid and the dilute absorption liquid set in the controller (25) decreases. Then, the amount of dilute absorption liquid sent to the high temperature generator (1) increases.

又、吸収冷温水機の運転中に冷却水管(30)を流れる
冷却水の温度が変化した場合には、吸収器(3)から高
温再生器(1)へ流れる稀吸収液の温度が変化する。こ
こで、稀吸収液の温度が変化すると、第2演算回路(2
4)にて求められる稀吸収液の濃度が変化する。そして
、濃度変化に応じて制御器(25)が動作し、濃吸収液
と稀吸収液との濃度差が設定値になるように高温再生器
(1)へ流れる稀吸収液の量が制御される。
Additionally, if the temperature of the cooling water flowing through the cooling water pipe (30) changes during operation of the absorption chiller/heater, the temperature of the dilute absorption liquid flowing from the absorber (3) to the high temperature regenerator (1) changes. . Here, when the temperature of the dilute absorption liquid changes, the second calculation circuit (2
The concentration of the dilute absorption liquid determined in 4) changes. Then, the controller (25) operates according to the concentration change, and controls the amount of the diluted absorption liquid flowing to the high temperature regenerator (1) so that the concentration difference between the concentrated absorption liquid and the diluted absorption liquid becomes the set value. Ru.

又、吸収器(3)に水素等の不凝縮ガスが滞留した場合
にも、第2演算回路(24)にて求められる稀吸収液と
、濃吸収液との濃度差がそのときの加熱量に対応した設
定値になるように高温再生器〈1)−・流れる稀吸収液
の量が制御される。
Furthermore, even when non-condensable gas such as hydrogen remains in the absorber (3), the difference in concentration between the dilute absorption liquid and the concentrated absorption liquid determined by the second calculation circuit (24) determines the amount of heating at that time. The amount of dilute absorption liquid flowing through the high temperature regenerator <1) is controlled so that the set value corresponds to the set value.

上記本発明の実施例によれば、第1.第2温度検出器(
15) 、 (16)からの信号に基づいて求められた
濃吸収液の濃度と、第4.第5温度検出器(22) 、
 (23)からの信号に基づいて求められた稀吸収液の
濃度との差が、第2図に示したように高温再生器(1)
での加熱量が減少するのに伴ない大きくなるように吸収
器(3)から高温再生器(1)へ流れる稀吸収液の量が
制御されるため、加熱量が減少したときに、濃度差が一
定の場合と比較して濃吸収液の濃度を高めるように吸収
器(3)から高温再生器(1)へ流れる稀吸収液の量が
減少するため、加熱量に合った稀吸収液を高温再生器(
1)へ流すことができ、高温再生器(1)での熱ロス、
即ち、高温再生器り1)での稀吸収液の蒸発に必要な熱
量を少なくすることができ、この結果、第2図に示した
ようにC,O,P(実効効率)を従来より向上させるこ
とができる。
According to the above embodiment of the present invention, first. Second temperature detector (
15), the concentration of the concentrated absorption liquid determined based on the signals from (16), and the concentration of the concentrated absorption liquid determined based on the signals from 4. Fifth temperature detector (22),
As shown in Figure 2, the difference between the concentration of the dilute absorption liquid determined based on the signal from (23) and the high temperature regenerator (1)
The amount of dilute absorption liquid flowing from the absorber (3) to the high-temperature regenerator (1) is controlled so that it increases as the amount of heating decreases, so when the amount of heating decreases, the concentration difference Compared to the case where High temperature regenerator (
1), heat loss in the high temperature regenerator (1),
In other words, the amount of heat required to evaporate the dilute absorption liquid in the high temperature regenerator 1) can be reduced, and as a result, as shown in Figure 2, C, O, P (effective efficiency) is improved compared to the conventional method. can be done.

又、冷却水温度の変化、又は吸収器(3)への不凝縮ガ
スの滞留等の外乱が発生した場合にも、濃吸収液と稀吸
収液との濃度差が加熱量に応じた設定値になるように、
吸収器(3)から高温再生器(1〉へ流れる稀吸収液の
量が制御されるため、加熱量に合った量の稀吸収液を吸
収器(3〉から高温再生器(1)へ流すことができ、こ
の結果、外乱による実効効率の低下を僅かに抑えること
ができる。
In addition, even if a disturbance occurs such as a change in the cooling water temperature or the accumulation of non-condensable gas in the absorber (3), the concentration difference between the concentrated absorption liquid and the diluted absorption liquid will change to the set value according to the amount of heating. so that
Since the amount of dilute absorption liquid flowing from the absorber (3) to the high temperature regenerator (1>) is controlled, the amount of dilute absorption liquid that matches the amount of heating is flowed from the absorber (3>) to the high temperature regenerator (1). As a result, a decrease in effective efficiency due to disturbance can be suppressed slightly.

尚、上記実施例において、濃吸収液と稀吸収液との濃度
差が設定値になるように流量制御弁(14)の開度を調
整して高温再生器(1)へ流れる稀吸収液の量を変化さ
せるようにしたが、第1ポンプ(13)の回転数を制御
して高温再生器(1)へ流れる稀吸収液の量を変化させ
るようにしても良い。
In the above embodiment, the opening degree of the flow control valve (14) is adjusted so that the concentration difference between the concentrated absorption liquid and the diluted absorption liquid becomes the set value, so that the diluted absorption liquid flows to the high temperature regenerator (1). Although the amount is changed, the amount of dilute absorption liquid flowing to the high temperature regenerator (1) may be changed by controlling the rotation speed of the first pump (13).

又、第1図において(32)は高温再生器(1)の中間
液温度を検出する第6温度検出器、(33)は低温再生
器(2)の凝縮冷媒温度を検出する第7温度検出器であ
る。そして、第6.第7温度検出器(32) 。
Also, in Fig. 1, (32) is a sixth temperature detector that detects the intermediate liquid temperature of the high temperature regenerator (1), and (33) is a seventh temperature detector that detects the condensed refrigerant temperature of the low temperature regenerator (2). It is a vessel. And the 6th. Seventh temperature detector (32).

(33)からの温度信号に基づいて第3演箕回肺)にて
中間液の濃度を求め、中間液の濃度と稀吸収液の濃度と
の差が略設定値になるように制御器(25〉から流量制
御弁(14)へ信号を出力し、吸収器(3)から高温再
生器(1)へ送られる稀吸収液の量を制御しても同様の
作用効果を得ることができる。
Based on the temperature signal from (33), the concentration of the intermediate liquid is determined by the third control unit (33), and the controller ( 25> to the flow rate control valve (14) to control the amount of dilute absorption liquid sent from the absorber (3) to the high temperature regenerator (1), similar effects can be obtained.

又、第1圧力検出器(41)を凝縮、低温再生器側(1
0)に設け、第1圧力検出器(41)にて直接凝縮。
In addition, the first pressure detector (41) is connected to the condensing and low temperature regenerator side (1
0) and directly condenses at the first pressure detector (41).

低温再生器IFI (10)内の圧力を検出し、この圧
力と第1温度検出器(15)が検出した濃吸収液の温度
とから吸収液の濃度曲線に基づいて濃吸収液の濃度を演
算することにより、第2温度検出器(16ンの検出温度
に基づいて凝縮、低温再生器111i1(10)内の圧
力を求める場合と比較して正確に濃吸収液の濃度を求め
ることができ、高温再生器(1)へ流れる稀吸収液の量
を加熱量に応じて一層正確に制御することができる。
The pressure inside the low temperature regenerator IFI (10) is detected, and the concentration of the concentrated absorption liquid is calculated based on the concentration curve of the absorption liquid from this pressure and the temperature of the concentrated absorption liquid detected by the first temperature detector (15). By doing this, the concentration of the concentrated absorption liquid can be determined more accurately than in the case where the pressure inside the condensation and low temperature regenerator 111i1 (10) is determined based on the detected temperature of the second temperature detector (16). The amount of dilute absorption liquid flowing to the high temperature regenerator (1) can be controlled more accurately depending on the amount of heating.

さらに、蒸発、吸収器側(11)内の圧力を検出する第
2圧力検出器(42)を設け、検出した圧力と第5温度
検出器(23)が検出した稀吸収液の温度とから稀吸収
液の濃度を演算する。又、高温再生器(1)内の圧力を
検出する第3圧力検出器(43)を設け、検出した圧力
と第6温度検出器(32)が検出した中間液の温度とか
ら中間液の濃度を演算する。
Furthermore, a second pressure detector (42) is provided to detect the evaporation and pressure inside the absorber side (11). Calculate the concentration of the absorption liquid. Further, a third pressure detector (43) is provided to detect the pressure inside the high temperature regenerator (1), and the concentration of the intermediate liquid is determined from the detected pressure and the temperature of the intermediate liquid detected by the sixth temperature detector (32). Calculate.

そして、各濃度に基づいて高温再生器(1)へ送られる
稀吸収液の量を制御することにより、中間液と稀吸収液
との濃度差を設定値に一層正確に保つことができる。
By controlling the amount of the diluted absorption liquid sent to the high temperature regenerator (1) based on each concentration, it is possible to more accurately maintain the concentration difference between the intermediate liquid and the diluted absorption liquid at the set value.

又、第1図に示したように第1.第2.第3比重計(5
1) 、 (52) 、 (53)をそれぞれ吸収液管
(34) 。
Moreover, as shown in FIG. Second. Third hydrometer (5
1), (52), and (53) respectively as absorption liquid tubes (34).

(12) 、 (35)に設け、各比重計が検出した濃
吸収液、稀吸収液、及び中間液の比重と第1温度検出器
(15)、第5温度検出器(26)、及び第6温度検出
器(32)が検出した濃吸収液、中間液、及び稀吸収液
の温度とから、それぞれの濃度を求め、濃吸収液と稀吸
収液の濃度差又中間液と稀吸収液との濃度差に基づいて
高温再生器(1)へ送られる稀吸収液の量を制御するこ
とにより、加熱量に合った循環量制御を一層正確に行う
ことができる。
(12) and (35), and the specific gravity of the concentrated absorption liquid, dilute absorption liquid, and intermediate liquid detected by each hydrometer and the first temperature detector (15), the fifth temperature detector (26), and the 6. From the temperatures of the concentrated absorption liquid, intermediate liquid, and dilute absorption liquid detected by the temperature detector (32), the respective concentrations are determined, and the concentration difference between the concentrated absorption liquid and the dilute absorption liquid or the difference between the intermediate liquid and the dilute absorption liquid is determined. By controlling the amount of the dilute absorption liquid sent to the high temperature regenerator (1) based on the concentration difference, the circulation amount can be controlled more accurately in accordance with the heating amount.

(ト)発明の効果 本発明は以上のように構成された吸収冷凍機の制御方法
であり、稀吸収液と濃吸収液との濃度差、あるいは稀吸
収液と中間液との濃度差が高温再生器の加熱量の増加に
伴ない小さくなるように高温再生器へ送られる稀吸収液
の量を制御するため、加熱量に合った稀吸収液を高温再
生器へ送ることができ、又、実効効率の向上を図ること
ができる。又、冷却水温度の変化、又は不凝縮ガスの発
生等の外乱が発生した場合にも、高温再生器の加熱量に
合った量の稀吸収液を吸収器から高温再生器へ流すこと
ができ、この結果、外乱による実効効率の低下を僅かに
抑えることができる。
(G) Effects of the Invention The present invention is a method for controlling an absorption refrigerator configured as described above, and is implemented in such a manner that the concentration difference between the dilute absorption liquid and the concentrated absorption liquid, or the concentration difference between the dilute absorption liquid and the intermediate liquid is at a high temperature. Since the amount of dilute absorption liquid sent to the high-temperature regenerator is controlled so that it decreases as the heating amount of the regenerator increases, it is possible to send the dilute absorption liquid to the high-temperature regenerator in accordance with the amount of heating, and Effective efficiency can be improved. Furthermore, even if a disturbance occurs such as a change in cooling water temperature or the generation of non-condensable gas, the amount of dilute absorption liquid that matches the heating amount of the high-temperature regenerator can be flowed from the absorber to the high-temperature regenerator. As a result, the reduction in effective efficiency due to disturbance can be suppressed slightly.

又、濃吸収液、中間液、稀吸収液の濃度を各吸収液の温
度等から求める場合には、冷凍サイクルに温度検出器を
設ければ良く、比較的安価に濃度を求めることができる
Further, when determining the concentration of the concentrated absorption liquid, intermediate liquid, and dilute absorption liquid from the temperature of each absorption liquid, it is sufficient to provide a temperature detector in the refrigeration cycle, and the concentration can be determined relatively inexpensively.

又、濃吸収液の濃度を凝縮器内又は低温再生器内圧力と
濃吸収液の温度とから求め、稀吸収液の濃度を蒸発器内
又は吸収器内の圧力を稀吸収液の温度とから求め、中間
液の濃度を高温再生器内の圧力と中間液の温度とから求
めることにより、濃吸収液、稀吸収液、及び中間液の濃
度を正確に求めることができ、この結果、高温再生器へ
流れる稀吸収液の量を加熱量に応じて一層正確に制御す
ることができる。
In addition, the concentration of the concentrated absorption liquid is determined from the pressure inside the condenser or low-temperature regenerator and the temperature of the concentrated absorption liquid, and the concentration of the diluted absorption liquid is determined from the pressure inside the evaporator or absorber and the temperature of the diluted absorption liquid. By determining the concentration of the intermediate liquid from the pressure inside the high-temperature regenerator and the temperature of the intermediate liquid, the concentrations of the concentrated absorption liquid, dilute absorption liquid, and intermediate liquid can be accurately determined. The amount of dilute absorption liquid flowing into the vessel can be controlled more accurately according to the amount of heating.

又、濃吸収液、稀吸収液、及び中間液の濃度を、それぞ
れの液の比重と温度とから求めることにより、それぞれ
の液の濃度をきらに正確に求めることができ、この結果
、高温再生器へ流れる稀吸収液の量を加熱量に応じて一
層正確に制御することができる。
In addition, by determining the concentrations of the concentrated absorption liquid, dilute absorption liquid, and intermediate liquid from the specific gravity and temperature of each liquid, the concentration of each liquid can be determined very accurately. The amount of dilute absorption liquid flowing into the vessel can be controlled more accurately according to the amount of heating.

【図面の簡単な説明】 第1図及び第2図は本発明の一実施例を示したものであ
り、第1図は吸収冷凍機の冷凍サイクル図、第2図は高
温再生器の加熱量に対する各液の濃度及び効率特性図で
ある。 (1)・・・高温再生器、 (2)・・・低温再生器 
(3)・・・吸収器、 (4)・・・高温熱交換器、 
(5)・・・低温熱交換器、 (6)・・・凝縮器、 
(7)・・・蒸発器。
[Brief Explanation of the Drawings] Figures 1 and 2 show an embodiment of the present invention. Figure 1 is a refrigeration cycle diagram of an absorption refrigerator, and Figure 2 is a diagram of the heating amount of a high-temperature regenerator. FIG. 3 is a graph showing the concentration and efficiency characteristics of each liquid. (1)...High temperature regenerator, (2)...Low temperature regenerator
(3)...absorber, (4)...high temperature heat exchanger,
(5)...Low temperature heat exchanger, (6)...Condenser,
(7)...Evaporator.

Claims (1)

【特許請求の範囲】 1、高温再生器、低温再生器、凝縮器、蒸発器、吸収器
、低温熱交換器、及び高温熱交換器をそれぞれ配管接続
し、吸収器で冷媒を吸収した稀吸収液が低温熱交換器、
及び高温熱交換器で熱交換して昇温し、高温再生器へ送
られ、加熱濃縮されて中間液になり、高温熱交換器で降
温し、低温再生器へ送られ、高温再生器で発生した冷媒
蒸気で中間液が加熱濃縮され濃吸収液になり、低温熱交
換器で降温し吸収器に散布され、且つ、蒸発器を流れる
冷水温度に応じて高温再生器の加熱量が制御される、吸
収冷凍機において、稀吸収液と濃吸収液との濃度差、又
は稀吸収液との濃度差が高温再生器の加熱量の増加に伴
い小さくなるように高温再生器へ送られる稀吸収液の量
を制御することを特徴とする吸収冷凍機の制御方法。 2、濃吸収液の濃度を凝縮器での冷媒凝縮温度と低温再
生器の濃吸収液の温度より求め、稀吸収液の濃度を蒸発
器の冷媒液温度と稀吸収液の温度より求め、中間液の濃
度を低温再生器での冷媒凝縮器と高温再生器の中間液温
度から求めることを特徴とする特許請求の範囲第1項記
載の吸収冷凍機の制御方法。 3、濃吸収液の濃度を凝縮器内又は低温再生器内圧力と
濃吸収液の温度とから求め、稀吸収液の濃度を蒸発器内
又は吸収器内の圧力と稀吸収液の温度とから求め、中間
液の濃度を高温再生器内の圧力と高温再生器の中間液の
温度とから求めることを特徴とする特許請求の範囲第1
項記載の吸収冷凍機の制御方法。 4、濃吸収液、稀吸収液、及び中間吸収液の濃度をそれ
ぞれの液の比重と温度とから求めることを特徴とする特
許請求の範囲第1項記載の吸収冷凍機の制御方法。
[Claims] 1. A rare absorption system in which a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a low-temperature heat exchanger, and a high-temperature heat exchanger are each connected through piping, and the absorber absorbs refrigerant. The liquid is a low temperature heat exchanger,
The liquid is heated by exchanging heat with a high-temperature heat exchanger, then sent to a high-temperature regenerator, heated and concentrated to become an intermediate liquid, lowered in temperature with a high-temperature heat exchanger, sent to a low-temperature regenerator, and generated in a high-temperature regenerator. The intermediate liquid is heated and concentrated using the refrigerant vapor to become a concentrated absorption liquid, which is cooled down in a low-temperature heat exchanger and distributed to an absorber.The heating amount of the high-temperature regenerator is controlled according to the temperature of the cold water flowing through the evaporator. In an absorption refrigerator, the dilute absorption liquid is sent to the high temperature regenerator so that the concentration difference between the dilute absorption liquid and the concentrated absorption liquid, or the concentration difference between the dilute absorption liquid and the dilute absorption liquid, decreases as the heating amount of the high temperature regenerator increases. A method for controlling an absorption chiller, characterized by controlling the amount of 2. The concentration of the concentrated absorption liquid is determined from the refrigerant condensation temperature in the condenser and the temperature of the concentrated absorption liquid in the low-temperature regenerator, and the concentration of the diluted absorption liquid is determined from the refrigerant temperature in the evaporator and the temperature of the diluted absorption liquid. 2. A method for controlling an absorption refrigerator according to claim 1, wherein the concentration of the liquid is determined from the intermediate liquid temperature between a refrigerant condenser in a low-temperature regenerator and a high-temperature regenerator. 3. Determine the concentration of the concentrated absorption liquid from the pressure inside the condenser or low-temperature regenerator and the temperature of the concentrated absorption liquid, and calculate the concentration of the diluted absorption liquid from the pressure inside the evaporator or absorber and the temperature of the diluted absorption liquid. Claim 1, characterized in that the concentration of the intermediate liquid is determined from the pressure within the high-temperature regenerator and the temperature of the intermediate liquid in the high-temperature regenerator.
A method of controlling an absorption refrigerator as described in Section 1. 4. A method for controlling an absorption refrigerator according to claim 1, characterized in that the concentrations of the concentrated absorption liquid, dilute absorption liquid, and intermediate absorption liquid are determined from the specific gravity and temperature of each liquid.
JP23414188A 1988-09-19 1988-09-19 Control method of absorption refrigerator Expired - Fee Related JP2664436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23414188A JP2664436B2 (en) 1988-09-19 1988-09-19 Control method of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23414188A JP2664436B2 (en) 1988-09-19 1988-09-19 Control method of absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0282063A true JPH0282063A (en) 1990-03-22
JP2664436B2 JP2664436B2 (en) 1997-10-15

Family

ID=16966286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23414188A Expired - Fee Related JP2664436B2 (en) 1988-09-19 1988-09-19 Control method of absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2664436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309758A (en) * 1991-04-04 1992-11-02 Yazaki Corp Absorption cooler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309758A (en) * 1991-04-04 1992-11-02 Yazaki Corp Absorption cooler

Also Published As

Publication number Publication date
JP2664436B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JPS59189265A (en) Triple effect absorption type refrigerator
JP2002147885A (en) Absorption refrigerating machine
KR100441923B1 (en) Control method for absorption refrigerator
JP2708809B2 (en) Control method of absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
KR100512827B1 (en) Absorption type refrigerator
JP2000274864A (en) Method for controlling absorption refrigerator
JP2708900B2 (en) Absorption refrigerator
KR100493598B1 (en) Absorption Type Refrigerator
JP2532982B2 (en) Absorption refrigerator control device
CN212457500U (en) Absorption type refrigerating unit
JP2009058208A (en) Absorption type water cooler/heater
JPS6248786B2 (en)
JPS6231825Y2 (en)
JP2816790B2 (en) Absorption chiller / heater
KR20030081154A (en) Absorption refrigerator
JPH02101354A (en) Method for controlling absorptive type freezer
JP3138164B2 (en) Absorption refrigerator
JPH05312429A (en) Absorption water cooling/heating apparatus
JPS58160783A (en) Controller for absorption refrigerator
JPH0275865A (en) Controlling method for absorption refrigerator
JP2002005538A (en) Absorptive freezer and cooling water flow rate control method
JPH02140564A (en) Controlling method for absorption refrigerator
JP2520974Y2 (en) Proportional control absorption chiller / heater
JPH0868572A (en) Dual-effect absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees