JPH0277149A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0277149A
JPH0277149A JP1169343A JP16934389A JPH0277149A JP H0277149 A JPH0277149 A JP H0277149A JP 1169343 A JP1169343 A JP 1169343A JP 16934389 A JP16934389 A JP 16934389A JP H0277149 A JPH0277149 A JP H0277149A
Authority
JP
Japan
Prior art keywords
polysilicon layer
forming
thickness
insulating film
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169343A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okada
裕幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Publication of JPH0277149A publication Critical patent/JPH0277149A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable a stacked capacitor in high insulating breakdown strength to be formed by a method wherein polysilicon films are two-layer structured to be composed of a polysilicon layer in low electric resistance as a lower layer and another polysilicon layer doped with no impurity not to be heat- treated as an upper layer. CONSTITUTION:A CVD insulating film 1 is formed on a semiconductor substrate 13 and then a low resistant polysilicon layer 2 is formed on the CVD film 1. After formation of said polysilicon layer 2, a natural oxide film on the surface is removed by fluoric acid solution and then another polysilicon layer 3 700Angstrom thick is formed by pressure reduced CVD process again. This polysilicon layer 3 not doped with any impurity such as P or As etc., becomes a minute compact resistant layer in fine grain diameter. Next, the high resistant polysilicon layer 3 is thermal-oxidized to form a gate insulating film 4. After formation of the gate insulating film 4, polysilicon is formed by pressure reduced CVD process and doped with ordinary impurity to form a blade electrode 5 and a capacitor in high insulating breakdown strength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MIS型キャパシタ、特にポリシリコン酸化
膜を用いた、いわゆるスタックドキャパシタを有する半
導体装置及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device having a MIS type capacitor, particularly a so-called stacked capacitor using a polysilicon oxide film, and a method for manufacturing the same.

従来の技術 ダイナミックRAMに代表される大規III集積回路装
置において、MIS型キャパシタの素子占有面積を少な
(するため、従来、広く用いられてきたブレーナ型MI
Sキャパシタから、シリコン基板内に溝を形成し、その
内部にキャパシタを形成するトレンチキャパシタや、シ
リコン基板にCVD絶縁膜を挟んでポリシリコンを形成
し、その上部に絶縁膜を形成し、その上部にポリシリコ
ン電極を形成してなるスタックドキャパシタ、また上記
両者を合成したトレンチスタックドキャパシタが検討さ
れている。上記各キャパシタの内、スタックドキャパシ
タは、原理的には、シリコン基板上にCVD絶縁膜を挟
むことにより、幾層にもわたって形成できるため、今後
の大規膜集情回路の展開において重要性が益々高まって
いる。
Conventional technology In large-scale III integrated circuit devices such as dynamic RAM, the Brehner type MIS capacitor, which has been widely used in the past, has been used to reduce the area occupied by the MIS type capacitor.
From S capacitors, there are trench capacitors in which a trench is formed in a silicon substrate and a capacitor is formed inside the trench, and polysilicon is formed in a silicon substrate with a CVD insulating film sandwiched between them, an insulating film is formed on top of the polysilicon, and an insulating film is formed on top of the polysilicon. A stacked capacitor in which a polysilicon electrode is formed on the substrate, and a trench stacked capacitor in which both of the above are combined are being considered. Among the above capacitors, stacked capacitors can, in principle, be formed in multiple layers by sandwiching CVD insulating films on a silicon substrate, so they are important in the future development of large-scale film integrated circuits. is increasing.

ポリシリコン上に絶縁膜を形成してIt/1 [S型キ
ャパシタを作成する場合、絶縁膜として最も安定した膜
であるポリシリコンを熱酸化して得られるシリコン酸化
膜が用いられる。また、キャパシタ電極としては、ポリ
シリコンが用いられるが、電気的応答速度を速くするた
めにポリシリコンの電気抵抗を下げる必要があり、従来
は、Pもしくは、Asを850℃〜650℃の高温でポ
リシリコン中に拡散し、抵抗値を下げている。
When forming an insulating film on polysilicon to create an It/1 [S type capacitor, a silicon oxide film obtained by thermally oxidizing polysilicon, which is the most stable film, is used as an insulating film. In addition, polysilicon is used as the capacitor electrode, but in order to increase the electrical response speed, it is necessary to lower the electrical resistance of polysilicon. It diffuses into polysilicon and lowers the resistance value.

第3図に従来のダイナミックRAMのメモリーセルの断
面構造図を、また第4図(a)〜(e)にその製造工程
を示す構造断面図を示す。
FIG. 3 shows a cross-sectional structural view of a memory cell of a conventional dynamic RAM, and FIGS. 4(a) to (e) show structural cross-sectional views showing the manufacturing process thereof.

半導体基板13内およびその表面には、周知の方法によ
り、素子分離絶縁膜11.ソース電極7、ドレイン電極
8.トランジスタゲート絶縁膜9、トランジスタゲート
電極IOおよびCVD絶縁膜1が形成されている(第4
図(a))。次にCVD絶縁膜1上に、低抵抗ポリシリ
コン層2を形成する(第4図(b))。次いで、低抵抗
ポリシリコン層2の全表面を覆うように絶縁膜4を形成
する(第4図(C))。更にキャパシタ絶縁膜4の表面
にプレート電極5を形成する(第4図(d))。最後に
プレート電極5の表面および素子分離絶縁膜11の表面
をCVD絶縁膜6で覆い、その一部にコンタクトホール
を形成し、CVD絶縁膜6の表面に形成した配線電極1
2をコンタクトホールを介してソース電極7およびプレ
ート電気5に接続することにより、第4図(e)あるい
は第3図に示すようなダイナミックRAMのメモリーセ
ルが完成する。すなわち第3図においては、低抵抗ポリ
シリコン層2を一方の電極、プレート電極5を他方の電
極、その間のキャパシタ絶縁膜4を絶縁膜とするスタッ
クドキャパシタが構成されろ。
An element isolation insulating film 11. is formed in the semiconductor substrate 13 and on its surface by a well-known method. Source electrode 7, drain electrode 8. A transistor gate insulating film 9, a transistor gate electrode IO, and a CVD insulating film 1 are formed (fourth
Figure (a)). Next, a low resistance polysilicon layer 2 is formed on the CVD insulating film 1 (FIG. 4(b)). Next, an insulating film 4 is formed to cover the entire surface of the low resistance polysilicon layer 2 (FIG. 4(C)). Further, a plate electrode 5 is formed on the surface of the capacitor insulating film 4 (FIG. 4(d)). Finally, the surface of the plate electrode 5 and the surface of the element isolation insulating film 11 are covered with the CVD insulating film 6, a contact hole is formed in a part of the CVD insulating film 6, and the wiring electrode 1 is formed on the surface of the CVD insulating film 6.
2 to the source electrode 7 and plate electrode 5 through contact holes, a dynamic RAM memory cell as shown in FIG. 4(e) or FIG. 3 is completed. That is, in FIG. 3, a stacked capacitor is constructed in which the low resistance polysilicon layer 2 is used as one electrode, the plate electrode 5 is used as the other electrode, and the capacitor insulating film 4 between them is used as an insulating film.

発明が解決しようとする課題 ところで、第3図、第4図に示すようなスタックドキャ
パシタの絶縁膜4であるポリシリコン酸化膜を作成する
場合に、被酸化物であるn型ドープされたポリシリコン
膜は、高温の熱処理を受IJでいるため、粒径が大きく
なり、また、表面状、態も鋭角的な突起をもつ荒れた状
態になっている。
Problems to be Solved by the Invention By the way, when producing a polysilicon oxide film which is the insulating film 4 of a stacked capacitor as shown in FIGS. Since the silicon film is subjected to high-temperature heat treatment in IJ, the grain size becomes large and the surface condition is rough with sharp protrusions.

従って、この表面を熱酸化して形成するポリシリコン酸
化膜は、膜厚も不均一で、また、鋭角的な突起を有する
膜となる。この鋭角的な突起のため、電極間に電圧を印
加したときに、電解集中が発生し、絶縁耐圧が劣化して
しまう。例えば、単結晶シリコン基板を熱酸化により形
成したMO8型コトヤパジタの場合、その絶縁面(圧は
、IOMV/ cm以上の値が得られるが、上記に示す
高濃度ポリシリコンを熱酸化して得られるキャパシタで
は、絶縁耐圧は、4〜6 M V /′amに劣化し5
また、初期耐圧不良、すなわちキャパシタ電極間のショ
ートの頻度が増大する。この問題を解決するために、絶
縁性に優れたシリコン窒化膜をキャパシタ絶縁膜として
用いたり、シリコン窒化膜と熱シリコン酸化膜を層状に
重ねて用いる構造などが用いられているが、下地のポリ
シリコン電極表面の荒れのため、所望の絶縁耐圧を得る
ためには、絶縁膜を厚くしなければならず、そのため、
必要なキャパシタ要量を得るためには、キャパシタ面積
が太き(なり、大集積化のためのキャパシタ面積の低減
にはそぐわない。従って、薄い絶縁膜を制御良く形成す
るためには、下地ポリシリコン膜の表面状態を滑らかな
平坦面に形成する必要がある。
Therefore, the polysilicon oxide film formed by thermally oxidizing this surface is uneven in thickness and has sharp protrusions. Because of this acute protrusion, when a voltage is applied between the electrodes, electrolytic concentration occurs and the dielectric strength deteriorates. For example, in the case of the MO8 type Kotoya pajita, which is formed by thermally oxidizing a single-crystal silicon substrate, its insulating surface (pressure) can obtain a value of IOMV/cm or more; In capacitors, the dielectric strength deteriorates to 4 to 6 M V/'am and 5
Furthermore, the frequency of initial breakdown voltage failures, that is, short circuits between capacitor electrodes increases. To solve this problem, a silicon nitride film with excellent insulating properties has been used as a capacitor insulating film, or a structure in which a silicon nitride film and a thermal silicon oxide film are stacked in layers has been used. Due to the roughness of the silicon electrode surface, the insulating film must be made thicker in order to obtain the desired dielectric strength voltage.
In order to obtain the required capacitor requirement, the capacitor area must be large (which is not suitable for reducing the capacitor area for large scale integration. Therefore, in order to form a thin insulating film with good control, it is necessary to use a polysilicon base. It is necessary to form the surface of the film into a smooth and flat surface.

課題を解決するだめの手段 ポリシリコン上に薄い絶縁膜を滑らかに形成するには、
ポリシリコンに高温の熱処理を施さなければ良い。しか
し、ポリシリコンにn型不純物をドープし、850℃〜
950℃の熱処理を施さなければ、ポリシリコンの電気
抵抗が大きくなって実用に適さない。この相矛盾する条
件を解説するために、本発明は、ポリシリコン膜を高濃
度にドープした低抵抗層と不純物をドープしない高抵抗
層の2層構造とし、キャパシタ絶縁膜は、上記高抵抗ポ
リシリコン上に形成することによって、滑らかで、高絶
縁耐圧が得られる構造としたものである。また、上記2
層ポリシリコン構造を得るために、下地ポリシリコン層
の形成を2度に分離し、上層を高抵抗のポリシリコン層
としてキャパシタ絶縁膜を形成する方法、CVD法でi
n 5itu型のドープトポリシリコン成長時にドーパ
ントを途中で入れずに行なうことにより、2層ポリシリ
コン構造をin  5ituで形成する方法、下地ポリ
シリコン層に高エネルギーでPやAsの11型不純物を
注入しポリシリコン表面近傍には不純物が分布しない実
質的な2層ポリシリコン構造を得る製造方法を提供する
ものである。
The only way to solve the problem: To form a thin insulating film smoothly on polysilicon,
It is best not to subject polysilicon to high-temperature heat treatment. However, by doping polysilicon with n-type impurities,
If heat treatment is not performed at 950° C., the electrical resistance of polysilicon will increase, making it unsuitable for practical use. In order to explain these contradictory conditions, the present invention adopts a polysilicon film with a two-layer structure consisting of a highly doped low resistance layer and an undoped high resistance layer, and the capacitor insulating film is made of the high resistance polysilicon film. By forming it on silicon, it has a structure that is smooth and provides high dielectric strength. In addition, the above 2
In order to obtain a layered polysilicon structure, the base polysilicon layer is formed twice, and the upper layer is a high-resistance polysilicon layer to form a capacitor insulating film.
A method for forming a two-layer polysilicon structure in 5 in-itu by growing n 5-type doped polysilicon without adding a dopant midway, and a method for forming 11-type impurities such as P and As in the underlying polysilicon layer with high energy. The present invention provides a manufacturing method for obtaining a substantial two-layer polysilicon structure in which impurities are not distributed near the surface of polysilicon by implantation.

作用 MIS型キャパシタのポリシリコン電極を、低抵抗層と
高抵抗層の2層構造とすることにより、電気抵抗が低く
、かつ、表面状態が滑らかな平坦面が得られる。従って
、このポリシリコン電極上に形成したキャパシタ絶縁膜
も膜厚が均一になり、平坦になって、高い絶縁耐厚が得
られる。
By forming the polysilicon electrode of the working MIS type capacitor into a two-layer structure consisting of a low resistance layer and a high resistance layer, a flat surface with low electrical resistance and a smooth surface condition can be obtained. Therefore, the capacitor insulating film formed on the polysilicon electrode also has a uniform thickness and is flat, resulting in a high dielectric strength.

減圧CVDによる下部ポリシリコン電極形成を2回に分
離して下部のみ高濃度の不純物をドープする事により上
記2層構造のポリシリコン電極が得られる。
By dividing the formation of the lower polysilicon electrode by low pressure CVD into two steps and doping only the lower portion with a high concentration of impurity, the polysilicon electrode having the above-mentioned two-layer structure can be obtained.

CVD法でin 5itu型のドープトポリシリコン成
長を行なう際に、成長途中でドーパントの導入をしない
ことによりin  5ituで2層構造のポリシリコン
電極が得られる。
When growing doped polysilicon in 5 in situ using the CVD method, an in 5 in 2 layered polysilicon electrode can be obtained by not introducing a dopant during the growth.

高抵抗の下部ポリシリコンに高エネルギーでドーパント
をイオン注入することにより、表面層には不純物のない
実質的な2層構造のポリシリコン電極が得られる。
By ion-implanting a dopant into the high-resistance lower polysilicon at high energy, a substantially two-layered polysilicon electrode with no impurities in the surface layer can be obtained.

実施例 本発明の半導体装置の一実施例を第1図に、また第2図
にその製造方法を工程順に示す。以下、第1図、第2図
に基づいて説明する。なお、第1図、第2図において、
第3図、第4図と実質的に同一部分には同一符号を付し
て詳細な説明を省略する。
Embodiment An embodiment of the semiconductor device of the present invention is shown in FIG. 1, and FIG. 2 shows the manufacturing method thereof in the order of steps. The following will explain based on FIGS. 1 and 2. In addition, in Figures 1 and 2,
Components that are substantially the same as those in FIGS. 3 and 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

半導体基板13の上にCVD絶縁膜1を形成する(第2
図(a))。CVD絶縁膜1の上に低抵抗ポリシリコン
層2を形成する(第2図(b))。この低抵抗ポリシリ
コン層2を形成するには、通常のポリシリコンを減圧C
VD法で形成した後POCl3 もしくはPH3で、8
50℃から950℃の温度範囲で拡散及びアニールを行
なっている。ここでは900℃で行なった。この熱処理
により、低抵抗ポリシリコン層2中のPの濃度は5 X
 1020/cIjで、850℃〜950℃の温度では
1020〜l Q21個/ cJが得られる。厚みを4
000Aで形成するとシート抵抗の値は20〜40Ω/
□が得られる。なお、厚みに関しては、所望のシート抵
抗の値によって制限され、2000A以上であれば50
Ω/四以下のシート抵抗値となって、半導体装置の駆動
に対して充分な能力を有する。
A CVD insulating film 1 is formed on a semiconductor substrate 13 (second
Figure (a)). A low resistance polysilicon layer 2 is formed on the CVD insulating film 1 (FIG. 2(b)). To form this low-resistance polysilicon layer 2, normal polysilicon is heated under reduced pressure at C.
After forming by VD method, with POCl3 or PH3, 8
Diffusion and annealing are performed in a temperature range of 50°C to 950°C. Here, the temperature was 900°C. Through this heat treatment, the concentration of P in the low resistance polysilicon layer 2 is reduced to 5×
At 1020/cIj, at a temperature of 850°C to 950°C, 1020~lQ21 pieces/cJ can be obtained. Thickness 4
When formed at 000A, the sheet resistance value is 20-40Ω/
□ is obtained. Note that the thickness is limited by the desired sheet resistance value, and if it is 2000A or more, 50
It has a sheet resistance value of Ω/4 or less, and has sufficient ability to drive a semiconductor device.

6000Aの厚みで10Ω/□程度の良好な低抵抗値が
得られるが、それ以上厚みが厚くなると、段差が大きく
急峻になって後工程の電極配線やコンタクトホールの形
成に困難をきたす。本実施例では、この低抵抗ポリシリ
コン層2を形成した後、表面の自然酸化膜を弗酸溶液で
除去し、再度減圧CVD法でポリシリコン層3を700
Aの厚さで形成するく第2図(C))。このポリシリコ
ン層3には、PやAsなどの不純物をドープ、しないた
め、粒径の小さい稠密な高抵抗層となる。なお、高抵抗
ポリシリコン層3の厚さは後に述べるゲート絶縁膜4の
膜厚と熱処理で決定される。通常、500Å〜2000
Aの厚さの範囲内で電極抵抗も低く、かつ、滑らかで良
好な絶縁耐圧を有するキャパシタが得られる。
A good low resistance value of about 10Ω/□ can be obtained with a thickness of 6000A, but if the thickness is increased beyond that, the step becomes large and steep, making it difficult to form electrode wiring and contact holes in the subsequent process. In this example, after forming this low-resistance polysilicon layer 2, the natural oxide film on the surface is removed with a hydrofluoric acid solution, and the polysilicon layer 3 is formed again by low-pressure CVD.
Figure 2 (C)). Since this polysilicon layer 3 is not doped with impurities such as P or As, it becomes a dense high-resistance layer with small grain size. Note that the thickness of the high-resistance polysilicon layer 3 is determined by the thickness of the gate insulating film 4 and heat treatment, which will be described later. Usually 500Å~2000
Within the thickness range of A, a capacitor with low electrode resistance, smoothness, and good dielectric strength can be obtained.

以上の工程で2層構造のポリシリコンが得られるが、こ
の2層ポリシリコンを形成するには、1nsitu型の
ドープトポリシリコン成長装置を用いて、ポリシリコン
成長時に、所望の厚さのドープトポリシリコン膜2が成
長した時点で引き続きポリシリコンを成長しながら、ド
ーパントガスの導入を停止することにより、高抵抗ポリ
シリコン膜3を低抵抗ポリシリコン膜2の上に連続して
形成できる。また、5000000Å〜7000A抗(
ノンドープ)ポリシリコンを形成した後、イオン注入法
により、Pならば130keV以上。
A two-layer polysilicon structure is obtained through the above steps. To form this two-layer polysilicon layer, a 1 nsitu type doped polysilicon growth apparatus is used to grow the polysilicon to a desired thickness. By stopping the introduction of dopant gas while continuing to grow polysilicon at the time when polysilicon film 2 has grown, high-resistance polysilicon film 3 can be continuously formed on low-resistance polysilicon film 2. In addition, 5000000Å~7000A anti(
After forming polysilicon (non-doped), ion implantation is performed to achieve a voltage of 130 keV or more for P.

Asならば300keV以上の加速エネルギーでドープ
する事により、ドーパントが留まらず表面的1000A
の厚みで高抵抗ポリシリコン層3になり、下層部に高濃
度ポリシリコン層2が形成され、等価的に低抵抗と高抵
抗の2層ポリシリコン膜を形成できる。なお、ポリシリ
コンのドーパントとしては、P、Asの他に、sbやG
a、Bを用いてもよい。
In the case of As, by doping with an acceleration energy of 300 keV or more, the dopant does not remain and the superficial 1000A
A high-resistance polysilicon layer 3 is formed with a thickness of , and a high-concentration polysilicon layer 2 is formed in the lower layer, thereby making it possible to equivalently form a two-layer polysilicon film of low resistance and high resistance. In addition, in addition to P and As, dopants for polysilicon include sb and G.
a and B may also be used.

次に高抵抗ポリシリコン膜3を850℃〜900℃の温
度で02もしくは、H2ガスを含む混合ガス雰囲気中で
熱酸化を行なって、60Aから150Aの厚さのゲート
絶縁膜4を形成するく第2図(d))。
Next, the high-resistance polysilicon film 3 is thermally oxidized at a temperature of 850°C to 900°C in a mixed gas atmosphere containing 02 or H2 gas to form a gate insulating film 4 with a thickness of 60A to 150A. Figure 2(d)).

このゲート絶縁膜4の厚さは、所望するキャパシタの容
量と電極間に印加される電圧によって決定される。通常
用いられる5Vの電圧では、100八以上の厚さがあれ
ば、本発明の実施例では8vの耐圧が得られるので実用
上問題はない。印加電圧が2Vであれば、60Aで耐圧
が4VE上得られるので問題はない。なお、熱酸化の方
法としては、通常の炉処理の他に、高速ランプ加熱(R
TO)を用いると、不純物の再拡散も少なく更に絶縁耐
圧に優れた絶縁膜が得られる。また、ゲート絶縁膜4と
して、熱酸化膜の他に、80Å〜200人の厚みでSi
3N4を高抵抗ポリシリコン層3の上にCVD法で形成
し、850℃〜900℃の温度で02もしくは、H2ガ
スを含む混合ガス雰囲気中で熱酸化を行なってSi3N
4のウィークスポットの強度を高め高性能のゲート絶縁
膜4を得ることもできる。このSi3N4の膜厚は、熱
酸化膜と同様のキャパシタの容量と印加電圧で決定され
る。なお、Si3N4の熱酸化は、RTO(高速ランプ
加熱酸化法)で行なうと、熱酸化膜と同様に不純物の再
分布が防げるので高絶縁耐圧のゲート絶縁nN 4が得
られる。なお、ゲート絶縁膜4としてSi3N4の他に
、タンタル酸化物、ハフニウム酸化物、チタン酸化物な
どの高誘電体を用いても同様の硬化が得られる。上記の
ゲート絶縁[4を形成した後、ポリシリコンを減圧CV
D法で形成し、通常の不純物ドープを行なって、プレー
ト電極5を形成し、高絶縁耐圧を有するキャパシタが形
成されろく第2図(e) 、 (f)および第1図)。
The thickness of this gate insulating film 4 is determined by the desired capacitance of the capacitor and the voltage applied between the electrodes. At a commonly used voltage of 5V, if the thickness is 1008 or more, a breakdown voltage of 8V can be obtained in the embodiment of the present invention, so there is no practical problem. If the applied voltage is 2V, there is no problem because the breakdown voltage can be increased by 4VE at 60A. In addition to the normal furnace treatment, the thermal oxidation method includes rapid lamp heating (R
By using TO), an insulating film with less re-diffusion of impurities and excellent dielectric strength can be obtained. In addition to the thermal oxide film, the gate insulating film 4 is made of Si with a thickness of 80 Å to 200 Å.
3N4 is formed on the high-resistance polysilicon layer 3 by the CVD method, and thermal oxidation is performed at a temperature of 850°C to 900°C in a mixed gas atmosphere containing 02 or H2 gas to form Si3N4.
It is also possible to obtain a high-performance gate insulating film 4 by increasing the strength of weak spots 4. The thickness of this Si3N4 film is determined by the capacitance of the capacitor and the applied voltage, similar to the thermal oxide film. Note that if the thermal oxidation of Si3N4 is performed by RTO (Rapid Lamp Thermal Oxidation), redistribution of impurities can be prevented as in the case of a thermal oxide film, so that a gate insulating nN4 with a high dielectric strength voltage can be obtained. Note that similar hardening can be obtained by using a high dielectric material such as tantalum oxide, hafnium oxide, titanium oxide, etc. in addition to Si3N4 as the gate insulating film 4. After forming the above gate insulator [4], polysilicon is processed by low pressure CV
The plate electrode 5 is formed by the D method and doped with ordinary impurities to form a capacitor having a high dielectric strength (FIGS. 2(e), (f) and FIG. 1).

なお、プレート電極5には、本実施例で用いたポリシリ
コンの他に、低抵抗の高融点金属シリサイドもしくは、
ポリシリコンと高融点金属シリサイドの2層構造である
ポリサイドを用いても同様の素子が形成できる。
In addition to the polysilicon used in this example, the plate electrode 5 is made of low resistance high melting point metal silicide or
A similar element can also be formed using polycide, which has a two-layer structure of polysilicon and refractory metal silicide.

発明の効果 本発明より、高絶縁耐圧を有するスタックドキャパシタ
が得られ、大規模集積回路の耐圧不良が大幅に低減し、
信頼性も大幅に向上する。
Effects of the Invention According to the present invention, a stacked capacitor having a high dielectric strength voltage can be obtained, and voltage resistance defects in large-scale integrated circuits can be significantly reduced.
Reliability is also greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるダイナミックRAMの
メモリーセルの断面構造図、第2図(a)〜(f)は本
発明の一実施例であるダイナミックRAMのメモリーセ
ルの製造工程を示す構造断面図、第3図は従来例である
ダイナミックRAMのメモリーセルの断面構造図、第4
図(a)〜(e)は従来例であるダイナミックRAMの
メモリーセルの製造工程を示す構造断面図である。 ■、6・・・・・・CVD絶縁膜、2・・・・・・低抵
抗ポリシリコン層、3・・・・・・高抵抗ポリシリコン
層、4・・・・・・キャパシタ絶縁膜、5・・・・・・
プレート電極、7・旧・・ソース電極、8・・・・・・
ドレイン電極、9・・・・・・トランジスタゲート絶縁
膜、10・・・・・・トランジスタゲート電極、11・
・・・・・素子分離絶縁膜、12・・・・・・配線電極
、13・・・・・・半導体基板。 代理人の氏名 弁理士 粟野重孝 はが1名l・−CV
D矛色林項 ダープレーF危籐 第1図 第2図 第2図 築3図 第4図 7  9     g     tt
FIG. 1 is a cross-sectional structural diagram of a memory cell of a dynamic RAM which is an embodiment of the present invention, and FIGS. 2(a) to (f) illustrate the manufacturing process of a memory cell of a dynamic RAM which is an embodiment of the present invention. Figure 3 is a cross-sectional diagram of a memory cell of a conventional dynamic RAM;
Figures (a) to (e) are structural cross-sectional views showing the manufacturing process of a conventional dynamic RAM memory cell. ■, 6...CVD insulating film, 2...low resistance polysilicon layer, 3...high resistance polysilicon layer, 4...capacitor insulating film, 5...
Plate electrode, 7, old source electrode, 8...
Drain electrode, 9...Transistor gate insulating film, 10...Transistor gate electrode, 11.
...Element isolation insulating film, 12...Wiring electrode, 13...Semiconductor substrate. Name of agent: Patent attorney Shigetaka Awano 1 person -CV
D

Claims (6)

【特許請求の範囲】[Claims] (1)ポリシリコン上に絶縁膜を形成したMIS型キャ
パシタにおいて、前記ポリシリコン膜を2層構造となし
、下層をPもしくはAsのn型不純物を10^2^0〜
10^2^1個/cm^3ドープし、10〜50Ω/□
の低電気抵抗を有するポリシリコン層とし、上層を不純
物をドープせず、かつ熱処理を施さないポリシリコン層
とし、上層のノンドープポリシリコン層上にキャパシタ
絶縁膜を有する構造をもつことを特徴とする半導体装置
(1) In a MIS type capacitor in which an insulating film is formed on polysilicon, the polysilicon film has a two-layer structure, and the lower layer is doped with an n-type impurity of P or As from 10^2^0 to
10^2^1 piece/cm^3 doped, 10~50Ω/□
It is characterized by having a structure in which the upper layer is a polysilicon layer that is not doped with impurities and is not subjected to heat treatment, and a capacitor insulating film is formed on the upper non-doped polysilicon layer. Semiconductor equipment.
(2)ポリシリコン上に絶縁膜を形成したMIS型キャ
パシタの製造方法において、減圧CVD法により低抵抗
ポリシリコン層を2000Å〜6000Åの厚さで形成
する工程と、前記低抵抗ポリシリコン層にPOCl_3
もしくはPH_3を含むガス雰囲気中で850℃〜95
0℃の温度でPを拡散し、弗酸を含む溶液で前記低抵抗
ポリシリコン層上に形成された酸化膜を除去する工程と
、前記低抵抗ポリシリコン層上に減圧CVD法で500
Å〜2000Åの厚さで高抵抗ポリシリコン層を形成す
る工程と、前記高抵抗ポリシリコン層を850℃〜90
0℃の温度でH2ガスもしくはH_2OガスもしくはO
_2ガスを含む雰囲気中でキャパシタ絶縁膜としてのシ
リコン酸化膜を60Å〜150Åの厚さで形成する工程
と、前記シリコン酸化膜上に減圧CVD法で1000Å
以上の厚さのポリシリコンを形成する工程とを有するこ
とを特徴とする半導体装置の製造方法。
(2) A method for manufacturing an MIS type capacitor in which an insulating film is formed on polysilicon, which includes a step of forming a low-resistance polysilicon layer with a thickness of 2000 Å to 6000 Å by low-pressure CVD method, and a step of forming a low-resistance polysilicon layer with POCl_3 on the low-resistance polysilicon layer.
Or 850℃ to 95℃ in a gas atmosphere containing PH_3
A step of diffusing P at a temperature of 0° C. and removing an oxide film formed on the low-resistance polysilicon layer with a solution containing hydrofluoric acid;
forming a high-resistance polysilicon layer with a thickness of 850°C to 90°C;
H2 gas or H_2O gas or O at a temperature of 0℃
_2 Step of forming a silicon oxide film as a capacitor insulating film with a thickness of 60 Å to 150 Å in an atmosphere containing gas, and forming a silicon oxide film with a thickness of 100 Å on the silicon oxide film by low pressure CVD method.
1. A method of manufacturing a semiconductor device, comprising the step of forming polysilicon with a thickness of at least the above thickness.
(3)ポリシリコン上に絶縁膜を形成したMIS型キャ
パシタの製造方法において、減圧CVD法により低抵抗
ポリシリコン層を2000Å〜5000Åの厚さで形成
する工程と、前記低抵抗ポリシリコン層にPOCl_3
もしくはPH_3を含むガス雰囲気中で850℃〜95
0℃の温度でPを拡散し、弗酸を含む溶液で前記低抵抗
ポリシリコン層上に形成された酸化膜を除去する工程と
、前記低抵抗ポリシリコン層上に減圧CVD法で500
Å〜2000Åの厚さで高抵抗ポリシリコンを形成する
工程と、前記高抵抗ポリシリコン層上に減圧CVD法に
よりキャパシタ絶縁膜としてのSi_3N_4膜を80
Å〜200Åの厚さで形成する工程と、前記 Si_3N_4膜を850℃〜900℃の温度でH_2
ガスもしくはH_2OガスもしくはO_2ガスを含む雰
囲気中で酸化する工程と、前記 Si_3N_4膜上に減圧CVD法で1000Å以上の
厚さのポリシリコンを形成する工程とを有することを特
徴とする半導体装置の製造方法。
(3) A method for manufacturing an MIS type capacitor in which an insulating film is formed on polysilicon, a step of forming a low resistance polysilicon layer with a thickness of 2000 Å to 5000 Å by low pressure CVD method, and a step of forming a low resistance polysilicon layer with POCl_3 on the low resistance polysilicon layer.
Or 850℃ to 95℃ in a gas atmosphere containing PH_3
A step of diffusing P at a temperature of 0° C. and removing an oxide film formed on the low-resistance polysilicon layer with a solution containing hydrofluoric acid;
A process of forming high resistance polysilicon with a thickness of 2000 Å to 2000 Å, and forming an Si_3N_4 film as a capacitor insulating film on the high resistance polysilicon layer by low pressure CVD method.
A process of forming the Si_3N_4 film to a thickness of Å to 200 Å, and a step of forming the Si_3N_4 film at a temperature of 850 to 900°C with H_2
Manufacturing a semiconductor device, comprising the steps of oxidizing in an atmosphere containing gas, H_2O gas, or O_2 gas, and forming polysilicon with a thickness of 1000 Å or more on the Si_3N_4 film by low pressure CVD method. Method.
(4)キャパシタ絶縁膜の形成時に行う熱酸化をRTO
(高速ランプ加熱酸化法)で行うことを特徴とする請求
項3記載の半導体装置の製造方法。
(4) RTO thermal oxidation performed during formation of capacitor insulating film
4. The method of manufacturing a semiconductor device according to claim 3, wherein the method is a high-speed lamp heating oxidation method.
(5)ポリシリコン上に絶縁膜を形成したMIS型キャ
パシタの製造方法において、減圧CVD法により低抵抗
ポリシリコン層を2000Å〜6000Åの厚さで形成
する工程と、前記低抵抗ポリシリコンにPを130ke
V以上のエネルギーで、もしくは、Asを300keV
以上のエネルギーでイオン注入し、高抵抗ポリシリコン
層を形成する工程と、前記高抵抗ポリシリコン層上に減
圧CVD法によりキャパシタ絶縁膜としてのSi_3N
_4膜を80Å〜200Åの厚さで形成する工程と、前
記Si_3N_4膜を850℃〜900℃の温度でH_
2ガスもしくはH_2OガスもしくはO_2ガスを含む
雰囲気中で酸化する工程と、前記Si_3N_4膜上に
減圧CVD法で1000Å以上の厚さのポリシリコンを
形成する工程とを有する半導体装置の製造方法。
(5) A method for manufacturing an MIS type capacitor in which an insulating film is formed on polysilicon, including a step of forming a low-resistance polysilicon layer with a thickness of 2000 Å to 6000 Å by low-pressure CVD, and adding P to the low-resistance polysilicon. 130ke
With energy higher than V or 300 keV of As
A process of implanting ions with the above energy to form a high-resistance polysilicon layer, and forming Si_3N as a capacitor insulating film on the high-resistance polysilicon layer by low pressure CVD.
A process of forming the Si_3N_4 film with a thickness of 80 Å to 200 Å, and heating the Si_3N_4 film at a temperature of 850°C to 900°C.
A method for manufacturing a semiconductor device, comprising the steps of oxidizing in an atmosphere containing 2 gas, H_2O gas, or O_2 gas, and forming polysilicon with a thickness of 1000 Å or more on the Si_3N_4 film by low pressure CVD.
(6)ポリシリコン上に絶縁膜を形成したMIS型キャ
パシタの製造方法において、SiH_4ガスとPH_3
ガスを含む混合ガスを用いる減圧CVD法によりn型ポ
リシリコン層を2000Å〜6000Åの厚さで形成し
、引き続き同一CVD装置内でPH_3を含まないSi
H_4ガス雰囲気中で高抵抗ポリシリコン層を500Å
〜2000Åの厚さで形成する工程と、前記高抵抗ポリ
シリコン層上に絶縁膜を60Å〜150Åの厚さで形成
する工程と、前記絶縁膜上に減圧CVD法で1000Å
以上の厚さのポリシリコンを形成する工程を有すること
を特徴とする半導体装置の製造方法。
(6) In the method of manufacturing an MIS type capacitor in which an insulating film is formed on polysilicon, SiH_4 gas and PH_3
An n-type polysilicon layer is formed with a thickness of 2000 Å to 6000 Å by a low-pressure CVD method using a mixed gas containing gas, and then Si without PH_3 is formed in the same CVD apparatus.
High resistance polysilicon layer of 500 Å in H_4 gas atmosphere
a step of forming an insulating film with a thickness of 60 Å to 150 Å on the high-resistance polysilicon layer, and a step of forming an insulating film with a thickness of 60 Å to 150 Å on the high-resistance polysilicon layer, and a step of forming an insulating film with a thickness of 60 Å to 150 Å on the high-resistance polysilicon layer by low pressure CVD.
1. A method for manufacturing a semiconductor device, comprising the step of forming polysilicon with a thickness greater than or equal to the thickness.
JP1169343A 1988-06-30 1989-06-29 Semiconductor device and manufacture thereof Pending JPH0277149A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-163834 1988-06-30
JP16383488 1988-06-30

Publications (1)

Publication Number Publication Date
JPH0277149A true JPH0277149A (en) 1990-03-16

Family

ID=15781631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169343A Pending JPH0277149A (en) 1988-06-30 1989-06-29 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0277149A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208960A (en) * 1989-02-08 1990-08-20 Nec Corp Manufacture of semiconductor device
EP0469555A2 (en) * 1990-07-31 1992-02-05 Nec Corporation Charge storage capacitor electrode and method of manufacturing the same
JPH0461158A (en) * 1990-06-22 1992-02-27 Sharp Corp Manufacture of semiconductor device
US5444278A (en) * 1992-01-18 1995-08-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
JP2012019011A (en) * 2010-07-07 2012-01-26 Denso Corp Method for manufacturing capacitance element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208960A (en) * 1989-02-08 1990-08-20 Nec Corp Manufacture of semiconductor device
JPH0461158A (en) * 1990-06-22 1992-02-27 Sharp Corp Manufacture of semiconductor device
EP0469555A2 (en) * 1990-07-31 1992-02-05 Nec Corporation Charge storage capacitor electrode and method of manufacturing the same
US5444278A (en) * 1992-01-18 1995-08-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
JP2012019011A (en) * 2010-07-07 2012-01-26 Denso Corp Method for manufacturing capacitance element

Similar Documents

Publication Publication Date Title
KR930001736B1 (en) Manufacturing method of semiconductor device
US5275872A (en) Polycrystalline silicon thin film transistor
US4931897A (en) Method of manufacturing semiconductor capacitive element
JP2761685B2 (en) Method for manufacturing semiconductor device
JPH0465548B2 (en)
JPH01133368A (en) Method of forming polycrystalline silicon gate fet
EP0051500B1 (en) Semiconductor devices
US6316339B1 (en) Semiconductor device and production method thereof
JPH0277149A (en) Semiconductor device and manufacture thereof
JP3242732B2 (en) Capacitor
JPH1093077A (en) Semiconductor device and manufacturing method thereof
JP2000252432A (en) Semiconductor device and manufacture thereof
KR0153772B1 (en) Fabricating method of semiconductor device
JP3007429B2 (en) Semiconductor device and manufacturing method thereof
KR960004461B1 (en) Process for fabricating integrated circuit structure with extremely smooth polysilicone dielectric interface
JPH0682668B2 (en) Method for manufacturing semiconductor device
JPH0311551B2 (en)
KR100268101B1 (en) Polyside gate
JP3029267B2 (en) Method for manufacturing semiconductor device
KR940011799B1 (en) Method of fabricating a storage electrode with tin layer
JPH038367A (en) Semiconductor device
JPH0246756A (en) Manufacture of semiconductor capacitor
JPH10303418A (en) Manufacture of semiconductor device
JPS59139676A (en) Manufacture of semiconductor integrated circuit
JPS62165952A (en) Manufacture of semiconductor device