JPH0275456A - Method for continuously casting steel - Google Patents
Method for continuously casting steelInfo
- Publication number
- JPH0275456A JPH0275456A JP22491988A JP22491988A JPH0275456A JP H0275456 A JPH0275456 A JP H0275456A JP 22491988 A JP22491988 A JP 22491988A JP 22491988 A JP22491988 A JP 22491988A JP H0275456 A JPH0275456 A JP H0275456A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- magnetic field
- molten steel
- casting
- immersion nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 51
- 239000010959 steel Substances 0.000 title claims abstract description 51
- 238000005266 casting Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 24
- 239000010949 copper Substances 0.000 claims abstract description 24
- 238000007654 immersion Methods 0.000 claims description 32
- 239000002184 metal Substances 0.000 abstract description 16
- 229910052751 metal Inorganic materials 0.000 abstract description 16
- 239000000843 powder Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000009749 continuous casting Methods 0.000 description 12
- 230000007547 defect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/114—Treating the molten metal by using agitating or vibrating means
- B22D11/115—Treating the molten metal by using agitating or vibrating means by using magnetic fields
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は鋳型内浸漬ノズルからの吐出流の流速を減衰
すると同時に、片流れを抑制して、鋳型内湯面波動高さ
を制御すると共に良好な表面性状を有する製品を製造す
る鋼の連続鋳造方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention attenuates the flow velocity of the discharge flow from the submerged nozzle in the mold, and at the same time suppresses one-sided flow, thereby controlling the height of the molten metal surface wave in the mold and improving the quality of the flow. This invention relates to a continuous steel casting method for manufacturing products with surface texture.
[従来の技術]
第6図はスラブの連続鋳造機における鋳型の溶湯表面の
要部を示す図である。この図を参照して従来の技術を説
明する。鋳型1内の溶鋼8の表面には、溶鋼8の酸化防
止と保温、凝固シェル9と鋳型1との間の潤滑、非金属
介在物の吸着等の役目を持つモールドパウダー5がある
。このモールドパウダー5の湯面側は溶lll8の熱で
溶融状態になっており、このモールドパウダー5の大気
側は粉状パウダー7となって溶鋼8の表面を覆っている
。溶融パウダー6は凝固シェル9と鋳型1との間に流入
して潤滑剤の役目を果たす、従って溶融パウダー6は消
耗するので一定厚のモールドパウダー5を維持するため
、前記溶融パウダー6の消耗量に見合うだけ補給される
。第6図に示すように鋳型1中夫に鉛直に設けられた浸
漬ノズル2の先端に設けられた吐出孔3は、鋳型1短辺
に対向して開口している。溶鋼はこの吐出孔3から鋳型
内に吐出される。溶鋼の吐出流4は鋳型短辺方向にハの
字型になって鋳型内に注入される。この溶鋼の吐出量4
が、短辺に衝突して上下の2つの流れ、反転流11と侵
入流12に分かれ、短辺面の凝固シェル9に沿って上昇
する反転流11は鋳型1の上部短辺面付近の湯面波動の
原因となる。第7図は湯面波動の概略図である。ここで
湯面波動とは、第7図に示すように浸漬ノズル2の吐出
孔3からの吐出流は反転流11と侵入流12に分かれる
が、反転流11は溶湯表面に到達し、鋳型内の溶湯表面
を波立たせる。この湯面波動を渦流距離計15により測
定し、その電圧値をフィルターを通して高周波数成分(
ここでは10 Hz以上の周波数成分)を除去後、ミリ
ボルト計で測定した。この渦流距離計15の設置位置は
第7図に示すように、短辺面から50−m、湯面から5
0m5である。第8図は約1分間の湯面レベルの経時変
化を示す図である。1分間の最大波動レベルを測定し、
その最大値を最大湯面波動高さhとしてデータ処理を行
った。上矢印は上昇方向を意味し、上矢印は下降方向を
示す、特に溶鋼の吐出量が3 ton/sin以上の高
速鋳造においては、浸漬ノズル2の吐出孔3の吐出流速
が大きいため、凝固シェル9に衝突後の反転流11も大
きな湯面波動が発生する。第9図は最大湯面波動高さと
熱延板表面欠陥指数の関係を示すグラフ図である。この
図から明らかなように最大湯面波動高さが4mm〜8■
の範囲で熱延板の表面欠陥の発生率が少なく最大湯面波
動高さに最適範囲がある。この湯面波動が大きい場合溶
融パウダー6が、溶湯波動により溶鋼側に巻き込まれ懸
濁する。溶鋼中に巻き込まれた溶融パウダー6は、溶鋼
と溶融パウダー6の比重差により浮上してしまうが、一
部凝固シエル9に捕捉される。一方湯面波動が小さい場
合には、溶鋼表面への新しい溶鋼の供給が少ないので、
モールドパウダー5の溶融性も悪い、従って溶融パウダ
ー6に溶鋼中の介在物の溶解吸着性が悪くなり、介在物
は凝固シェル9に捕捉され鋳片の内質欠陥となると考え
られる。ここで示した最大湯面波動高さの適正範囲は4
1〜8鳳鳳という値は連続鋳造操業の経験によって得ら
れた値であり、この範囲に 入るように浸漬ノズル2の
形状、浸漬ノ′ズル2の吐出角度、浸漬ノズル2の詰ま
り、鋳型1の幅等を規制していた。[Prior Art] FIG. 6 is a diagram showing the main part of the molten metal surface of a mold in a continuous slab casting machine. The conventional technology will be explained with reference to this figure. On the surface of the molten steel 8 in the mold 1, there is mold powder 5, which has the functions of preventing oxidation and keeping the molten steel 8 warm, lubricating between the solidified shell 9 and the mold 1, and adsorbing nonmetallic inclusions. The surface side of the mold powder 5 is in a molten state due to the heat of the molten steel 8, and the atmosphere side of the mold powder 5 is turned into powder 7, which covers the surface of the molten steel 8. The molten powder 6 flows between the solidified shell 9 and the mold 1 and acts as a lubricant.Therefore, the molten powder 6 is consumed, so in order to maintain a constant thickness of the mold powder 5, the amount of consumption of the molten powder 6 is reduced. will be replenished accordingly. As shown in FIG. 6, a discharge hole 3 provided at the tip of a submerged nozzle 2 vertically provided in the middle of the mold 1 opens opposite to the short side of the mold 1. Molten steel is discharged into the mold from this discharge hole 3. The discharge stream 4 of molten steel is injected into the mold in a V-shape in the direction of the short side of the mold. Discharge amount of this molten steel 4
collides with the short side and splits into two upper and lower flows, a reversed flow 11 and an intrusion flow 12. The reversed flow 11, which rises along the solidified shell 9 on the short side, flows into the hot water near the upper short side of the mold 1. Causes surface waves. FIG. 7 is a schematic diagram of the surface wave motion. Here, the molten metal surface wave refers to the discharge flow from the discharge hole 3 of the immersion nozzle 2 as shown in FIG. ripples the surface of the molten metal. This hot water surface wave is measured by an eddy current distance meter 15, and the voltage value is passed through a filter for high frequency components (
Here, after removing frequency components of 10 Hz or higher, measurements were taken with a millivolt meter. The installation position of this eddy current distance meter 15 is 50 m from the short side and 5 m from the hot water surface, as shown in Fig. 7.
It is 0m5. FIG. 8 is a diagram showing changes in the hot water level over time for about 1 minute. Measure the maximum wave level for 1 minute,
Data processing was performed using the maximum value as the maximum water surface wave height h. The upward arrow indicates an upward direction, and the upward arrow indicates a downward direction.Especially in high-speed casting where the discharge rate of molten steel is 3 ton/sin or more, the discharge flow rate from the discharge hole 3 of the immersion nozzle 2 is high, so that the solidified shell The reversed flow 11 after colliding with the hot water 9 also generates large surface waves. FIG. 9 is a graph showing the relationship between the maximum surface wave height and the hot-rolled sheet surface defect index. As is clear from this figure, the maximum surface wave height is 4mm to 8mm.
There is an optimum range for the maximum surface wave height in which the incidence of surface defects on hot-rolled sheets is small. When the molten metal surface wave motion is large, the molten powder 6 is drawn into the molten steel side by the molten metal wave motion and becomes suspended. The molten powder 6 caught in the molten steel floats to the surface due to the difference in specific gravity between the molten steel and the molten powder 6, but is partially captured by the solidified shell 9. On the other hand, when the surface waves are small, there is less supply of new molten steel to the molten steel surface.
It is thought that the meltability of the mold powder 5 is also poor, and therefore the ability of the molten powder 6 to dissolve and adsorb inclusions in the molten steel is poor, and the inclusions are captured in the solidified shell 9 and become internal defects in the slab. The appropriate range of the maximum surface wave height shown here is 4
The values 1 to 8 are values obtained from experience in continuous casting operations, and the shape of the immersion nozzle 2, the discharge angle of the immersion nozzle 2, the clogging of the immersion nozzle 2, and the mold 1 are adjusted to fall within this range. The width, etc., were regulated.
しかしながら、最近の連続鋳造機の生産性の向上のため
、
(1)一つのタンディツシュ及び浸漬ノズルで数チャー
ジ連続して連続鋳造を行う多連続鋳造技術、(2)鋳造
中の鋳型幅の変更、
(3)鋳造速度が低速から高速に変わる等の操業条件が
変わってきた。この結果、最初の操業条件に適した浸漬
ノズルの吐出孔の形状や吐出角度では満足できない操業
条件が発生するようになり、湯面波動高さを最適範囲に
制御できなくなった。湯面波動高さをコントロールする
技術として、
(1)直流磁場により吐出流にブレーキを掛ける方法(
*1:以下従来方法1という)で、鋳型長辺面の冷却箱
内に2対の直流磁石を設置し、浸漬ノズルから吐出流に
対して直流磁場を作用させ、流動する溶鋼内に発生する
誘導電流と直流磁場とにより、溶鋼の流動とは逆方向に
発生する電磁力により溶鋼の流動を制御するものである
。However, in order to improve the productivity of recent continuous casting machines, (1) multi-continuous casting technology that performs continuous casting for several charges with one tundish and immersion nozzle, (2) changing the mold width during casting, (3) Operating conditions have changed, such as casting speed changing from low to high speed. As a result, operating conditions were created that could not be satisfied with the shape and discharge angle of the discharge hole of the submerged nozzle that were suitable for the initial operating conditions, and the height of the molten metal surface wave could no longer be controlled within the optimal range. As a technology to control the height of surface waves, (1) a method of applying a brake to the discharge flow using a DC magnetic field (
*1: In the method (hereinafter referred to as conventional method 1), two pairs of DC magnets are installed in the cooling box on the long side of the mold, and a DC magnetic field is applied to the flow discharged from the immersed nozzle to generate a DC magnetic field in the flowing molten steel. The flow of molten steel is controlled by electromagnetic force generated in the opposite direction to the flow of molten steel using an induced current and a DC magnetic field.
(2)湯面位置に直流磁場を印加する方法(*2:以下
従来方法2という)で、湯面位置に直流磁場を配置し、
湯面に水平に直流磁場を印加することにより、磁場内の
湯面波動高さを制御するものである。(2) A method of applying a DC magnetic field to the hot water level (*2: hereinafter referred to as conventional method 2), in which a DC magnetic field is placed at the hot water level,
By applying a DC magnetic field horizontally to the hot water surface, the height of the hot water surface waves within the magnetic field is controlled.
例(*l)永井ら=68.鉄と鋼(1982) 、 5
270鈴木ら:68.鉄と鋼(1982) 、 592
(*2)小環らニア2.鉄と鋼(1986) 、 97
1g[発明が解決しようとする課題]
鋳型内の湯面波動の発生は、浸漬ノズルから吐出された
吐出流が凝固シェルに衝突し、上向きの反転流と下向き
の侵入流に分かれる。このうち、上向きの反転流の持つ
運動エネルギーが湯面を振動させるため湯面波動が発生
する。Example (*l) Nagai et al. = 68. Iron and Steel (1982), 5
270 Suzuki et al.: 68. Iron and Steel (1982), 592
(*2) Small ring et al. 2. Iron and Steel (1986), 97
1g [Problems to be Solved by the Invention] The generation of surface waves in the mold is caused by the discharge flow discharged from the immersed nozzle colliding with the solidified shell and splitting into an upward reversal flow and a downward intrusion flow. Among these, the kinetic energy of the upward reverse flow causes the hot water surface to vibrate, resulting in hot water surface waves.
しかしながら従来方法1でけ、浸漬ノズルと短辺面との
途中の吐出流に直角に直流磁場を印加して流体にブレー
キを掛ける方法であるが、浸漬ノズルから吐出された後
の吐出流は拡散して行くため、広い範囲に直流磁場を印
加する必要がある。However, in conventional method 1, a direct current magnetic field is applied perpendicularly to the discharge flow between the immersion nozzle and the short side surface to brake the fluid, but the discharge flow after being discharged from the immersion nozzle is diffused. In order to do this, it is necessary to apply a DC magnetic field over a wide range.
このため設備が大型になりコストが高くなる。又この方
法では、吐出流と印加した直流磁場との相互作用によっ
て発生する渦電流の回路が溶鋼内にできるため、電流密
度を大きくできない、従って大きなブレーキ力を発生さ
せるためには磁束密度を大きくする必要があり、このこ
とによって設備コストが高くなるという問題がある。This increases the size of the equipment and increases the cost. In addition, with this method, an eddy current circuit is created in the molten steel due to the interaction between the discharge flow and the applied DC magnetic field, so the current density cannot be increased.Therefore, in order to generate a large braking force, the magnetic flux density must be increased. There is a problem that this increases the equipment cost.
従来方法2では、湯面波動に直接直流磁場を印加するた
め、波動の制御は最もやりやすいが、湯面波動の最も激
しい位置は鋳型短辺面から100脂朧の範囲である。従
って、この位置に直流磁場を印加すれば良く、そのため
磁場発生装置は鋳型長辺銅板の裏面で鋳型長辺銅板の上
端から約100■付近に設置する必要がある。この場合
には、冷却水箱の大掛かりな改造が必要であり、かつ鋳
型銅板の冷却溝の方向も横方向にする必要があり、鋳型
長辺銅板の冷却が不十分となる。In conventional method 2, since a direct current magnetic field is directly applied to the molten metal surface wave, it is easiest to control the wave, but the most intense position of the molten metal surface wave is within 100 mm from the short side of the mold. Therefore, it is sufficient to apply a DC magnetic field to this position, and therefore the magnetic field generator needs to be installed on the back side of the copper plate on the long side of the mold at a distance of approximately 100 cm from the upper end of the copper plate on the long side of the mold. In this case, the cooling water box needs to be extensively remodeled, and the direction of the cooling grooves in the mold copper plate must also be oriented horizontally, resulting in insufficient cooling of the long side copper plate of the mold.
この発明は、係る事情に鑑みてなされたものであって、
鋳型内の湯面波動を小さくしパウダーの巻き込みを防止
することと介在物の侵入深さを浅くすることによって、
介在物の浮上を図り、良好な表面性状を有する製品を製
造する鋼の連続鋳造方法を提供することを目的とする。This invention was made in view of the circumstances, and
By reducing the surface fluctuations in the mold to prevent powder from being entrained, and by reducing the depth of penetration of inclusions,
The object of the present invention is to provide a method for continuous casting of steel that allows inclusions to float and produces products with good surface properties.
[課題を解決するな・めの手段]
この発明の鋼の連続鋳造方法は、浸漬ノズルを挟んで、
少なくとも一対の直流磁石を設置し、前記直流磁石の一
方の磁極を鋳型長辺銅板の上端の直上に、他方の磁極を
浸漬ノズルの吐出孔より下方の鋳型長辺面の背面に配置
し、浸漬ノズルを挟んで、相対する磁極の極性を同一に
して、直流磁界を発生させ、浸漬ノズルからの吐出流に
垂直に直流磁界を印加しながら鋳造することを特徴とす
る。[Means for solving the problem] The continuous steel casting method of the present invention involves
At least a pair of DC magnets are installed, one magnetic pole of the DC magnet is placed directly above the upper end of the copper plate on the long side of the mold, and the other magnetic pole is placed on the back side of the long side of the mold below the discharge hole of the immersion nozzle. It is characterized in that a direct current magnetic field is generated by making the polarities of opposing magnetic poles the same across the nozzle, and casting is performed while applying the direct current magnetic field perpendicularly to the discharge flow from the submerged nozzle.
[作用]
この発明は連続鋳造鋳型内の浸漬ノズル吐出孔からの溶
鋼吐出流に対し、鉛直方向に直流磁場を印加しながら鋳
造する。導電性流体が磁場中を流動するとフレミングの
右手の法則により流体内に起電力が発生し、渦電流が流
れる。この渦電流と印加磁場との相互作用により、流体
方向とは逆方向に電磁力(フレミングの左手の法則)が
働くため、流体の運動は妨げられる。この結果吐出流は
減速する。吐出流が減速すると、短辺面シェルに衝突後
の反転流の流速も小さくなり、湯面波動は起こりにくく
なる。又、片流れ現象が発生した場合、吐出流速の大き
い方には発生する電磁力がより大きくなる。この結果、
片流れ現象は抑制される。直流磁場を鉛直方向に印加す
ると渦電流のバスは第5図に示すように浸漬ノズルの周
りに回路を描く、この時、渦電流の回路の一部として鋳
型銅板(銅の電気抵抗率2.5X10−8Ω・m)を電
流が流れるため、回路の電気抵抗が小さくなり電流密度
が大きくなる。この結果、発生する電磁力は大きくなり
効率的に電磁力を発生させることができる。直流磁場を
水平方向(スラブ厚み方向と同じ)に印加した場合には
、発生する渦電流は鋳型銅板と平行な面で溶鋼(溶鋼の
電気抵抗率150X10−’Ω・m)内に回路を作るた
め、回路の電気抵抗が大きくなり渦電流密度が小さくな
る。そのため、直流磁場を鉛直方向に印加できるように
直流磁石の一方の磁極を鋳型長辺銅板の上端の直上と他
方の磁極を浸漬ノズル吐出孔より下方の鋳型長辺銅板の
後面に配置した。[Operation] This invention performs casting while applying a DC magnetic field in the vertical direction to the molten steel discharge flow from the immersion nozzle discharge hole in the continuous casting mold. When a conductive fluid flows in a magnetic field, an electromotive force is generated within the fluid due to Fleming's right-hand rule, and an eddy current flows. The interaction between this eddy current and the applied magnetic field causes an electromagnetic force (Fleming's left-hand rule) to act in a direction opposite to the direction of the fluid, thereby hindering the movement of the fluid. As a result, the discharge flow slows down. When the discharge flow decelerates, the flow velocity of the reversed flow after colliding with the short side shell also decreases, and surface waves become less likely to occur. Furthermore, when a one-sided flow phenomenon occurs, the electromagnetic force generated is greater in the direction where the discharge flow velocity is higher. As a result,
One-sided flow phenomenon is suppressed. When a DC magnetic field is applied vertically, the eddy current bus draws a circuit around the submerged nozzle as shown in Figure 5. At this time, a molded copper plate (copper electrical resistivity 2. 5×10 −8 Ω·m), the electrical resistance of the circuit decreases and the current density increases. As a result, the generated electromagnetic force increases and can be efficiently generated. When a DC magnetic field is applied in the horizontal direction (same as the thickness direction of the slab), the generated eddy current creates a circuit in the molten steel (electrical resistivity of molten steel is 150 x 10-'Ω・m) in a plane parallel to the mold copper plate. Therefore, the electrical resistance of the circuit increases and the eddy current density decreases. Therefore, in order to apply a DC magnetic field in the vertical direction, one magnetic pole of the DC magnet was placed directly above the upper end of the copper plate on the long side of the mold, and the other magnetic pole was placed on the rear surface of the copper plate on the long side of the mold below the immersion nozzle discharge hole.
[実施例]
先ず、溶鋼に電磁力を作用させた場合の溶鋼の流動につ
いての考え方を説明する。第5図は鋳型内の溶鋼に電磁
力を作用させた場合の溶鋼の流動を示す図で、(a)は
鋳型内の縦断面図で、(b)は(a)図のA−A平面断
面図である。[Example] First, the concept of flow of molten steel when electromagnetic force is applied to molten steel will be explained. Figure 5 is a diagram showing the flow of molten steel when an electromagnetic force is applied to the molten steel in the mold, (a) is a longitudinal cross-sectional view inside the mold, and (b) is a plane A-A in Figure (a). FIG.
21は鋳型長辺銅板、22は浸漬ノズル、23は電磁石
、24は直流磁石、25は直流磁石コイル、26は磁界
(■印又は点線の矢印)、27は吐出流(黒矢印)、2
8は渦電流(実線矢印)、2つは制動力(白矢印)30
は溶鋼、31は直流磁石の一方の磁極、32は直流磁石
の他方の磁極、33は浸漬ノズルの吐出孔である。溶鋼
30をタンディツシュから浸漬ノズル22を通して鋳型
に注入する連続鋳造方法において、浸漬ノズル22を挟
んで、少なくとも一対以上の電磁石23(直流磁石24
と直流磁石コイル25から構成されている゛)を設置し
、前記直流磁石24の一方の磁極31(N極あるいはS
極)を鋳型長辺銅板21の上端直上に、直流磁石の他方
の磁極32(S極あるいはN極)を浸漬ノズルの吐出孔
33より下方の鋳型長辺面21の背面に配置し、浸漬ノ
ズル22を挟んで、相対する磁極(31又は32)の極
性を同一にして、浸漬ノズル22から・の吐出流27に
対し、磁界26を垂直に印加しながら、鋳造することに
よって、吐出流27内に運動方向とは逆向きの制動力2
9を発生させることによって吐出流27を減衰させるこ
とができる。21 is a mold long side copper plate, 22 is an immersion nozzle, 23 is an electromagnet, 24 is a DC magnet, 25 is a DC magnet coil, 26 is a magnetic field (■ mark or dotted arrow), 27 is a discharge flow (black arrow), 2
8 is eddy current (solid arrow), 2 is braking force (white arrow) 30
31 is the molten steel, 31 is one magnetic pole of the DC magnet, 32 is the other magnetic pole of the DC magnet, and 33 is the discharge hole of the immersion nozzle. In a continuous casting method in which molten steel 30 is injected from a tundish into a mold through an immersion nozzle 22, at least one pair of electromagnets 23 (DC magnets 24
and a DC magnet coil 25, and one magnetic pole 31 (N pole or S pole) of the DC magnet 24 is installed.
A pole) is placed directly above the upper end of the mold long side copper plate 21, and the other magnetic pole 32 (S pole or N pole) of the DC magnet is placed on the back side of the mold long side surface 21 below the discharge hole 33 of the immersion nozzle. By making the polarities of opposing magnetic poles (31 or 32) the same across 22 and applying the magnetic field 26 perpendicularly to the discharge flow 27 from the submerged nozzle 22, the inside of the discharge flow 27 is Braking force 2 in the opposite direction to the direction of motion
9, the discharge flow 27 can be attenuated.
流動している溶鋼30に直流磁場を印加すると、下式に
より起電力Eが発生する。When a DC magnetic field is applied to the flowing molten steel 30, an electromotive force E is generated according to the following equation.
E=VXB=Vy HBz −−(1)V :
溶鋼の速度(m/気)
B : 磁束密度
Bz: 磁束密度の鉛直方向成分
この起電カゼにより溶鋼内に渦電流子が流れ渦電流Iと
磁束密度百との相互作用により溶鋼の運動方向と逆方向
に制動力Fが働く。E=VXB=Vy HBz --(1)V:
Velocity of molten steel (m/air) B: Magnetic flux density Bz: Vertical component of magnetic flux density Eddy current molecules flow in the molten steel due to this electromotive force, and the interaction between the eddy current I and the magnetic flux density causes the direction of movement of the molten steel to change. Braking force F acts in the opposite direction.
F= IxB=−σVy−Bz” ・=−(2)σ
: 流体の電気抵抗率(Ω・m)
(2)式により、制動力の大きさはVYと1322に依
存する。F= IxB=-σVy-Bz" ・=-(2)σ
: Electrical resistivity of fluid (Ω・m) According to equation (2), the magnitude of braking force depends on VY and 1322.
溶鋼の連続鋳造においては、低速鋳造の場合は■7が小
さいため、溶鋼に働く制動力Fは小さいが、高速鋳造に
なる程、VYが大きくなるので制動力Fは大きくなる。In continuous casting of molten steel, in the case of low-speed casting, (7) is small, so the braking force F acting on the molten steel is small, but as the casting speed becomes higher, VY becomes larger, so the braking force F becomes larger.
浸漬ノズル22から吐出された吐出流27は直流磁場が
無い場合には、片方の吐出孔33から優先的に流出する
片流れ現象が起こりやすく、直流磁場を鉛直方向に印加
することによって、吐出流速の速い方には、(2)式に
従ってより大きな制動力が働くため、吐出流は均一化さ
れ、片流れ現象は緩和される。こうすることによって最
大湯面波動高さが、一定の範囲に制御することができる
。In the absence of a DC magnetic field, the discharge flow 27 discharged from the immersion nozzle 22 tends to flow preferentially from one discharge hole 33, resulting in a one-sided flow phenomenon.By applying a DC magnetic field in the vertical direction, the discharge flow velocity can be reduced. In the faster direction, a larger braking force acts according to equation (2), so the discharge flow is made uniform and the one-sided flow phenomenon is alleviated. By doing this, the maximum surface wave height can be controlled within a certain range.
以下、添付図面を参照してこの発明の一実施例について
具体的に説明する。Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.
第1図はこの本発明の一実施例の連続鋳造鋳型の断面図
で、(a)は側断面図で、(b)は第1図の(a)の線
A−A断面図で、(C)は第1図の、〈a)におけるB
−B側面の斜視図である。21は鋳型長辺銅板、22は
浸漬ノズル、23は電磁石、24は直流磁石、25は直
流磁石コイル。FIG. 1 is a cross-sectional view of a continuous casting mold according to an embodiment of the present invention, (a) is a side cross-sectional view, (b) is a cross-sectional view taken along line A-A in (a) of FIG. C) is B in <a) in Figure 1
-B is a perspective view of the side. 21 is a copper plate on the long side of the mold, 22 is an immersion nozzle, 23 is an electromagnet, 24 is a DC magnet, and 25 is a DC magnet coil.
30は溶鋼、31は直流磁石の一方の磁極、32は直流
磁石の他方の磁極、33は浸漬ノズルの吐出孔である。30 is molten steel, 31 is one magnetic pole of a DC magnet, 32 is the other magnetic pole of the DC magnet, and 33 is a discharge hole of an immersion nozzle.
図示しないタンディツシュの下部に取り付けられた浸漬
ノズル22を挟んで前、後面の鋳型長辺銅板21の背後
に各々1対の電磁石23(直流磁石24と直流磁石コイ
ル25から構成されている)が配置されている。直流磁
石の一方の磁極31は鋳型長辺銅板21の上端の直上に
、直流磁石の他方の磁極32は浸漬ノズルの吐出孔33
の下250+sm位置に配置した。直流磁石24の断面
寸法は100 (H)X600 (W)amである。直
流磁石24の磁極(31又は32)の極性は、浸漬ノズ
ル22を挟んで、同極対向になるように選んだ、こうす
ることにより磁界方向を鉛直方向、すなわち浸漬ノズル
22と平行にすることができる。A pair of electromagnets 23 (consisting of a DC magnet 24 and a DC magnet coil 25) are placed behind the copper plate 21 on the long side of the mold on the front and rear sides, sandwiching the immersion nozzle 22 attached to the lower part of the tundish (not shown). has been done. One magnetic pole 31 of the DC magnet is placed directly above the upper end of the copper plate 21 on the long side of the mold, and the other magnetic pole 32 of the DC magnet is placed directly above the discharge hole 33 of the immersion nozzle.
It was placed at a position 250+sm below. The cross-sectional dimensions of the DC magnet 24 are 100 (H) x 600 (W) am. The polarity of the magnetic poles (31 or 32) of the DC magnet 24 was selected so that they were opposite to each other with the immersion nozzle 22 in between, thereby making the magnetic field direction vertical, that is, parallel to the immersion nozzle 22. Can be done.
(実施例1)
第1図で示した各々1対の電磁石23を設置した連続鋳
造鋳型を用いて、鋳造した鋳型短辺銅板34近傍の湯面
波動高さの測定結果を以下に示す、220mm厚み、1
200mg+幅の断面寸法のスラブを引抜速度0.7〜
2.7m/amの範囲で変更した鋳造を実施した。この
時の鋳造速度は、1 、4〜2 、7 ton/win
の間で変化した。第2図は直流磁場を印加した場合とし
ない場合の鋳型短辺銅板近傍の最大湯面波動高さと引抜
速度又は鋳造速度との関係を示すグラフ図である。この
図の横軸に引抜速度と鋳造速度と関係を示す、○は磁場
無しで、・は磁場有りである。直流磁場の磁束密度は2
000〜2500ガウスの範囲で調整した。磁場を印加
した場合の最大湯面波動高さは、磁場を印加しない場合
の最大湯面波動高さに比べかなり小さくなっている。
2 、5 ton/win以下の鋳造速度では、最大湯
面波動高さは抑制されが、一方、2゜5 ton/wi
n以上の注入速度でも最大湯面波動高さは、8m+a以
下に抑制することができる。(Example 1) Using continuous casting molds each equipped with a pair of electromagnets 23 as shown in FIG. Thickness, 1
Pulling out slabs with cross-sectional dimensions of 200mg + width from 0.7 to
Castings were carried out with variations in the range of 2.7 m/am. The casting speed at this time was 1, 4 to 2, 7 tons/win.
changed between. FIG. 2 is a graph showing the relationship between the maximum surface wave height near the copper plate on the short side of the mold and the drawing speed or casting speed when a DC magnetic field is applied and when it is not applied. The horizontal axis of this figure shows the relationship between the drawing speed and the casting speed, where ◯ indicates no magnetic field and ◯ indicates that there is a magnetic field. The magnetic flux density of the DC magnetic field is 2
It was adjusted in the range of 000 to 2500 Gauss. The maximum surface wave height when a magnetic field is applied is considerably smaller than the maximum surface wave height when no magnetic field is applied.
At casting speeds below 2.5 ton/win, the maximum surface wave height is suppressed;
Even at an injection rate of n or more, the maximum surface wave height can be suppressed to 8 m+a or less.
(実施例2)
第1図で示した各々1対の電磁石23を設置した連続鋳
造鋳型を用いて、浸漬ノズルの吐出流に直流磁場を印加
しながら鋳造を実施した。直流磁場の印加条件は実施例
1に示した結果より判断した。即ち、3.Qton/■
in以上の鋳造速度の鋳造条件で直流磁場の磁束密度は
一律2000ガウスに設定した。220鵬麓厚み、12
00■蓋幅の断面寸法のスラブを鋳造した。第3図は注
入時間と引抜速度、及び、鋳造時間と直流磁場の有無に
おける最大湯面波動高さとの経時変化を示すグラフ図で
ある。鋳造開始直後については最大湯面波動高さを測定
するための渦流距離計のセッテングと調節が必要なため
測定はできなかったが、測定できる状態になってから直
流磁場を印加すると、最大湯面波動高さの値は、はぼ全
鋳造領域にわたって適正な範囲に制御ができる。(Example 2) Casting was carried out using continuous casting molds each equipped with a pair of electromagnets 23 shown in FIG. 1 while applying a DC magnetic field to the flow discharged from the immersion nozzle. The conditions for applying the DC magnetic field were determined based on the results shown in Example 1. That is, 3. Qton/■
The magnetic flux density of the DC magnetic field was uniformly set to 2000 Gauss under the casting conditions of a casting speed of 1.5 in. or more. 220 Hooroku thickness, 12
A slab with a cross-sectional dimension of 0.00 mm lid width was cast. FIG. 3 is a graph showing temporal changes in pouring time and drawing speed, and in casting time and maximum surface wave height in the presence and absence of a DC magnetic field. Immediately after the start of casting, it was not possible to measure the maximum molten metal surface wave height because it required setting and adjustment of the eddy current distance meter. The wave height value can be controlled within an appropriate range over almost the entire casting area.
゛ なお、鍋交換の時には、吐出流速が遅いため湯面波
動は静かであり、直流磁場を印加して吐出流に制動力を
作用させる必要がない。゛ When replacing the pot, the water surface wave motion is quiet because the discharge flow rate is slow, and there is no need to apply a DC magnetic field to apply a braking force to the discharge flow.
第4図は直流磁場の有無による熱延板表面欠陥指数と鋳
造速度との関係を示すグラフ図である。FIG. 4 is a graph showing the relationship between the hot-rolled sheet surface defect index and casting speed depending on the presence or absence of a DC magnetic field.
Oは磁場無しで、・は磁場有りである。なお、直流磁場
を掛けるのは鋳造速度を3 、0 ton/win以上
の時に使用した0表面欠陥指数とはヘゲ個数を観察面積
で割った値を指数化したものである。この図から明らか
なように直流磁場を印加することにより、高速鋳造にお
いて熱延板表面欠陥指数が著しく減少している。O means there is no magnetic field, and * means there is a magnetic field. The direct current magnetic field is applied when the casting speed is 3. The surface defect index used when the casting speed is 0 ton/win or more is the index value obtained by dividing the number of scratches by the observed area. As is clear from this figure, by applying a DC magnetic field, the hot-rolled sheet surface defect index is significantly reduced during high-speed casting.
[発明の効果]
以上説明したように、本発明による鋼の連続鋳造方法は
、浸漬ノズルを挟んで、少なくとも1対の直流磁石を設
置し、一方の磁極を鋳型長辺銅板の上端の上側に、他方
の磁極を浸漬ノズルの吐出孔より下方の鋳型長辺銅板の
背面に配置し、鋳型挟んで相対する磁極の極性を同一に
して、直流磁界を発生させ、浸漬ノズルからの溶鋼の吐
出流に垂直に直流磁界を印加しながら鋳造するため、吐
出流速の速い方には大きな制動力が働くため、−吐出流
は均一化されるので、湯面波動高さが一定の範囲に制御
できるので、良好な表面性状を有する熱延板を得ること
ができる。[Effects of the Invention] As explained above, in the continuous steel casting method according to the present invention, at least one pair of DC magnets are installed with the immersion nozzle in between, and one magnetic pole is placed above the upper end of the copper plate on the longer side of the mold. , the other magnetic pole is placed on the back side of the copper plate on the long side of the mold below the discharge hole of the immersion nozzle, and the polarity of the magnetic poles facing each other across the mold is made the same to generate a DC magnetic field, which increases the discharge flow of molten steel from the immersion nozzle. Since casting is performed while applying a DC magnetic field perpendicular to the molten metal, a large braking force is applied to the faster discharge flow rate.-The discharge flow is made uniform, so the height of the surface wave can be controlled within a certain range. , a hot rolled sheet having good surface properties can be obtained.
第1図はこの本発明の一実施例の連続鋳造鋳型の断面図
、第2図は直流磁場を印加した場合としない場合の鋳型
短辺銅板近傍の最大湯面波動高さと引抜速度又は鋳造速
度との関係を示すグラフ図、第3図は鋳造時間と引抜速
度、及び、鋳造時間と直流磁場製有無における最大湯面
波動高さとの経時変化を示すグラフ図、第4図は直流磁
場の有無による熱延板表面欠陥指数と鋳造速度との関係
を示めすグラフ図、第5図は鋳型内の溶鋼に電磁力を作
用させた場合の溶鋼の流動を示す図、第6図はスラブの
連続鋳造機の鋳型の溶湯表面の要部を示す図、第7図は
湯面波動の概略図、第8図は約1分間の湯面レベルの経
時変化を示す図、第9図は最大湯面波動高さと熱延板表
面欠陥指数の関係を示すグラフ図である。
21・・・鋳型長辺銅板、22・・・浸漬ノズル、23
・・・電磁石、24・・・直流磁石、25・・・直流磁
石コイル、30・・・溶鋼、31・・・直流磁石の一方
の磁極、32・・・直流磁石の他方の磁極、33・・・
浸漬ノズルの吐出孔。Fig. 1 is a sectional view of a continuous casting mold according to an embodiment of the present invention, and Fig. 2 shows the maximum surface wave height and drawing speed or casting speed near the copper plate on the short side of the mold with and without applying a DC magnetic field. Figure 3 is a graph showing the relationship between casting time and drawing speed, as well as casting time and maximum surface wave height in the presence and absence of a DC magnetic field. Figure 5 is a graph showing the relationship between hot rolled sheet surface defect index and casting speed, Figure 5 is a diagram showing the flow of molten steel when electromagnetic force is applied to the molten steel in the mold, and Figure 6 is a graph showing the relationship between the hot rolled sheet surface defect index and casting speed. A diagram showing the main parts of the molten metal surface of the mold of the casting machine, Figure 7 is a schematic diagram of the molten metal surface wave, Figure 8 is a diagram showing the change in the molten metal level over time for about 1 minute, and Figure 9 is the maximum molten metal level. FIG. 2 is a graph showing the relationship between wave height and hot-rolled sheet surface defect index. 21... Mold long side copper plate, 22... Immersion nozzle, 23
...Electromagnet, 24...DC magnet, 25...DC magnet coil, 30...molten steel, 31...one magnetic pole of the DC magnet, 32...other magnetic pole of the DC magnet, 33.・・・
Discharge hole of immersion nozzle.
Claims (1)
に鋳造する鋼の連続鋳造方法において、浸漬ノズルを挟
んで、少なくとも一対の直流磁石を設置し、前記直流磁
石の一方の磁極を鋳型長辺銅板の上端の直上に、他方の
磁極を浸漬ノズルの吐出孔より下方の鋳型長辺銅板の背
面に配置し、浸漬ノズルを挟んで、相対する磁極の極性
を同一にして、直流磁界を発生させ、浸漬ノズルからの
溶鋼の吐出流に垂直に直流磁界を印加しながら鋳造する
ことを特徴とする鋼の連続鋳造方法。In a continuous steel casting method in which molten steel is cast into a mold from a tundish through an immersion nozzle, at least a pair of DC magnets are installed across the immersion nozzle, and one magnetic pole of the DC magnet is connected to the upper end of the copper plate on the longer side of the mold. Directly above, the other magnetic pole is placed on the back side of the copper plate on the long side of the mold below the discharge hole of the immersion nozzle, and with the immersion nozzle in between, the opposing magnetic poles have the same polarity, and a DC magnetic field is generated. A continuous steel casting method characterized by casting while applying a direct current magnetic field perpendicular to the discharge flow of molten steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22491988A JP2733991B2 (en) | 1988-09-08 | 1988-09-08 | Steel continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22491988A JP2733991B2 (en) | 1988-09-08 | 1988-09-08 | Steel continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0275456A true JPH0275456A (en) | 1990-03-15 |
JP2733991B2 JP2733991B2 (en) | 1998-03-30 |
Family
ID=16821223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22491988A Expired - Fee Related JP2733991B2 (en) | 1988-09-08 | 1988-09-08 | Steel continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2733991B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292445A (en) * | 1988-09-30 | 1990-04-03 | Nkk Corp | Method for continuously casting steel |
CN117250158A (en) * | 2023-09-28 | 2023-12-19 | 北京科技大学 | Tundish evaluation method and system based on ink dyeing experiment area change |
-
1988
- 1988-09-08 JP JP22491988A patent/JP2733991B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292445A (en) * | 1988-09-30 | 1990-04-03 | Nkk Corp | Method for continuously casting steel |
CN117250158A (en) * | 2023-09-28 | 2023-12-19 | 北京科技大学 | Tundish evaluation method and system based on ink dyeing experiment area change |
CN117250158B (en) * | 2023-09-28 | 2024-04-12 | 北京科技大学 | Tundish evaluation method and system based on ink dyeing experiment area change |
Also Published As
Publication number | Publication date |
---|---|
JP2733991B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930002836B1 (en) | Method and apparatus for continuous casting | |
EP1508389A2 (en) | Method and apparatus for continuous casting of metals | |
EP0445328B1 (en) | Method for continuous casting of steel | |
JPS5855157A (en) | Method and device for controlling charged flow in continuous casting | |
JP4591156B2 (en) | Steel continuous casting method | |
JPH0555220B2 (en) | ||
JPH0275456A (en) | Method for continuously casting steel | |
KR101302526B1 (en) | Method for controlling flow of moltensteen in mold and method for producing continuous castings | |
JP2773154B2 (en) | Steel continuous casting method | |
JPS56139261A (en) | Continuous casting method for copper or copper alloy and its device | |
JP2008055431A (en) | Method of continuous casting for steel | |
JP3273291B2 (en) | Stirring method of molten steel in continuous casting mold | |
JP3417871B2 (en) | Continuous casting method of steel using static magnetic field | |
JP2611594B2 (en) | Method of manufacturing slab for steel slab | |
JPH01289543A (en) | Continuous casting method for steel | |
KR950012480B1 (en) | Method for continuous casting of steel | |
JPH01266949A (en) | Method for continuously casting steel | |
JP2005152996A (en) | Method for continuously casting steel | |
JPH03258441A (en) | Method for continuously casting steel | |
JP3491099B2 (en) | Continuous casting method of steel using static magnetic field | |
JP3147824B2 (en) | Continuous casting method | |
JPH10305358A (en) | Continuous molding of steel | |
JP2006255759A (en) | Method for continuously casting steel | |
JP5018144B2 (en) | Steel continuous casting method | |
JPH03275247A (en) | Twin roll type strip continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |