JPH027537A - Moving device and shape measuring device - Google Patents

Moving device and shape measuring device

Info

Publication number
JPH027537A
JPH027537A JP15841988A JP15841988A JPH027537A JP H027537 A JPH027537 A JP H027537A JP 15841988 A JP15841988 A JP 15841988A JP 15841988 A JP15841988 A JP 15841988A JP H027537 A JPH027537 A JP H027537A
Authority
JP
Japan
Prior art keywords
light spot
workpiece
light
weight
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15841988A
Other languages
Japanese (ja)
Inventor
Kazuo Watanabe
一生 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP15841988A priority Critical patent/JPH027537A/en
Publication of JPH027537A publication Critical patent/JPH027537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To realize the high speed of measurement and control to lessen the vibration of a driving part even if acceleration is large by offsetting the reaction at the time of the accelerating to provide a means for controlling vibration. CONSTITUTION:The surface condition of a work 22 is detected by a reflected light detector 25 through a lens 27 by the use of the reflected light from the work 22, further transmitted light 23 of the work 22 is condensed by a lens 23 to make a transmitted light detector 24 incident and the lateral deformation of the work 22 is detected. An XY stage 11 moves a height measuring part 10 in the directions of X and Y, and driving mechanisms of both the directions are approximately the same. A weight 41X and the weight of a weight plate 40 are approximately the same as the weights of the XY stage 11 and the height measuring part 10 and a weight 41Y and the weight of a weight plate 40Y are approximately the same as the weights of the height measuring part 10 and a moving member 50. Thus, if linear driving mass of both the side mechanisms seen from motors 30X, 30Y is equal, the reaction is eliminated because the value of the reaction is equal and reverse when the motors 30X, 30Y are accelerated.

Description

【発明の詳細な説明】 発明の目的: (産業上の利用分野) この発明は、振動が極めて小さい8動装置並びにこの8
勤装置を応用してIC用リードフレームの三次元形状測
定、 ICのピン曲り測定のように立体形状を測定、検
査する形状測定装置に関する。
[Detailed Description of the Invention] Purpose of the Invention: (Industrial Application Field) This invention provides an 8-motion device with extremely low vibration and an 8-motion device with extremely low vibration.
The present invention relates to a shape measuring device that measures and inspects three-dimensional shapes, such as three-dimensional shape measurement of IC lead frames and IC pin bending measurements, by applying the same.

(従来の技術) リードフレームとは、エツチング法又はプレス法で厚さ
100〜300μmの金属板を第4図に示す様な形状に
加工し、アイランド1及びインナーリード2の先端部に
金、銀等の金属を部分的にメツキしたもので、このリー
ドフレームのアイランド1に半導体チップを装着(ダイ
ボンディング)し、さらにインナーリード2の先端部と
半導体チップの電極とを金、アルミなどの細い金属線で
接続(ワイヤーボンディング)して半導体装置を製造す
るものである。なお、第4図において、3はダム、4は
アウターリード、5は外枠、6は部分メツキ領域をそれ
ぞれ示している。
(Prior art) A lead frame is made by processing a metal plate with a thickness of 100 to 300 μm into the shape shown in Fig. 4 by etching or pressing. A semiconductor chip is attached (die bonding) to the island 1 of this lead frame, and the tip of the inner lead 2 and the electrode of the semiconductor chip are plated with a thin metal such as gold or aluminum. Semiconductor devices are manufactured by connecting with wires (wire bonding). In addition, in FIG. 4, 3 indicates a dam, 4 indicates an outer lead, 5 indicates an outer frame, and 6 indicates a partially plated area.

以上はリードフレームの説明であるが、リードフレーム
自体は前述の様に板厚が小さく、かつインナーリード2
など各部の幅は100〜数100μmと細いため、製造
途中で変形を起こす場合があり、また製造装置の誤動作
等により部分メツキ領域6の位置精度不良を生ずる場合
もあり、製品の中にこの様な不良品が混入する事がある
。この様な不良品を使用すると、ダイボンディングある
いはワイヤーボンディング工程での不良品の発生及び完
成した半導体装置の信頼性の低下などの原因となる為、
リードフレーム製造後に検査を行ない不良品を排除する
事が不可欠な作業となっている。
The above is an explanation of the lead frame, but as mentioned above, the lead frame itself has a small plate thickness, and the inner lead 2
Since the width of each part is as narrow as 100 to several 100 μm, deformation may occur during manufacturing, and malfunction of manufacturing equipment may cause poor positioning accuracy of the partial plating area 6. Some defective products may be mixed in. If such defective products are used, it may cause defects in the die bonding or wire bonding process and reduce the reliability of the completed semiconductor device.
It is essential to inspect lead frames after manufacturing them to eliminate defective products.

従来この様なリードフレームの検査には、裸眼又は顕微
鏡を用いての目視により行なっているのが通例であるが
、多数の製品を検査するためには多大な人手を要し、ま
た官能検査であるために検査精度や信頼性の面で問題が
あった。
Conventionally, such lead frame inspections have been carried out visually with the naked eye or using a microscope, but it requires a large amount of manpower to inspect a large number of products, and it is difficult to perform sensory tests. This caused problems in terms of testing accuracy and reliability.

この様な問題を解決するために、例えばリードフレーム
の横変形を検査する方法に関しては、ITVを用いてリ
ードフレームを透過照明で撮影して得たビデオ信号を、
基準パターン又は隣接するパターンを同様に撮影して得
た信号と比較して変形を検出する方法が、また、部分メ
ツキ部の検査に関しては反射照明を用いて同様の処理を
行なってメツキ部の位置不良を検出する方法が、上下変
形の検査に関しては光学式非接触高さ測定器を用いる方
法、などがそれぞれ提案されている。
In order to solve such problems, for example, a method for inspecting lateral deformation of a lead frame is to use a video signal obtained by photographing a lead frame under transmitted illumination using an ITV.
There is a method of detecting deformation by comparing the signal obtained by photographing a reference pattern or an adjacent pattern in the same way, and when inspecting a partially plated part, similar processing is performed using reflected illumination to determine the position of the plated part. Various methods have been proposed for detecting defects, including a method using an optical non-contact height measuring device for vertical deformation inspection.

しかして、これらの方法によれば各々個別には目的を達
せられるものの、検査項目毎に異なる方法を用いなけれ
ばならないために検査工程が?ml雑になり、またIT
Vを用いた方法では、リードフレームに付着したゴミや
キズ等不良原因とならないものを検出して不良判定とし
てしまう場合がある。さらに、非接触高さ測定器を用い
る方法では、測定点がパターンのエツジ上にあるときに
測定値が不安定となるなど信頼性の面で問題が多く、実
際には実用化が困難であった。
However, although each of these methods can individually achieve its purpose, the inspection process is complicated because a different method must be used for each inspection item. ml becomes sloppy and IT again
In the method using V, there are cases where dust or scratches attached to the lead frame, which do not cause a defect, are detected and determined to be defective. Furthermore, the method using a non-contact height measuring device has many reliability problems such as unstable measurement values when the measurement point is on the edge of the pattern, making it difficult to put it into practical use. Ta.

このような欠点を解決したリードフレームの検査方法と
して、本出願人による特開昭6l−2521i53号公
報に示すものがある。これは検査すべきリードフレーム
の面を光スポットで走査し、このときの透過光と走査位
置によりリードフレームの横変形を検出し、このときの
リードフレームによる反射光の量によりリードフレーム
の表面状態を検出し、さらに、このときのリードフレー
ム上での光スポットの像を、この光スポットの照射光軸
に対して斜めの方向に投射結像したときの結像位置の変
位による光学的三角測量方式に基づく計測により、リー
ドフレームの上下変形を検出するようにしたものである
As a lead frame inspection method that solves these drawbacks, there is a method disclosed in Japanese Patent Application Laid-Open No. 61-2521i53 by the present applicant. This scans the surface of the lead frame to be inspected with a light spot, detects the lateral deformation of the lead frame based on the transmitted light and scanning position, and detects the surface condition of the lead frame based on the amount of light reflected by the lead frame at this time. Optical triangulation is performed by detecting the image of the light spot on the lead frame at this time and then projecting and forming the image in a direction oblique to the irradiation optical axis of this light spot and the displacement of the image formation position. The vertical deformation of the lead frame is detected by measurement based on the method.

(発明が解決しようとする課題) しかしながら、上記特開昭61−252653号公報の
場合は、リードフレームをXYステージで移動させると
、■XYステージが大型になり高速動作が困難である、
■リードフレームが振動して正確な測定ができない、■
リードフレームが移動しない様に固定すると変形する、
などの問題があフて高速化ができなかった、また、通常
のXYステージで高さ測定部を移動させると、上記■及
び■の問題は解決して高速化できるが、加速度が大きく
なると駆動部の振動が大きくなり、測定系やワークに影
響する欠点がある。各部の重量や剛性を増加させると振
動を減少させることができるが十分な効果は得られず、
また設計上の制約も増える。
(Problems to be Solved by the Invention) However, in the case of the above-mentioned Japanese Patent Application Laid-Open No. 61-252653, if the lead frame is moved by an XY stage, the XY stage becomes large and high-speed operation is difficult.
■The lead frame vibrates and does not allow accurate measurements.■
If the lead frame is fixed so that it does not move, it will deform.
In addition, if the height measuring section is moved using a normal The disadvantage is that the vibration of the parts increases, which affects the measurement system and workpiece. Vibration can be reduced by increasing the weight and rigidity of each part, but the effect is not sufficient.
It also increases design constraints.

この発明は上述のような事情よりなされたものであり、
この発明の目的は、高速度化を実現でき、しかも加速度
が大きくなっても振動が小さい移動装置を提供すること
、並びに上記移動装置を応用して設計正大ぎな制約を受
けることなく測定を行なうことのできる形状測定装置を
提供することにある。
This invention was made due to the circumstances mentioned above,
The purpose of the present invention is to provide a moving device that can achieve high speeds and exhibits small vibrations even when acceleration increases, and to apply the above-mentioned moving device to perform measurements without being subject to excessive design restrictions. The object of the present invention is to provide a shape measuring device that can perform the following.

発明の構成; (課題を解決するための手段) この発明の上記目的は、加速時の反力を相殺して振動を
抑制する手段を設けることによって達成される。また、
ワーク(たとえばリードフレーム)の表面状態を検査す
べき方の面に垂直に光スポットを照射する光源手段と、
前記ワークを挟んで前記光源手段と反対側に延びる光ス
ポットの光軸上に位置する受光手段と、前記ワーク上に
照射された光スポットの像を当該光スポットの照射光軸
に対して90度未満の所定の角度方向の所定の位置に結
像させる結像光学手段と、この結像光学手段による前記
光スポットの像の結像位置近傍に位置する一次元光入射
位置検出手段と、前記光スポットの光軸を前記ワークの
面に沿って相対的に移動させる走査手段と、この走査手
段による相対的な移動量を検出する計測手段とを有し、
前記受光手段の出力信号と前記計測手段の出力信号とに
より前記ワークの面方向内での変形を検出し、前記一次
元光入射位置検出手段の出力信号により前記ワークの面
方向に対して垂直な方向での変形と表面状態とを検出す
るように構成して成る形状測定装置に関するもので、こ
の発明の上記目的は、ジをX及びY方向に駆動すること
によって前記光スポットの走査を行なうようにすること
によって達成される。
Structure of the Invention; (Means for Solving the Problems) The above objects of the present invention are achieved by providing means for suppressing vibration by offsetting reaction force during acceleration. Also,
light source means for irradiating a light spot perpendicularly to the surface of the workpiece (for example, a lead frame) whose surface condition is to be inspected;
a light receiving means located on the optical axis of a light spot extending on the opposite side of the light source means with the workpiece in between; and a light receiving means located on the optical axis of a light spot that extends on the opposite side of the light source means with the workpiece in between; an imaging optical means for forming an image at a predetermined position in a predetermined angular direction less than or equal to comprising a scanning means for relatively moving the optical axis of the spot along the surface of the workpiece, and a measuring means for detecting the relative movement amount by the scanning means,
Deformation in the surface direction of the workpiece is detected by the output signal of the light receiving means and the output signal of the measuring means, and deformation perpendicular to the surface direction of the workpiece is detected by the output signal of the one-dimensional light incident position detection means. The present invention relates to a shape measuring device configured to detect deformation in the direction and surface condition, and the above object of the present invention is to scan the light spot by driving the lens in the X and Y directions. This is achieved by making

(作用) 従来装置では、リードフレームをxYステージで移動さ
せると、ステージが大型になり高速動作が困難であると
共に、リードフレームが振動して正確な測定ができず、
リードフレームが移動しない様に固定すると変形するな
どの問題があった。また、通常のXYステージで高さ測
定部を移動させると高速化できるが、加速度が大籾くな
ると駆動部の振動が大ぎくなり、測定系やワークに影響
する欠点もあった。
(Function) In conventional equipment, when the lead frame is moved by an xY stage, the stage becomes large and high-speed operation is difficult, and the lead frame vibrates, making accurate measurement impossible.
There were problems such as deformation if the lead frame was fixed so that it would not move. Furthermore, although it is possible to increase the speed by moving the height measurement section using a normal XY stage, there is also the drawback that when the acceleration becomes large, the vibration of the drive section becomes large, which affects the measurement system and the workpiece.

これに対し、この発明では移動部材を加速時の反力を相
殺して振動を抑制する手段を設けて構成し、この移動装
置を応用して高さ測定部をXYステージ上に設け、xY
ステージを駆動することによって光スポットの走査を行
なうようにしている。このため、測定の高速化を実現で
きると共に、加速度を大きくしても駆動部の振動を小さ
く抑制できる。
In contrast, in the present invention, the movable member is provided with a means for suppressing vibration by offsetting the reaction force during acceleration, and by applying this moving device, a height measuring section is provided on the XY stage, and the xY
The light spot is scanned by driving the stage. Therefore, it is possible to realize high-speed measurement and to suppress vibrations of the drive unit to a small level even when the acceleration is increased.

(実施例) この発明では第1図に示す様に、高さ測定部lOをXY
ステージ11に載せて駆動する事により、光スポット2
1でワーク22の走査を行なう、ワーク22を透過した
光はレンズ23によつ°て透過光検出器24に入射する
。すなわち、光源20から照射された光はレンズ26を
介して光スポット21としてワーク22に照射され、ワ
ーク22からの反射光はレンズ27を介して反射光検出
器25で、ワーク22の表面状態が検出されるようにな
っている。また、ワーク22の透過光23はレンズ23
で集光されて透過光検出器24に入射され、ワーク22
の横変形が検出される。
(Embodiment) In this invention, as shown in FIG.
By placing it on the stage 11 and driving it, the light spot 2
The work 22 is scanned in step 1, and the light transmitted through the work 22 is incident on a transmitted light detector 24 through a lens 23. That is, the light emitted from the light source 20 is irradiated onto the workpiece 22 as a light spot 21 via the lens 26, and the reflected light from the workpiece 22 is sent via the lens 27 to the reflected light detector 25, which detects the surface condition of the workpiece 22. It is now detected. In addition, the transmitted light 23 of the work 22 is transmitted through a lens 23.
The light is focused and incident on the transmitted light detector 24, and the light is transmitted to the workpiece 22.
Lateral deformation of is detected.

ところで、XYステージ11は第2図の様な駆動機構で
駆動され、X方向、Y方向に高さ測定部lOを移動する
ようになっている。X方向及びY方向の駆動機構はほぼ
同一であり、例えばX方向の駆動機構の詳細は第3図の
ようになフている。すなわち、 XYステージ11はモ
ータ30X及び30Yによって駆動され、モータ30X
及び30Yの両端軸にはそれぞれカップリング31X、
32X及び31Y、32Yが装着され、カップリング3
1X及び31Yにはそれぞれ左ネジのボールネジ33X
及び33Yが装着され、カップリング32X及び32Y
にはそれぞれ右ネジのボールネジ34X及び34Yが装
着されている。ボールネジ33Xは架台35及び36X
の間に装架されると共に;XYステージ11に螺合され
ており、ボールネジ33Xの回転に従ってXYステージ
11はX方向に移動するようになっている。また、ボー
ルネジ34Xは架台37X及び38Xの間に装架される
と共に、ウエート41Xを載置されたウエート板40X
に螺合されており、ウェー)41X及びウエート板40
の重量はXYステージ11及び高さ測定部lOの重量と
ほぼ同一になっている。ボールネジ34Xのネジはボー
ルネジ33Xのそれとは逆になっているので、モータ3
0Xの駆動によってXYステージ11とウエート板40
Xとは互いに逆方向にB勤する。
Incidentally, the XY stage 11 is driven by a drive mechanism as shown in FIG. 2, and is configured to move the height measuring section 1O in the X direction and the Y direction. The driving mechanisms in the X direction and the Y direction are almost the same, and the details of the driving mechanism in the X direction are shown in FIG. 3, for example. That is, the XY stage 11 is driven by motors 30X and 30Y, and
Couplings 31X and 30Y are attached to both end shafts, respectively.
32X, 31Y, and 32Y are installed, and coupling 3
1X and 31Y each have a left-handed ball screw 33X.
and 33Y are installed, and couplings 32X and 32Y are installed.
are fitted with right-handed ball screws 34X and 34Y, respectively. Ball screw 33X is mounted on frames 35 and 36X
The XY stage 11 is mounted between them and is screwed to the XY stage 11, so that the XY stage 11 moves in the X direction according to the rotation of the ball screw 33X. Further, the ball screw 34X is mounted between the frames 37X and 38X, and the weight plate 40X on which the weight 41X is mounted
41X and weight plate 40
The weight of is almost the same as the weight of the XY stage 11 and the height measurement unit IO. Since the screw of the ball screw 34X is opposite to that of the ball screw 33X, the motor 3
The XY stage 11 and weight plate 40 are driven by 0X.
B shifts in the opposite direction to X.

一方、ボールネジ33YはXYステージ11をY方向に
穆勤させるための移動部材50に螺合されており、装架
台37’f及び38Yの間に装架されたボールネジ34
Yは、ウエート41Yを載置されたウエート板40Yに
螺合されている。そして、ウエート41Y及びウエート
板40Y f)重量は、XYステージ11.高さ測定部
lO及び移動部材50の重量とほぼ同一となっている。
On the other hand, the ball screw 33Y is screwed to a moving member 50 for moving the XY stage 11 in the Y direction, and the ball screw 33Y is mounted between the mounting stands 37'f and 38Y.
Y is screwed to a weight plate 40Y on which a weight 41Y is placed. Then, the weight 41Y and the weight plate 40Y f) The weight is transferred to the XY stage 11. The weight is almost the same as the weight of the height measurement unit IO and the moving member 50.

ボールネジ33Yのネジはボールネジ34Yのそれとは
逆になっているので、モータ30Yの駆動によってXY
ステージ11と、ウエート板40Yとは互いに逆方向に
8勤する。このように、モータ30X、30Yから見た
両側の機構の直線駆動質量が等しければ、モータ30X
、30Yを加速したときの反力は大きさが等しく逆向き
となるため、反力は打ち消しあって消去される。軸の回
転慣性は消去されないが、半径は小さく問題ない、被駆
動部の重心と直線駆動軸の不一致によって生ずる回転モ
ーメントは、ウエート41X、41Yの取付位置の決め
方で打ち消すことができる。
Since the screw of the ball screw 33Y is opposite to that of the ball screw 34Y, the XY
The stage 11 and the weight plate 40Y move eight times in opposite directions. In this way, if the linear drive mass of the mechanisms on both sides as seen from the motors 30X and 30Y is equal, then the motor 30X
, 30Y, the reaction forces are equal in magnitude and in opposite directions, so the reaction forces cancel each other out and are eliminated. Although the rotational inertia of the shaft is not eliminated, the radius is small and there is no problem.The rotational moment caused by the mismatch between the center of gravity of the driven part and the linear drive shaft can be canceled by determining the mounting positions of the weights 41X and 41Y.

上記以外の構造でも加速度X質量が等しくなる様に、ボ
ールネジのピッチとウエートとを選択すれば同等な結果
を得ることができる。
Even with structures other than the above, equivalent results can be obtained by selecting the pitch and weight of the ball screw so that the acceleration x mass is equal.

発明の効果; 以上のようにこの発明の形状測定装置によれば、光スポ
ットの走査を高速にして測定能率を向上させる事ができ
る0例えば加速度IG、最高速度200+++m/se
cとすると、10++++aを移動する時間は約80a
secとなり、リードフレームのピン曲り測定で10m
mを走査するのに要1°る時間は0.32secとなる
Effects of the invention: As described above, according to the shape measuring device of the present invention, it is possible to improve the measurement efficiency by increasing the scanning speed of the light spot.
c, the time to move 10++++a is approximately 80a
sec, and 10m when measuring lead frame pin bending.
The time required to scan m is 0.32 sec.

また、本発明のXYステージの様に防振手段を有する駆
動装置は、高精度及び高加速度を両立させる必要のある
装置、例えばワイヤボンダ、ステッパ、 PGなどにも
大台な効果がある。
Further, a drive device having a vibration isolating means like the XY stage of the present invention has a great effect on devices that require both high precision and high acceleration, such as wire bonders, steppers, PGs, etc.

ルネジ、40X、40Y・・・ウエート板、41X、4
1Y・・・つエート。
screw, 40X, 40Y... weight plate, 41X, 4
1Y...Eight.

Claims (1)

【特許請求の範囲】 1、加速時の反力を相殺して振動を抑制する手段を具備
したことを特徴とする移動装置。 2、駆動部と、この駆動部の一方の側に接続される移動
部材と、前記駆動部の他方の側に接続されるバランサー
とから成り、前記移動部材の加速時の反力を前記バラン
サーによって相殺するようにしたことを特徴とする移動
装置。 3、請求項2に記載の駆動部とバランサーとの組を移動
部材に対してXY方向に設けて成る移動装置。 4、ワークの表面状態を検査すべき方の面に垂直に光ス
ポットを照射する光源手段と、前記ワークを挟んで前記
光源手段と反対側に延びる光スポットの光軸上に位置す
る受光手段と、前記ワーク上に照射された光スポットの
像を当該光スポットの照射光軸に対して90度未満の所
定の角度方向の所定の位置に結像させる結像光学手段と
、この結像光学手段による前記光スポットの像の結像位
置近傍に位置する一次元光入射位置検出手段と、前記光
スポットの光軸を前記ワークの面に沿って相対的に移動
させる走査手段と、この走査手段による相対的な移動量
を検出する計測手段とを有し、前記受光手段の出力信号
と上記計測手段の出力信号とにより前記ワークの面方向
内での変形を検出し、前記一次元光入射位置検出手段の
出力信号により前記ワークの面方向に対して垂直な方向
での変形と表面状態とを検出するように構成して成る形
状測定装置において、請求項1、2又は3に記載の移動
装置の移動部材の上に高さ測定部を設け、前記移動装置
を駆動することによって前記光スポットの走査を行なう
ようにしたことを特徴とする形状測定装置。 5、加速時の反力を相殺して振動を抑制する手段を更に
XY方向に設けて成る請求項4に記載の形状測定装置。
[Scope of Claims] 1. A moving device characterized by comprising means for suppressing vibration by offsetting reaction force during acceleration. 2. Consisting of a drive section, a moving member connected to one side of the drive section, and a balancer connected to the other side of the drive section, the balancer absorbs the reaction force when the moving member is accelerated. A moving device characterized by being configured to offset each other. 3. A moving device comprising a set of the drive unit and balancer according to claim 2 provided in the XY directions with respect to the moving member. 4. A light source means for irradiating a light spot perpendicularly to the surface of the workpiece whose surface condition is to be inspected; and a light receiving means located on the optical axis of the light spot extending on the opposite side of the light source means across the workpiece. , an imaging optical means for forming an image of the light spot irradiated onto the workpiece at a predetermined position in a predetermined angle direction of less than 90 degrees with respect to the irradiation optical axis of the light spot; and this imaging optical means. a one-dimensional light incident position detecting means located near the imaging position of the image of the light spot; a scanning means for relatively moving the optical axis of the light spot along the surface of the workpiece; measuring means for detecting a relative movement amount, detecting deformation in the surface direction of the workpiece based on the output signal of the light receiving means and the output signal of the measuring means, and detecting the one-dimensional light incident position. 4. A shape measuring device configured to detect the deformation and surface condition of the work in a direction perpendicular to the surface direction of the work using an output signal of the moving device according to claim 1, 2 or 3. A shape measuring device, characterized in that a height measuring section is provided on a moving member, and the light spot is scanned by driving the moving device. 5. The shape measuring device according to claim 4, further comprising means for suppressing vibration by offsetting reaction force during acceleration in the XY directions.
JP15841988A 1988-06-27 1988-06-27 Moving device and shape measuring device Pending JPH027537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15841988A JPH027537A (en) 1988-06-27 1988-06-27 Moving device and shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15841988A JPH027537A (en) 1988-06-27 1988-06-27 Moving device and shape measuring device

Publications (1)

Publication Number Publication Date
JPH027537A true JPH027537A (en) 1990-01-11

Family

ID=15671343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15841988A Pending JPH027537A (en) 1988-06-27 1988-06-27 Moving device and shape measuring device

Country Status (1)

Country Link
JP (1) JPH027537A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120006A (en) * 1979-03-08 1980-09-16 Canon Inc Focus adjsutment operating force balance mechanism in photographic lens
JPS60144606A (en) * 1984-01-06 1985-07-31 Toshiba Corp Position measuring device
JPS626555B2 (en) * 1978-05-09 1987-02-12 Burisutoru Maiyaazu Kenkyusho Kk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626555B2 (en) * 1978-05-09 1987-02-12 Burisutoru Maiyaazu Kenkyusho Kk
JPS55120006A (en) * 1979-03-08 1980-09-16 Canon Inc Focus adjsutment operating force balance mechanism in photographic lens
JPS60144606A (en) * 1984-01-06 1985-07-31 Toshiba Corp Position measuring device

Similar Documents

Publication Publication Date Title
KR100516492B1 (en) Wire Bonding Method and Apparatus
CN105758343B (en) The device and method of C axis centre of gyration calibration based on double standard balls
US6525331B1 (en) Ball grid array (BGA) package on-line non-contact inspection method and system
JPH01167635A (en) Method and apparatus for measuring deformation of test piece or object to be inspected for tester
EP1109215A2 (en) Apparatus and method for solder bump inspection
KR20190027149A (en) Automatic inspection system of soldering state of Voice Coil Motor type lens actuator and High Temperature Co-fired Ceramic board
JPH027537A (en) Moving device and shape measuring device
JPH04203916A (en) Inspecting method of external appearance
Schick et al. Inspection and process evaluation for flip chip bumping and CSP by scanning 3D confocal microscopy
JPS61252653A (en) Inspecting method for lead frame
JPH02187619A (en) Inspection device for mounted printed board
US11913772B2 (en) Non-destructive gap metrology
JPS62274205A (en) Method and device for inspecting lead flatness
JP2004226106A (en) Semiconductor appearance inspection device and semiconductor appearance inspection method
JP2890568B2 (en) QFPIC lead bending inspection device
JPH05142157A (en) Appearance inspecting device for soldered state
JPH09205300A (en) Inspection method of mounted component inspection device using it
JPH0452619A (en) Method and device for optical scanning
JPH02103404A (en) Lead inspection apparatus
Lettner et al. OPTICAL PROFILOMETER FOR QUALITY CONTROL OF SOLDERING JOINTS
JPH05172755A (en) Method and apparatus for visual inspection of semiconductor device
JPS60103633A (en) Automatic wafer prober device
JPS62143448A (en) Lead flatness inspecting device
Asher et al. Noncontacting Optical Measurement And Inspection Systems
JPS63143828A (en) Semiconductor device tester