JPH027423B2 - - Google Patents
Info
- Publication number
- JPH027423B2 JPH027423B2 JP56076959A JP7695981A JPH027423B2 JP H027423 B2 JPH027423 B2 JP H027423B2 JP 56076959 A JP56076959 A JP 56076959A JP 7695981 A JP7695981 A JP 7695981A JP H027423 B2 JPH027423 B2 JP H027423B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- source
- drain
- ion
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 239000010703 silicon Substances 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 13
- 229910052594 sapphire Inorganic materials 0.000 claims description 12
- 239000010980 sapphire Substances 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 20
- 235000012431 wafers Nutrition 0.000 description 8
- 230000005669 field effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- AZBAQHIVVLQMFX-UHFFFAOYSA-N 4-(2,4-dimethylphenyl)-5-methyl-1,3-thiazol-2-amine Chemical compound S1C(N)=NC(C=2C(=CC(C)=CC=2)C)=C1C AZBAQHIVVLQMFX-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
【発明の詳細な説明】
本発明は半導体イオンセンサ、特に電界効果形
の半導体イオンセンサに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor ion sensors, particularly field-effect semiconductor ion sensors.
従来溶液中のイオン濃度を電界効果形トランジ
スタの中を流れる電流の変化により測定する半導
体装置に半導体電界効果形イオンセンサ(以後IS
FETと呼ぶ)がある。これは、たとえばシリコ
ン(Si)を半導体としてバルク状シリコンウエー
ハを用いて形成され、該半導体表面が酸化タンタ
ル(Ta2O5)などのイオン感応膜で覆われた電界
効果形トランジスタ構造を持つ。該IS FETは溶
液に浸されて使用され、該溶液中のイオンが該IS
FETの表面に透起する界面電位によつて該IS
FET中を流れる電流の値が変化すると云う現象
を利用している。 Conventionally, a semiconductor field-effect ion sensor (hereinafter referred to as IS) is a semiconductor device that measures the ion concentration in a solution by changing the current flowing through a field-effect transistor.
(called FET). This is formed using a bulk silicon wafer using silicon (Si) as a semiconductor, for example, and has a field effect transistor structure in which the semiconductor surface is covered with an ion-sensitive film such as tantalum oxide (Ta 2 O 5 ). The IS FET is used by being immersed in a solution, and the ions in the solution
The IS is
It takes advantage of the phenomenon that the value of the current flowing through the FET changes.
該IS FETは、イオン選択性電極を用いたイオ
ンセンサに比べ、(1)トランジスタの集積化技術を
用いて製作されるので超微小なイオンセンサを容
易に大量生産できる、(2)イオン感応膜が完全な絶
縁膜でも使用できる、(3)出力インピーダンスが低
く高入力抵抗の増幅器が不要であるなどの利点を
有している。 Compared to ion sensors that use ion-selective electrodes, IS FETs are: (1) manufactured using transistor integration technology, making it easy to mass-produce ultra-small ion sensors; (2) ion-sensitive It has the advantage that it can be used even if the film is a completely insulating film, and (3) it has low output impedance and does not require an amplifier with high input resistance.
しかしながら、生体内のイオン濃度を測定する
ための超微小なIS FETを製作する場合、従来の
バルク状シリコンウエーハを用いる方法は製造工
程が複雑になるという欠点があつた。すなわち、
該生体内イオン濃度測定用IS FETは超微小な針
状構造(たとえば長さ6mm、幅0.5mm、厚さ0.15
mm)を持つが、該IS FETが生体内溶液と絶縁さ
れるためには該針状シリコンの全面を絶縁膜で覆
う必要があつた。このため従来構造では、該シリ
コンウエーハをエツチングして穴をあけ、針状構
造のシリコンを残した後、熱酸化などにより絶縁
膜を全面に形成しなければならなかつた。該バル
ク状シリコンウエーハはウエーハ強度の点から
150μm程度以上の厚さのものが用いられるが、該
ウエーハをエツチングにより針状構造に残すため
には、該ウエーハを両面マスク目合せし、両面か
ら長時間エツチングしなければならないという欠
点と共にデバイスとしての歩留りが悪いと云う欠
点があつた。 However, when manufacturing ultra-small IS FETs for measuring ion concentrations in living organisms, the conventional method of using bulk silicon wafers has the drawback of complicating the manufacturing process. That is,
The IS FET for measuring ion concentration in living bodies has an ultra-fine needle-like structure (for example, length 6 mm, width 0.5 mm, thickness 0.15 mm).
mm), but in order to insulate the IS FET from the in-vivo solution, it was necessary to cover the entire surface of the needle-shaped silicon with an insulating film. For this reason, in the conventional structure, the silicon wafer had to be etched to make a hole, leaving a needle-like structure of silicon, and then an insulating film had to be formed over the entire surface by thermal oxidation or the like. The bulk silicon wafer is
A wafer with a thickness of about 150 μm or more is used, but in order to leave a needle-like structure on the wafer by etching, both sides of the wafer must be aligned with masks and etched for a long time from both sides, which makes it difficult to use as a device. The drawback was that the yield was low.
本発明の目的はこのような従来の欠点を除去せ
しめて絶縁が完全で容易に製造できる新規な半導
体イオンセンサを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a novel semiconductor ion sensor that eliminates these conventional drawbacks, has perfect insulation, and is easy to manufacture.
本発明によれば細長い、平面形状をもつたサフ
アイア基板上の一端部に半導体シリコンからなる
能動領域と、該能動領域をはさんで該能動領域と
異なる導電性を有する高不純物濃度領域からなる
ソース領域とドレイン領域とが構成され、かつ前
記ソース領域およびドレイン領域がそれぞれ前記
サフアイア基板の他端まで延長され、前記ドレイ
ン領域の端部に金属からなるドレイン電極を備
え、前記延長されたソース領域に接し、かつ沿う
ように前記能動領域と同一導電性を有する高不純
物領域からなるアース領域が設けられその端部に
おいて前記ソース領域とアース領域とを短絡する
ように金属からなるソース電極を備えていると共
に、少なくとも前記能動領域はイオン感応膜で覆
われ前記ドレイン領域、ソース領域およびアース
領域は電気的絶縁膜で覆われていることを特徴と
する半導体イオンセンサが得られる。 According to the present invention, an active region made of semiconductor silicon is formed at one end of a sapphire substrate having a long and narrow planar shape, and a source is made of a high impurity concentration region having a conductivity different from that of the active region, sandwiching the active region. The source region and the drain region each extend to the other end of the sapphire substrate, a drain electrode made of metal is provided at an end of the drain region, and a drain electrode made of metal is provided at an end of the drain region. A ground region made of a highly impurity region having the same conductivity as the active region is provided in contact with and along the active region, and a source electrode made of metal is provided at the end thereof to short-circuit the source region and the ground region. In addition, there is obtained a semiconductor ion sensor characterized in that at least the active region is covered with an ion sensitive film and the drain region, source region and ground region are covered with an electrically insulating film.
以下本発明について実施例を示す図面を参照し
て説明する。 The present invention will be described below with reference to drawings showing embodiments.
第1図は本発明の一実施例を示すIS FETの平
面図で、細長いサフアイア基板上の一端にイオン
感応膜で覆われたセンサー部を構成する半導体シ
リコン領域が形成され、該半導体シリコン領域か
らドレイン領域、ソース領域およびアース領域が
サフアイア基板上の他端まで延長され、該サフア
イア基板上の他端において、ドレイン領域がドレ
イン電極で覆われ、ソース領域とアース領域が互
いにソース電極により短絡されている。第2図、
第3図、第4図、第5図は、それぞれ第1図の一
点鎖線a−a′,b−b′,c−c′,d−d′における
断面図で、nチヤンネル形の場合、1は細長い平
面形状をもつたサフアイア基板、2はp形半導体
シリコン層、3は高不純物濃度n形ソース領域、
4は高不純物濃度n形ドレイン領域、5は高不純
物濃度p形アース領域、6はソース電極、7はド
レイン電極、8は熱酸化膜、9はイオン感応膜で
ある。該シリコン層の厚さは、0.3μmないし2μm
である。 FIG. 1 is a plan view of an IS FET showing an embodiment of the present invention, in which a semiconductor silicon region constituting a sensor portion covered with an ion-sensitive film is formed at one end of an elongated sapphire substrate, and from the semiconductor silicon region A drain region, a source region, and a ground region are extended to the other end on the sapphire substrate, and at the other end on the sapphire substrate, the drain region is covered with a drain electrode, and the source region and the ground region are short-circuited to each other by the source electrode. There is. Figure 2,
Figures 3, 4, and 5 are cross-sectional views taken along dashed-dotted lines a-a', bb-b', c-c', and dd' in Figure 1, respectively, and in the case of an n-channel type, 1 is a sapphire substrate with an elongated planar shape, 2 is a p-type semiconductor silicon layer, 3 is a high impurity concentration n-type source region,
4 is a high impurity concentration n-type drain region, 5 is a high impurity concentration p-type earth region, 6 is a source electrode, 7 is a drain electrode, 8 is a thermal oxide film, and 9 is an ion-sensitive film. The thickness of the silicon layer is 0.3μm to 2μm
It is.
この本発明によるIS FETは絶縁体であるサフ
アイア上に形成されているため基板シリコン層の
下面がウエーハ段階で既に絶縁されており、該シ
リコン層をエツチングして島状化し熱酸化して絶
縁膜を表面に形成することにより該シリコン層は
完全に絶縁分離される。 Since the IS FET according to the present invention is formed on sapphire, which is an insulator, the bottom surface of the substrate silicon layer is already insulated at the wafer stage, and the silicon layer is etched to form islands and thermally oxidized to form an insulating film. By forming the silicon layer on the surface, the silicon layer is completely insulated.
また、本発明のサフアイア基板上のシリコン層
を用いたIS FETは、ドレイン領域、ソース領
域、アース領域が細長いサフアイア基板上の一端
の島状シリコン領域から他端の電極領域まで延長
されているため、センサー部分と離れた場所で該
アース領域とソース領域は金属からなるソース電
極で短絡される。またソース電極およびドレイン
電極はセンサー部から離れているため配線後、樹
脂などで覆うことにより容易に絶縁できる。 Furthermore, in the IS FET using the silicon layer on the sapphire substrate of the present invention, the drain region, source region, and ground region extend from the island-like silicon region at one end of the elongated sapphire substrate to the electrode region at the other end. , the ground region and the source region are short-circuited by a source electrode made of metal at a location remote from the sensor portion. Further, since the source electrode and the drain electrode are separated from the sensor section, they can be easily insulated by covering them with resin or the like after wiring.
さらに、イオン感応膜の加工が耐エツチング性
により困難な場合にも、センサー部から離れた電
極領域に最初からイオン感応膜を設けないことに
より、金属電極のコンタクトを容易に実現でき
る。 Furthermore, even if processing of the ion-sensitive film is difficult due to etching resistance, contact with the metal electrode can be easily realized by not providing the ion-sensitive film from the beginning in the electrode region remote from the sensor section.
本発明は、実施例に示したNチヤネル形に限ら
れずpチヤネル形も可能で、またIS FET中も流
れる電流量を調節するために基板シリコン層表面
に不純物をイオン注入によりドープし閾電圧も変
化させることも可能である。 The present invention is not limited to the N-channel type shown in the embodiment, but can also be applied to a P-channel type. Also, in order to adjust the amount of current flowing during IS FET, the surface of the substrate silicon layer is doped with impurities by ion implantation, and the threshold voltage can also be adjusted. It is also possible to change it.
第1図は本発明の一実施例を示す平面図、第2
図、第3図、第4図、第5図はそれぞれ第1図の
一点鎖線a−a′,b−b′,c−c′,d−d′におけ
る断面図である。
図において、1……サフアイア基板、2……p
形半導体シリコン層、3……高不純物濃度n形ソ
ース領域、4……高不純物濃度n形ドレイン領
域、5……高不純物濃度p形アース領域、6……
ソース電極、7……ドレイン電極、8……絶縁
膜、9……イオン感応膜。
FIG. 1 is a plan view showing one embodiment of the present invention, and FIG.
3, 4, and 5 are sectional views taken along dashed-dotted lines a-a', bb-b', c-c', and dd' in FIG. 1, respectively. In the figure, 1...Sapphire substrate, 2...p
type semiconductor silicon layer, 3... High impurity concentration n-type source region, 4... High impurity concentration n-type drain region, 5... High impurity concentration p-type ground region, 6...
Source electrode, 7...Drain electrode, 8...Insulating film, 9...Ion sensitive film.
Claims (1)
一端部に半導体シリコンからなる能動領域と、該
能動領域をはさんで該能動領域と異なる導電性を
有する高不純物濃度領域からなるソース領域とド
レイン領域とが構成され、かつ前記ソース領域お
よびドレイン領域がそれぞれ前記サフアイア基板
の他端まで延長され、前記ドレイン領域の端部に
金属からなるドレイン電極を備え、前記延長され
たソース領域に接し、かつ沿うように前記能動領
域と同一導電性を有する高不純物領域からなるア
ース領域が設けられその端部において前記ソース
領域とアース領域とを短絡するように金属からな
るソース電極を備えていると共に、少なくとも前
記能動領域はイオン感応膜で覆われ前記ドレイン
領域、ソース領域およびアース領域は電気的絶縁
膜で覆われていることを特徴とする半導体イオン
センサ。1. An active region made of semiconductor silicon at one end of a sapphire substrate having a long and narrow planar shape, and a source region and a drain region made of high impurity concentration regions having conductivity different from that of the active region, sandwiching the active region. The source region and the drain region are each extended to the other end of the sapphire substrate, and a drain electrode made of metal is provided at an end of the drain region so as to be in contact with and along the extended source region. A grounding region made of a highly impurity region having the same conductivity as that of the active region is provided, and a source electrode made of metal is provided at the end thereof to short-circuit the source region and the grounding region. A semiconductor ion sensor characterized in that the region is covered with an ion sensitive film, and the drain region, the source region and the ground region are covered with an electrically insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56076959A JPS57191539A (en) | 1981-05-21 | 1981-05-21 | Semiconductor ion sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56076959A JPS57191539A (en) | 1981-05-21 | 1981-05-21 | Semiconductor ion sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57191539A JPS57191539A (en) | 1982-11-25 |
JPH027423B2 true JPH027423B2 (en) | 1990-02-19 |
Family
ID=13620318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56076959A Granted JPS57191539A (en) | 1981-05-21 | 1981-05-21 | Semiconductor ion sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57191539A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3311203A1 (en) * | 1983-03-26 | 1984-10-04 | Dr. Johannes Heidenhain Gmbh, 8225 Traunreut | Method for reproducing a reference position |
JPS6082846A (en) * | 1983-10-12 | 1985-05-11 | Sumitomo Electric Ind Ltd | Electric field effect type semiconductor sensor |
JPH0345177Y2 (en) * | 1984-09-05 | 1991-09-24 | ||
JPS6150262U (en) * | 1984-09-05 | 1986-04-04 | ||
JPS63165747A (en) * | 1986-12-26 | 1988-07-09 | Kanegafuchi Chem Ind Co Ltd | Amorphous semiconductor ion sensor |
JP4669213B2 (en) | 2003-08-29 | 2011-04-13 | 独立行政法人科学技術振興機構 | Field effect transistor, single electron transistor and sensor using the same |
-
1981
- 1981-05-21 JP JP56076959A patent/JPS57191539A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57191539A (en) | 1982-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4670768A (en) | Complementary MOS integrated circuits having vertical channel FETs | |
JP2007335887A (en) | Semiconductor device and its manufacturing method | |
JPH027423B2 (en) | ||
JPS62126675A (en) | Semiconductor device and manufacture thereof | |
US4357747A (en) | Method for producing a semiconductor device having an insulated gate type field effect transistor | |
JP2579954B2 (en) | MOS transistor | |
JPH029306B2 (en) | ||
JPH0566031B2 (en) | ||
JPH0452409B2 (en) | ||
JPH0549187B2 (en) | ||
JPH06288972A (en) | Ion sensor and ion measuring method | |
JPS6040716B2 (en) | Compound semiconductor device and its manufacturing method | |
JP2988020B2 (en) | Semiconductor ion sensor | |
US11327045B2 (en) | Sensor device for detecting a pH change in a solution and a method for forming the sensor device | |
JPH0421815B2 (en) | ||
JPS62110145A (en) | Environment detector and manufacture thereof | |
JPH024136B2 (en) | ||
JPH01116442A (en) | Semiconductor ion sensor | |
JPS61100975A (en) | Junction type field-effect transistor | |
JP2710356B2 (en) | Semiconductor device | |
JPH04241465A (en) | Manufacture of field effect type semiconductor device | |
JPS59182558A (en) | Semiconductor memory device | |
JPS6346993B2 (en) | ||
RU2055422C1 (en) | Integral hall gate | |
JPH02134825A (en) | Mis-type transistor and its manufacture |