JPH0273593A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH0273593A
JPH0273593A JP63226732A JP22673288A JPH0273593A JP H0273593 A JPH0273593 A JP H0273593A JP 63226732 A JP63226732 A JP 63226732A JP 22673288 A JP22673288 A JP 22673288A JP H0273593 A JPH0273593 A JP H0273593A
Authority
JP
Japan
Prior art keywords
potential
word line
node
power supply
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63226732A
Other languages
Japanese (ja)
Inventor
Toshio Nishimoto
敏夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63226732A priority Critical patent/JPH0273593A/en
Publication of JPH0273593A publication Critical patent/JPH0273593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dram (AREA)

Abstract

PURPOSE:To prevent a potential reduction due to the time of a word line and to ensure a writing by connecting only a selected word line with a boosting means and pumping. CONSTITUTION:A clock CL1, when it is made into an H and a word line WL1 or the like is selected, is boosted by a capacitor Co through a word line driving circuit, a word selector or the like and nodes N and N1 turn to be a power source potential Vcc or more. Transistors (TR) Q1-Q3 are turned on, a pumping circuit is connected to the word line WL1, a time is leaked together through a capacitor C1 connecting with an oscillation circuit, the reducing potential of the nodes N and N1 is boosted, it is held to a higher potential for a long time and the writing of a sufficient potential is surely executed into selected memory cells MC1 and MC2....

Description

【発明の詳細な説明】 産業上の利用分野 本発明はワード線の電位低下を防ぎ安定な動作を行なう
半導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor memory device which prevents potential drop in word lines and performs stable operation.

従来の技術 同期式の半導体記憶装置であるダイナミック・ランダム
・アクセスメモリー(以下DRAMと略す)のメモリー
動作は一般に以下のように行なわれる。まず行デコード
が行なわれ、次に行デコードに応じてワード線が選択さ
れる。この選択ワード線により選ばれたメモリーセルの
情報がビット線上に現れる。次にセンス動作により、ビ
ット線上に現れた電位変化が増幅される。次に列デコー
ドが行なわれ、複数のビット線上に現れた、各メモリー
セルの情報の中から特定の一つの情報を取り出し、増幅
後出力が確定し読み出し動作は完了する。ここで一連の
メモリー動作の中で最も重要でかつ難しい動作であるビ
ット線へのメモリーセルの情報の読み出しについて、従
来例の第2図を用いて説明する。まずワード線駆動のた
めワード線駆動回路が動作し、次に行デコードにより選
ばれたワード線のみ駆動するため、ワード線セレクタが
動作する。そのため、クロックCLIからCLNまでN
個のクロックの中から一つ、例えばCLIが選ばれ、ロ
ーレベルからハイレベルに変化する。そのため、ノード
N1からノードNNの中でノードN1のみ電源電圧Vc
cからMOSトランジスタのしきい値電圧VT(以下v
Tと略す)だけ低い電位に充電され、他のノードは接地
電位のままである。次にワード線駆動回路が動作し、ノ
ードNは接地電位から通常電源電圧よりさらに、MOS
)ランジスタのしきい値電圧以上高い電位になる。これ
により、トランスファゲートQTIのゲートとノードN
との容量カップリングによりノードN1が十分に高い電
位になり選択ワード線WLIはノードNと同電位になる
。他のワード線はトランスファゲートのゲート電位が十
分に低いため接地電位のままである。次に選択ワード線
WLIと接続されたアクセストランジスタQl+。
The memory operation of a dynamic random access memory (hereinafter abbreviated as DRAM), which is a conventional synchronous semiconductor memory device, is generally performed as follows. First, row decoding is performed, and then a word line is selected in accordance with the row decoding. Information of the memory cell selected by this selected word line appears on the bit line. Next, a sense operation amplifies the potential change appearing on the bit line. Next, column decoding is performed to extract one specific piece of information from among the information of each memory cell appearing on the plurality of bit lines, and after amplification, the output is determined and the read operation is completed. Here, the most important and difficult operation in a series of memory operations, reading information from a memory cell onto a bit line, will be explained using FIG. 2 of a conventional example. First, the word line drive circuit operates to drive the word line, and then the word line selector operates to drive only the word line selected by row decoding. Therefore, from clock CLI to CLN, N
One of the clocks, for example CLI, is selected and changes from low level to high level. Therefore, from the node N1 to the node NN, only the node N1 has the power supply voltage Vc
From c to the threshold voltage VT of the MOS transistor (hereinafter v
(abbreviated as T), and the other nodes remain at ground potential. Next, the word line drive circuit operates, and the node N goes from the ground potential to the normal power supply voltage, and the MOS
) The potential becomes higher than the threshold voltage of the transistor. As a result, the gate of transfer gate QTI and node N
Due to capacitive coupling with the node N1, the potential of the node N1 becomes sufficiently high, and the selected word line WLI becomes the same potential as the node N. The other word lines remain at ground potential because the gate potential of the transfer gate is sufficiently low. Next, access transistor Ql+ is connected to selected word line WLI.

Q 12・・・・・・がオンし、メモリセルMCII、
 MCI2・・・・・・の情報がビット線BL1.BL
2.・・・・・・に現われる。ここでD RA Mが小
チップ面積で大容量であるという特徴をもつため、通常
メモリセル容量は数+fFという微小な容量しかもたな
い。このような微小容量で安定動作を得るためにメモリ
セル内に記憶させる電荷量はできる限り多くする必要が
ある。通常ビット線の電位は最大が電源電圧、最小が接
地電位であるため、メモリセルに書き込まれる最大電位
も電源電圧であり、最小電位は接地電位である。ところ
がメモリセルに電源電位を書き込むためにはアクセスト
ランジスタのゲート電位は電源電圧よりMOSトランジ
スタのしきい値vT以上必要である。そのため、ワード
線は電源電圧以上に昇圧するワード線駆動回路により制
御される。ダイナミック型の場合この昇圧はコンデンサ
Coに電荷を貯え、このコンデンサの接地電位側をイン
バータI、、1.の遅延を利用して接地電位から電源電
圧まで上げ、ノードNを電源電圧より十分高い電位に昇
圧し、容量分配により選択ワード線WLIに十分高い電
位を供給する。
Q12... turns on, memory cells MCII,
Information on MCI2... is transferred to bit line BL1. BL
2. Appears in... Here, since DRAM is characterized by a small chip area and a large capacity, the memory cell capacity usually has only a small capacity of several + fF. In order to obtain stable operation with such a small capacitance, it is necessary to increase the amount of charge stored in the memory cell as much as possible. Normally, the maximum potential of a bit line is the power supply voltage and the minimum potential is the ground potential, so the maximum potential written into the memory cell is also the power supply voltage, and the minimum potential is the ground potential. However, in order to write the power supply potential into the memory cell, the gate potential of the access transistor needs to be higher than the power supply voltage by the threshold value vT of the MOS transistor. Therefore, the word line is controlled by a word line drive circuit that boosts the voltage above the power supply voltage. In the case of a dynamic type, this voltage boosting stores charge in a capacitor Co, and connects the ground potential side of this capacitor to inverters I, , 1 . The ground potential is increased from the ground potential to the power supply voltage using the delay of , the node N is boosted to a potential sufficiently higher than the power supply voltage, and a sufficiently high potential is supplied to the selected word line WLI by capacitance distribution.

しかし例えばMOSトランジスタのソースやドレイン部
での接合リーク電流等のため、ノードNの電位は時間と
ともに低下していく。そのため選択ワード線WL1の電
位も時間とともに低下してい(。DRAMの一般的な使
用法の−っであるページモードのような場合、ワード線
の選択が終了した後十分時間が経過した場合にも、読み
出し、書き込み動作が保証されなければならない。した
かって選択ワード線の時間による電位低下は動作マージ
ン不足や動作不安定の大きな要因となる。
However, the potential of the node N decreases over time due to junction leakage current in the source and drain portions of the MOS transistor, for example. Therefore, the potential of the selected word line WL1 also decreases with time. , read, and write operations must be guaranteed.Therefore, the potential drop of the selected word line over time is a major cause of insufficient operating margin and unstable operation.

その対策として、一つの方法はノードNに図示しないポ
ンピング回路を設け、ノードNの電位低下を補給するよ
うにしている。
As a countermeasure against this, one method is to provide a pumping circuit (not shown) at the node N to compensate for the drop in potential at the node N.

発明が解決しようとする課題 従来の方式では選択ワード線WLIに十分高い電位を供
給するためのノードNの電位の低下に対しては効果が得
られる。しかし、トランスファゲートQt+のゲートN
1も同様にリーク電流により電位が低下するため、ノー
ドNの電位低下を防いでもワード線WLIにはトランス
ファゲートQTIのゲート電位が低下するため、電荷補
給はできない。
Problems to be Solved by the Invention The conventional method is effective in reducing the potential of the node N in order to supply a sufficiently high potential to the selected word line WLI. However, the gate N of the transfer gate Qt+
1 similarly decreases in potential due to leakage current, so even if the potential decrease at node N is prevented, the gate potential of transfer gate QTI decreases in word line WLI, and charge cannot be replenished.

したがって、ワード線WL1はリーク電流により電位は
時間とともに低下する。アクセストランジスタQll、
 Q12・・・・・・のゲート電位が下ると、メモリセ
ルMCl1.MCI2・・・・・・には電源電圧まで書
き込みができなくなる。これはDRAMのメモリー動作
の安定を阻害する大きな欠点となる。
Therefore, the potential of word line WL1 decreases over time due to leakage current. access transistor Qll,
When the gate potential of memory cells MCl1. It becomes impossible to write to MCI2... up to the power supply voltage. This is a major drawback that hinders the stability of DRAM memory operation.

課題を解決するための手段 本発明は、従来の問題点を解決するため、マトリクス状
に行列配置された複数のメモリセルと行選択のための複
数のワード線と前記複数のワード線の各々をポンピング
するための手段と電源電圧以上に昇圧するための手段と
を備え、選択ワード線のみ前記昇圧するための手段と接
続され、前記選択ワード線のみ前記ポンピングするため
の手段によりポンピングされる構成をそなえた半導体記
憶装置である。
Means for Solving the Problems In order to solve the conventional problems, the present invention provides a plurality of memory cells arranged in rows and columns in a matrix, a plurality of word lines for row selection, and each of the plurality of word lines. A configuration comprising means for pumping and means for boosting to a voltage higher than a power supply voltage, wherein only a selected word line is connected to the boosting means, and only the selected word line is pumped by the pumping means. It is a semiconductor memory device equipped with

作用 本発明によれば、選択ワード線と接続されたポンピング
回路のみが動作し、前記選択ワード線は常に電荷が補給
され、接合リーク電流等による選択ワード線の電位低下
が防止でき、メモリセルへの情報書き込みが常に電源電
圧まで行なわれ、安定な動作が得られる。
According to the present invention, only the pumping circuit connected to the selected word line operates, and the selected word line is constantly replenished with charge, preventing potential drop in the selected word line due to junction leakage current, etc. Information writing is always performed up to the power supply voltage, resulting in stable operation.

実施例 本発明の実施Ifを第1図に示す。DRAMの一連ノメ
モリー動作の中で最も重要なメモリセルヘの情報のやり
とりについて説明するとワード線選択のため、クロック
CLIからCLNの中から例えばCLIが選ばれ、ロー
レベルからハイレベルになる。他のクロックはローレベ
ルのままである。次にワード線駆動回路が動作し、コン
デンサCOを用いて昇圧を行ないノードNには電源電圧
より十分高い電位が得られる。トランスフアゲ−h Q
TIのゲートノードN1は電源電圧VccよりもMOS
トランジスタのしきい値電圧VTだけ低い電位まで充電
されており、ノードNとの容量結合によりノードN1は
十分高い電位になり選択ワード線〜VLIはノードNと
同一電位になり電源電工よりMOSトランジスタのしき
い値71以上高いレベルになる。これにより選択された
メモリセルM−C++ 、 M C12・・・・・・に
はビット線BLI、BL2゜・・・・・を介して電源電
圧まで書き込みが可能となる。一方接合部でのリーク電
流等によりノードNやN1の電位は時間とともに低下し
ていく、ノードNには図示しないポンピング回路により
電荷の補給がなされ電位低下は防止されるがノードN1
は電位低下が生じる。一方、選択ワードAIIWLIは
MOSトランジスタQ1がオンし、ノードNOは電源電
圧よりMOSトランジスタのしきい値VTだけ低い電位
に充電され、発振回路とコンデンサC1によりノードN
Oは昇圧され、MosトランジスタQ3を介してワード
IWLIにノードN。
EXAMPLE An implementation If of the present invention is shown in FIG. To explain the most important exchange of information between memory cells in a series of memory operations of a DRAM, for example, CLI is selected from clocks CLI to CLN to select a word line, and changes from low level to high level. Other clocks remain low. Next, the word line drive circuit operates and boosts the voltage using the capacitor CO, so that a potential sufficiently higher than the power supply voltage is obtained at the node N. Transfer game-h Q
The gate node N1 of TI is lower than the power supply voltage Vcc.
The transistor has been charged to a potential lower by the threshold voltage VT, and due to capacitive coupling with node N, node N1 has a sufficiently high potential, and the selected word line ~ VLI has the same potential as node N, so that the power supply electrician can control the MOS transistor. The level becomes higher than the threshold value 71. As a result, it becomes possible to write to the selected memory cells M-C++, MC12, . . . via the bit lines BLI, BL2°, . . . up to the power supply voltage. On the other hand, the potential of the nodes N and N1 decreases over time due to leakage current at the junction, etc. The node N is replenished with charge by a pumping circuit (not shown) and the potential decrease is prevented, but the potential of the node N1
, a potential drop occurs. On the other hand, the selected word AIIWLI turns on the MOS transistor Q1, and the node NO is charged to a potential lower than the power supply voltage by the threshold value VT of the MOS transistor.
O is boosted and connected to word IWLI via Mos transistor Q3 at node N.

から電荷が供給される。このため、ワードIWLIには
電位低下が生じない。このポンピング回路による電荷の
補給はワード線が選択されている限り、常に行なわれる
ため、ワード線のレベルは常に十分高く保たれ、メモリ
セルへの書き込み電位が低下することもない。
Charge is supplied from Therefore, no potential drop occurs in word IWLI. This replenishment of charges by the pumping circuit is always performed as long as the word line is selected, so the level of the word line is always kept sufficiently high, and the write potential to the memory cell does not drop.

発明の効果 本発明によれば、D RAMのページモード動作のよう
に選択ワード線を長時間高レベルにしておき、読み出し
、書き込み動作を行なう場合、ワード線のレベル低下を
防止でき、メモリセルへ十分な電位の書き込みが行え、
安定な動作が得られる。
Effects of the Invention According to the present invention, when the selected word line is kept at a high level for a long time to perform read and write operations, such as in page mode operation of DRAM, it is possible to prevent the level of the word line from dropping, and to prevent the level of the word line from decreasing. Sufficient potential can be written,
Stable operation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例でメモリセルへの読み出し、書
き込み回路部の回路図、第2図は従来例でメモリセルへ
の読み出し、書き込み回路部の回路図である。 w r−1〜w L n、、、、、、ワード線、BLI
 〜BLn・・・・・・ビット線、Ql 〜Q3・・・
・・・MOSトランジスタ、Qll、 Ql2. QN
II QN2・・・・・・アクセストランジスタ、QR
I 、 QRN、 QTI 、 QTN・・・・・・デ
コード用トランジスタ、1..12・・・・・・インバ
ータ。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図
FIG. 1 is a circuit diagram of a circuit for reading and writing to a memory cell in an embodiment of the present invention, and FIG. 2 is a circuit diagram of a circuit for reading and writing to a memory cell in a conventional example. w r-1 ~ w L n, , , , word line, BLI
~BLn...Bit line, Ql ~Q3...
...MOS transistor, Qll, Ql2. QN
II QN2・・・Access transistor, QR
I, QRN, QTI, QTN...Decoding transistor, 1. .. 12...Inverter. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1

Claims (1)

【特許請求の範囲】[Claims]  マトリクス状に行列配置された複数のメモリセルと行
選択のための複数のワード線と前記複数のワード線の各
々をポンピングするための手段と電源電圧以上に昇圧手
段とを備え、前記複数の選択ワード線のみ前記昇圧手段
と接続され、前記選択ワード線のみ前記ポンピングする
ための手段によりポンピングされることを特徴とする半
導体記憶装置。
comprising a plurality of memory cells arranged in rows and columns in a matrix, a plurality of word lines for row selection, means for pumping each of the plurality of word lines, and means for boosting the voltage to a level higher than a power supply voltage; A semiconductor memory device, wherein only a word line is connected to the boosting means, and only the selected word line is pumped by the pumping means.
JP63226732A 1988-09-09 1988-09-09 Semiconductor memory device Pending JPH0273593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63226732A JPH0273593A (en) 1988-09-09 1988-09-09 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226732A JPH0273593A (en) 1988-09-09 1988-09-09 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH0273593A true JPH0273593A (en) 1990-03-13

Family

ID=16849740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226732A Pending JPH0273593A (en) 1988-09-09 1988-09-09 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0273593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628564B1 (en) 1998-06-29 2003-09-30 Fujitsu Limited Semiconductor memory device capable of driving non-selected word lines to first and second potentials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628564B1 (en) 1998-06-29 2003-09-30 Fujitsu Limited Semiconductor memory device capable of driving non-selected word lines to first and second potentials
US7079443B2 (en) 1998-06-29 2006-07-18 Fujitsu Limited Semiconductor device
US7706209B2 (en) * 1998-06-29 2010-04-27 Fujitsu Microelectronics Limited Semiconductor memory device capable of driving non-selected word lines to a variable negative potential based on a bank access operation

Similar Documents

Publication Publication Date Title
US7295456B2 (en) Chain ferroelectric random access memory (CFRAM) having an intrinsic transistor connected in parallel with a ferroelectric capacitor
JPS6363197A (en) Semiconductor storage device
CN115171750B (en) Memory, access method thereof and electronic equipment
US5280452A (en) Power saving semsing circuits for dynamic random access memory
JPH0352187A (en) Dynamic type random access memory
KR0136448B1 (en) Semiconductor memory device with error self-correction function
CN115171751A (en) Memory, access method thereof and electronic equipment
EP1665275B1 (en) Method and apparatus for read bitline clamping for gain cell dram devices
EP1512150B1 (en) Memory array having 2t memory cells
JP2980368B2 (en) Dynamic semiconductor memory device
KR0154755B1 (en) Semiconductor memory device having variable plate voltage generater circuit
JPH0273593A (en) Semiconductor memory device
JPH05205465A (en) Semiconductor memory device
US6621752B2 (en) Refreshing scheme for memory cells a memory array to increase performance of integrated circuits
JPH01307092A (en) Semiconductor memory and its driving method
JPH08249885A (en) Dynamic semiconductor storage
KR100353823B1 (en) Apparatus for generating reference voltage in ferroelectric memory device
JP3056498B2 (en) Sense amplifier circuit
JPH09186251A (en) Dynamic sram
JP2861198B2 (en) Control method of semiconductor memory device
KR100499407B1 (en) Volatile semiconductor memory device
JPS62140294A (en) Driving system for word line and dummy word line of semiconductor memory
KR0142964B1 (en) Sens amp & sensing method of semiconductor memory apparatus
JP3195074B2 (en) Semiconductor storage device
JPH0271492A (en) Active restoring circuit