JPH0272609A - Sh capacitor - Google Patents

Sh capacitor

Info

Publication number
JPH0272609A
JPH0272609A JP63225178A JP22517888A JPH0272609A JP H0272609 A JPH0272609 A JP H0272609A JP 63225178 A JP63225178 A JP 63225178A JP 22517888 A JP22517888 A JP 22517888A JP H0272609 A JPH0272609 A JP H0272609A
Authority
JP
Japan
Prior art keywords
electrode
capacitor
electrodes
metallized film
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225178A
Other languages
Japanese (ja)
Inventor
Shin Kono
慎 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP63225178A priority Critical patent/JPH0272609A/en
Publication of JPH0272609A publication Critical patent/JPH0272609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve dielectric strength by dividing the deposited electrode of an intermediate electrode into many electrode pieces in the longitudinal direction, and separating each electrode piece at the center in the lateral direction, and connecting these electrodes with a conduction part having a small width. CONSTITUTION:A first metallized film 1 is provided with a margin part 3 at the center in the width direction, and deposited electrodes 4 and 5 are provided at this both ends, and second metalized film 2 is provided with margin parts 6 and 7 at both margins in the width direction, and it is divided small in large numbers toward in the longitudinal direction of the film and is made into many electrode pieces 8. Further, a margin part 9 is provided at the center of this electrode pieces 8 so as to divide it into right and left electrodes 10 and 11, and also a thin deposited part 12 is provided between these electrodes 10 and 11 to make them conductive, and the first and second metallized films 1 and 2 are put one upon the other. Hereupon, even if insulation breakdown occurs in one electrode piece 8a, this breakdown is completed with the electrode piece 8a alone and it never extends to other electrode pieces. Hereby, withstand voltage can be elevated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラスチックフィルムに蒸着電極を形成して
成る金属化フィルムを使用した5l−1コンデンサ(自
己回復型コンデンサ)に関するものであり、特に、その
蒸着電極のパターンを改良して耐電圧性及び安全性の高
いSHコンデンサを提供する技術に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a 5l-1 capacitor (self-healing capacitor) using a metallized film formed by forming vapor-deposited electrodes on a plastic film. , relates to a technique for providing an SH capacitor with high voltage resistance and safety by improving the pattern of the vapor-deposited electrode.

[従来の技術] 金属化フィルムを使用したコンデンサの一例を第4図に
示す。
[Prior Art] An example of a capacitor using a metallized film is shown in FIG.

第4図においては、(A)に示すような、幅方向の片縁
にマージン部21を設け、且つ長さ方向に向かって多数
に細かく分断して蒸着することで、多数個の電極片から
成る分断電極22を形成した金属化フィルム23と、(
B)に示すような、(A>の金属化フィルム23と反対
側の縁にマシン部24を設けて蒸@電極25を形成した
金属化フィルム26とを使用し、この2枚の金属化フィ
ルム23.26を重ね合せて、(D>に示すように巻回
して、コンデンサ素子を形成している。
In FIG. 4, as shown in (A), a margin part 21 is provided on one edge in the width direction, and by vapor deposition by dividing into many pieces in the length direction, a large number of electrode pieces can be formed. A metallized film 23 formed with a divided electrode 22 consisting of (
As shown in B), the metallized film 23 of (A> and the metallized film 26 in which the machine part 24 is provided on the opposite edge and the vaporized electrode 25 is formed) are used, and these two metallized films are used. 23 and 26 are overlapped and wound as shown in (D>) to form a capacitor element.

この場合、(B)の金属化フィルム26を使用する代り
に、(C)に示すような、(A>の金属化フィルム23
と反対側の縁にマージン部27を設け、且つ長さ方向に
に向かって多数に細かく分断して蒸着することで、多数
個の電極片から成る分断電極28を形成した金属化フィ
ルム29を使用し、これを(A>の金属化フィルム23
と重ね合せる例も存在している。
In this case, instead of using the metallized film 26 of (B), the metallized film 23 of (A>) as shown in (C) is used.
A metallized film 29 is used, in which a margin part 27 is provided on the edge opposite to the metallized film 29, and a divided electrode 28 consisting of a large number of electrode pieces is formed by dividing the metallized film 29 into a large number of finely divided parts in the length direction and depositing them. Then, convert this to the metallized film 23 of (A>
There are also examples of overlapping.

そして、以上のような金属化フィルムの巻回作業の後、
形成されたコンデンサ素子の端面に、メタリコンを施し
、電極導出を行っている。このようにして得られたコン
デンサにおいては、例えば、(A>の金属化フィルム2
3の分断電極22の一点Pで絶縁破壊を生じた場合、こ
の破壊点Pの属する電極片22aのメタリコンとの接触
部が、短絡電流によるジュール熱で切離されるので、絶
縁破壊が他に波及せず、コンデンサ機能を維持できる。
After winding the metallized film as described above,
Metallicon is applied to the end face of the formed capacitor element, and electrodes are led out. In the capacitor thus obtained, for example, the metallized film 2 of (A>
If dielectric breakdown occurs at one point P of the divided electrode 22 of No. 3, the contact part of the electrode piece 22a with the metallcon, to which this breakdown point P belongs, will be separated by Joule heat due to the short circuit current, so the dielectric breakdown will spread to other parts. Capacitor function can be maintained without

ところで、このようなコンデンサの耐電圧性能をさらに
向上させる手段としては、第4図の構成でフィルム厚を
増大することが考えられるか、この場合、実際には、寿
命が向上せず、実用的でない。即ち、第4図の構成の場
合、電極を分断加工していることから、電極の周囲沿線
が長く、コロナ放電による電極減退の影響が大きくなる
ため、フィルム厚を増大してもほとんど電極減退防止効
果を得られず、結局低電圧に限定して使用せざるをえな
い。
By the way, as a means to further improve the withstand voltage performance of such a capacitor, is it possible to increase the film thickness using the configuration shown in Figure 4? Not. In other words, in the case of the configuration shown in Fig. 4, since the electrode is processed in parts, the circumferential line of the electrode is long, and the influence of electrode deterioration due to corona discharge becomes large, so even if the film thickness is increased, electrode deterioration is almost prevented. No effect can be obtained, and in the end the use is forced to be limited to low voltages.

このような問題を生ずることなく、高電圧に耐えさせる
ようにしたコンデンサとしては、第5図に示す従来例が
存在する。第5図においては、(△)に示すような、幅
方向中央部にマージン部30を設けて蒸着電極31を形
成した金属化フィルム32と、(B)に示すような、幅
方向の両縁にマージン部33を設けて蒸着電極34を形
成した金属化フィルム35とを重ね合せ、(C)に示す
ように巻回することにより、(D)に示すように、2個
のコンデンサC1,C2を直列に接続した構造としてい
る。
As a capacitor designed to withstand high voltage without causing such problems, there is a conventional example shown in FIG. 5. In FIG. 5, a metallized film 32 with a margin part 30 provided at the center in the width direction and a vapor-deposited electrode 31 formed thereon, as shown in (△), and a metallized film 32 on both sides in the width direction as shown in (B). By superimposing the metallized film 35 on which the margin part 33 is provided and the vapor-deposited electrode 34 formed, and winding it as shown in (C), two capacitors C1 and C2 are formed as shown in (D). The structure is connected in series.

しかしながら、第5図のコンデンサでは、耐電圧がかな
り強化されるものの、第4図のコンデンサのような自己
回復性を有していないので、絶縁破壊を生じた場合など
にこれが全体に波及し、コンデンサ機能を損ってしまう
However, although the withstand voltage of the capacitor shown in Fig. 5 is considerably strengthened, it does not have self-healing properties like the capacitor shown in Fig. 4, so if dielectric breakdown occurs, this will spread to the whole. This will damage the capacitor function.

このことから、第4図のコンデ゛ンサのような自己保安
性を得るべく、単純に、第5図(A>の金属化フィルム
32の蒸着電極31を長さ方向に分断することが考えら
れる。第6図(A)は、以上のような観点から、幅方向
中央部にマージン部36を設け、このマージン部36の
両側を、長さ方向に向かって多数に細かく分断して蒸着
することで、2列の多数個の電極片から成る分断電極3
7を形成した金属化フィルム38を示している。そして
、この(A)の金属化フィルム38と、第6図(B)に
示すような、第5図(B)と同じ構成の、幅方向の両縁
にマージン部33を設けて蒸着電極34を形成した金属
化フィルム35とを組合せてコンデンサを試作したとこ
ろ、充分な性能は1昇られなかった。このような第6図
の構成の問題点とその理由を以下に述べる。
From this, it is conceivable to simply divide the vapor-deposited electrode 31 of the metallized film 32 in FIG. 5 (A>) in the length direction in order to obtain self-security like the capacitor shown in FIG. 4. 6(A), from the above viewpoint, a margin part 36 is provided at the center in the width direction, and both sides of this margin part 36 are divided into many pieces in the length direction for vapor deposition. The divided electrode 3 is made up of two rows of multiple electrode pieces.
The metallized film 38 formed with 7 is shown. Then, as shown in FIG. 6(B), the metallized film 38 of (A) and the vapor-deposited electrode 34 are provided with margin portions 33 on both edges in the width direction, having the same configuration as that of FIG. 5(B). When a capacitor was prototyped by combining the capacitor with the metallized film 35 formed thereon, the performance could not be improved by one level. Problems with the configuration shown in FIG. 6 and their reasons will be described below.

叩ら、第6図の(A>(B)の金属化フィルム38.3
5を重ねて巻回した場合、第6図(C)に示すように、
2個のコンデンサC1,C2を直列に接続した構造とな
る。このようなコンデンサにおいて、例えば、(A)の
金属化フィルム38の分断電極37の一点Pで絶縁破壊
を生じた場合、この破壊点Pの属する電極片37aにて
第1のコンデンサC1側が短絡して、全電圧が第2のコ
ンデンサC2に加わり、また、2段直列の1個短絡によ
り全体の静電容量は2倍になり、回路定数が狂ってしま
う。この場合、第1のコンデンサC1か短絡しても、第
2のコンデンサC2の機能が維持されているため、全体
としては短絡にならず、第2のコンデンサC2のインピ
ーダンスに依存する電流となり、破壊点Pの属する電極
片37aをメタリコンから切離すには電流が不足する。
6. (A>(B) metallized film 38.3
When winding 5 in an overlapping manner, as shown in Fig. 6 (C),
It has a structure in which two capacitors C1 and C2 are connected in series. In such a capacitor, for example, if dielectric breakdown occurs at one point P of the divided electrode 37 of the metallized film 38 in (A), the first capacitor C1 side will be short-circuited at the electrode piece 37a to which this breakdown point P belongs. As a result, the entire voltage is applied to the second capacitor C2, and the overall capacitance is doubled due to the short circuit of one of the two stages in series, causing the circuit constant to go out of order. In this case, even if the first capacitor C1 is short-circuited, the function of the second capacitor C2 is maintained, so there is no short-circuit as a whole, and the current depends on the impedance of the second capacitor C2, resulting in destruction. There is insufficient current to separate the electrode piece 37a to which point P belongs from the metallicon.

そしで、第2のコンデンサC2側に全電圧が加わり続け
るため、ついには、この第2のコンデンサC2側の分断
電極37上の一点Qで絶縁破壊する。この時点で初めて
破壊点Pがら第2の金属化フィルム35の蒸着電極34
を介して、破壊点Qとの間に短絡電流か流れ、破壊点P
、Qの属するいずれか一方の電極片37a、37bがメ
タリコンと切離される。この際、電極片37a、37b
が両方同時に切離される例は少なく、通常は、一方が切
れることで全体としての短絡状態がなくなるので、残る
一方は、メタリコンと接続状態に保たれる。
Then, since the full voltage continues to be applied to the second capacitor C2 side, dielectric breakdown occurs at one point Q on the dividing electrode 37 on the second capacitor C2 side. At this point, the vapor deposited electrode 34 of the second metallized film 35 is removed from the breaking point P.
A short circuit current flows between the breakdown point Q and the breakdown point P
, Q belongs to either one of the electrode pieces 37a, 37b and is separated from the metallicon. At this time, the electrode pieces 37a, 37b
There are few cases in which both are disconnected at the same time, and usually the short circuit as a whole is eliminated by disconnecting one, so the remaining one is kept connected to the metal contact.

そのため、再び第1、第2のコンデンサCz 、 C2
の一方に全電圧か印加され、以下、これを繰り返すので
、安全性は保証できない。
Therefore, the first and second capacitors Cz and C2
Since the full voltage is applied to one side and this is repeated thereafter, safety cannot be guaranteed.

これに対し、第5図(A>の金属化フィルム32の蒸着
電極31を長さ方向に分断する代りに、第5図(B)の
金属化フィルム35の蒸着電極24を長さ方向に分断す
ることも考えられる。第7図(B)は、このような、幅
方向の両縁にマージン部39を設け、このマージン部3
9の間を、長さ方向に向かって多数に細かく分断して蒸
着することで、2列の多数個の電極片から成る分断電極
40を形成した金属化フィルム41を示している。
On the other hand, instead of dividing the vapor deposited electrode 31 of the metallized film 32 in FIG. 5(A) in the length direction, the vapor deposited electrode 24 of the metallized film 35 in FIG. In FIG. 7(B), margin portions 39 are provided on both edges in the width direction, and the margin portions 3
A metallized film 41 is shown in which divided electrodes 40 consisting of two rows of multiple electrode pieces are formed by dividing the space between 9 into many pieces in the length direction and depositing them.

しかしながら、この第7図(B)の金属化フィルム41
と、第7図(A>に示すような、第5図の(A)と同じ
構成の、幅方向中央部にマージン部3Qを設けて蒸着電
極31を形成した金属化フィルム32とを重ね合せてみ
ても、第7図(C)に小すように、分離電極4oが分離
されないため、分離電極40を形成した意味がない。
However, this metallized film 41 in FIG. 7(B)
and a metallized film 32 having the same configuration as in FIG. 5(A) and having a margin portion 3Q at the center in the width direction and forming a vapor deposited electrode 31 as shown in FIG. 7(A>). As shown in FIG. 7(C), since the separation electrode 4o is not separated, there is no point in forming the separation electrode 40.

さらに、第6図(A>の分断電極37を有する金属化フ
ィルム38と、第7図<8)の分断電極40を有する金
属化フィルム41とを組合せれば、第1、第2のコンデ
ンサC1,C2の破壊点P。
Furthermore, by combining the metallized film 38 having the divided electrode 37 shown in FIG. 6 (A>) and the metalized film 41 having the divided electrode 40 shown in FIG. , the breaking point P of C2.

Qかかけ離れることがなく、また、第1のコンデンサC
1の破壊点Pの短絡に伴い、第2のコンデンサC2側の
全てに全電圧が加わることがなくなるため、コンデンサ
全体の特性をかなり改善できる。しかしながら、この場
合、巻回作業において、両金属化フィルム38.41の
分断電極37,40同士を完全に合致させることが極め
て困難であり、巻回と共に生ずるずれを回避することは
できないため、結局隣接する電極同士が接触し易く、絶
縁破壊の連鎖防止を完全に行うことは不可能である。
Q is not far apart, and the first capacitor C
Due to the short-circuiting of the breakdown point P of the second capacitor C2, the full voltage is no longer applied to the entire second capacitor C2 side, so that the characteristics of the entire capacitor can be considerably improved. However, in this case, in the winding operation, it is extremely difficult to completely match the divided electrodes 37, 40 of both metallized films 38, 41, and it is impossible to avoid the misalignment that occurs with winding. Adjacent electrodes tend to come into contact with each other, making it impossible to completely prevent a chain reaction of dielectric breakdown.

[発明か解決しようとする課題] 以上説明したように、従来のコンデンサにおいでは、2
個のコンデンサを直列に接続した形に構成することによ
り、耐電圧性を強化し、且つ安全性の高いコンデンサを
得ようとすると、一部の短絡時に自己回復しようとして
も、残る一方のコンデンサが直列に接続されているので
、コンデンサ全体として短絡電流が流れず、エネルギー
不足で瞬時回復し難い。その上、定格電流の2倍相当の
電流か短絡部に流れ続けるので破壊が拡大する。
[Problem to be solved by the invention] As explained above, in conventional capacitors, 2
If you attempt to obtain a capacitor with increased voltage resistance and high safety by configuring several capacitors connected in series, even if one of the capacitors attempts to self-recover in the event of a short circuit, the remaining capacitor will Since they are connected in series, short-circuit current does not flow through the capacitor as a whole, making it difficult to recover instantly due to lack of energy. Moreover, since a current equivalent to twice the rated current continues to flow through the short circuit, the damage will increase.

ざらに、機能している側のコンデンサには、2段直列分
の全電圧が加わり、また、2段直列の1個短絡により全
体の静電容量は2倍になり、回路定数が狂ってしまう。
Roughly speaking, the full voltage of the two stages in series is applied to the capacitor on the functioning side, and if one of the two stages in series is shorted, the overall capacitance doubles, causing the circuit constants to go awry. .

そして、1個のコンデンサに2段直列分の全電圧が加わ
り続けるので、素子中にランダムに存在する弱い部分で
絶縁破壊する。
Then, since the full voltage of two stages in series continues to be applied to one capacitor, dielectric breakdown occurs at weak points that are randomly present in the element.

この時点て初めて短絡電流が流れ瞬時回復しても、破壊
点の一方か回復してしまえば、再び一方のコンデンサの
みに2段直列分の全電圧が加わり、結局このような過電
圧と絶縁破壊を交互に繰返すことに陥り易い。
Even if a short-circuit current flows for the first time at this point and instantaneously recovers, if one of the breakdown points recovers, the full voltage of the two series series will be applied to only one capacitor again, resulting in such overvoltage and dielectric breakdown. It is easy to fall into repetition.

本発明は、このような従来技術の欠点を解決するために
提案されたものでおり、その目的側よ、耐電圧性が高く
、回路定数に影響を与えることがなく、しかも安全性に
優れたSHコンデンサを提供することである。
The present invention was proposed in order to solve the shortcomings of the prior art, and its purpose is to provide a system with high voltage resistance, no influence on circuit constants, and excellent safety. An object of the present invention is to provide an SH capacitor.

[課題を解決するための手段] 本発明によるSHコンデンサは、幅方向中央部にマージ
ン部を有する蒸着電極を使用することにより、2段直列
に接続した形になる構造のSHコンデンサにおいて、そ
の中間電極となる側の蒸着電極を改良したものでおる。
[Means for Solving the Problems] The SH capacitor according to the present invention has a structure in which two stages are connected in series by using vapor-deposited electrodes having a margin at the center in the width direction. This is an improved version of the vapor-deposited electrode that becomes the electrode.

即ち、本発明は、中間電極となる側の蒸着電極を、幅方
向の両縁にマージン部を有するものとし、且つ長さ方向
に向かって多数に細かく分断し、さらに、分断した各電
極片を幅方向中央にて左右に分断し、且つこの左右の電
極間を、わずかな幅の導通部で連結することを特徴とし
ている。
That is, in the present invention, the vapor-deposited electrode on the side that will become the intermediate electrode has margin portions on both edges in the width direction, is finely divided into many pieces in the length direction, and each divided electrode piece is It is characterized in that it is divided into left and right parts at the center in the width direction, and the left and right electrodes are connected by a conductive part with a small width.

[作用] 以上のような構成を有する本発明のSHコンデンサの作
用は次の通りである。
[Function] The function of the SH capacitor of the present invention having the above-mentioned configuration is as follows.

即ち、本発明では、中間電極となる蒸着電極を構成する
多数個の電極片の両側の電極が、それぞれコンデンサを
形成して直列に接続される形となるため、全体としては
、電極片の数に応じた多数組の2段直列の極小容量コン
デンサを並列的に集合した形の結線構造となる。このよ
うな結線構造を有する本発明においては、1個の電極片
の片側の電極に絶縁破壊を生じた場合、この電極部分の
極小容量コンデンサのみ短絡し、これとつながった反対
側の電極によって構成される極小容量コンデンサに2倍
の電圧が加わり、この電極側においても絶縁破壊する。
That is, in the present invention, since the electrodes on both sides of a large number of electrode pieces constituting a vapor deposition electrode serving as an intermediate electrode are connected in series to form a capacitor, the total number of electrode pieces is The wiring structure consists of a large number of sets of two-stage series extremely small capacitance capacitors arranged in parallel. In the present invention having such a wiring structure, if dielectric breakdown occurs in one electrode of one electrode piece, only the minimal capacitance capacitor of this electrode part is short-circuited, and the connected electrode on the opposite side short-circuits the electrode. Twice the voltage is applied to the extremely small capacity capacitor, causing dielectric breakdown on this electrode side as well.

この結果この電極片に短絡電流が流れ、同品の2段直列
極小容量コンデンサは瞬時放電によって自己回復する。
As a result, a short-circuit current flows through this electrode piece, and the two-stage series minimal capacitor of the same product self-recovers by instantaneous discharge.

この場合、仮に自己回復できなくても、電極片の両側の
電極間に短絡電流が流れるので、電極をつなぐ細い導通
部が焼き切れ開路する。この結果、画電極を有する電極
片部分のみコンデンサ機能がなくなり、他の多くの電極
片は支障なく動作するため、全体としてのコンデンサ機
能を維持できる。従って、本発明においては、絶縁破壊
を生じた場合でも、絶縁破壊を生じた部分の電極片にの
み短絡電流が流れるため、コンデンサ全体が短絡するこ
とがなく、自己回復するか、或いは当該電極片のみが切
離される。
In this case, even if self-recovery is not possible, a short-circuit current flows between the electrodes on both sides of the electrode piece, so that the thin conductive portion connecting the electrodes is burned out and an open circuit occurs. As a result, only the portion of the electrode piece having the picture electrode loses its capacitor function, and many other electrode pieces operate without any problem, so that the capacitor function as a whole can be maintained. Therefore, in the present invention, even if dielectric breakdown occurs, the short-circuit current flows only to the electrode piece where dielectric breakdown has occurred, so the entire capacitor will not be short-circuited and will self-recover or the electrode piece will only is separated.

[実施例] 以下に、本発明によるSHコンデンサの一実施例を第1
図を参照して具体的に説明する。
[Example] Below, one example of the SH capacitor according to the present invention will be described as a first example.
This will be explained in detail with reference to the drawings.

まず、本実施例では、第1図(A)(B)に示すような
2枚の金属化フィルム1,2を使用する。
First, in this embodiment, two metallized films 1 and 2 as shown in FIGS. 1(A) and 1(B) are used.

第1図(A>に示す第1の金属化フィルム1は、幅方向
中央部にマージン部3を設けてこの両側に蒸着電極4,
5を設けたものである。金属化フィルム1の基体となる
プラスチックフィルムの材質としては、公知のポリプロ
ピレン、ポリエチレンテレフタレートなどを使用し、蒸
着金属の材質としては、亜鉛、アルミニウムなどを使用
する。
The first metallized film 1 shown in FIG.
5. As the material of the plastic film serving as the base of the metallized film 1, known polypropylene, polyethylene terephthalate, etc. are used, and as the material of the vapor-deposited metal, zinc, aluminum, etc. are used.

第1図(B)に示す第2の金属化フィルム2は、幅方向
両縁にマージン部6,7を設け、フィルム長さ方向に向
かって多数に細かく分断して多数個の電極片8とし、ざ
らに、この電極片8の中央部にマージン部9を設けて、
左右の電極10.11に分断すると共に、この電極10
.11間は、細い蒸着帯12を設けて導通させている。
The second metallized film 2 shown in FIG. 1(B) has margin parts 6 and 7 on both edges in the width direction, and is finely divided into many pieces in the length direction of the film to form a large number of electrode pieces 8. Roughly, a margin part 9 is provided in the center of this electrode piece 8,
This electrode 10 is divided into left and right electrodes 10 and 11.
.. Between 11 and 11, a thin vapor deposition band 12 is provided to provide electrical continuity.

また、第2の金属化フィルム2は、第1の金属化フィル
ム1より1〜2mm狭い幅とされる。
Moreover, the width of the second metallized film 2 is narrower than that of the first metallized film 1 by 1 to 2 mm.

以上のように形成された第1、第2の金属化フィルム1
,2を重ね合ぜて第1図(C)に示すように巻回し、こ
の後、通常の方法でコンデンサを組立てる。
First and second metallized films 1 formed as described above
, 2 are placed one on top of the other and wound as shown in FIG.

この結果、第1図(D>に示すように、2個のコンデン
サC1,C2を直列に接続した形の結線構造を得る。こ
の場合、電圧は、各コンデンサC1、C2で半分ずつ負
担する。
As a result, as shown in FIG. 1 (D>), a connection structure is obtained in which two capacitors C1 and C2 are connected in series. In this case, half of the voltage is borne by each capacitor C1 and C2.

以上のような構成を有する本実施例の作用は次の通りで
ある。
The operation of this embodiment having the above configuration is as follows.

まず、製造後に電圧処理または耐電圧試験を行つた際、
電極間の弱点部で絶縁破壊が起こった際に、確実に自己
回復可能でおる。即ち、第1のコンデンサC1を構成す
る第1の金属化フィルム1の蒸着電極4と、第2の金属
化フィルム2の電極10aとの間において、対向する点
P、P−間で絶縁破壊を生じた場合、この絶縁破壊が回
復しなければ、蒸着帯12にて電極10aにつながった
電極11aに2段直列分の電圧が加わり、Q、 Q−間
で絶縁破壊を生ずる。この場合、短絡電流が流れるので
、瞬時放電により、破壊点P、P−間またはQ、Q−間
の短絡が自己回復するが、破壊点P、P−と破壊点Q、
Q−間が両方同時に回復しないことも多いため、回復し
た側に再び高い電圧が加わり続けることとなり、回復性
のない破壊に至る。その場合は、これらの破壊点の属す
る電極10a、11a間を接続する細い蒸着帯12aに
高い短絡電流が流れるため、第1図(E)(F)に示す
ように、この蒸着帯12aがヒユーズの役割を果して切
断する。即ち、本実施例においては、1個の電極片8a
において絶縁破壊を生じても、この破壊が当該電極片8
aのみで完結され、外の電極片に波及することかないた
め、コンデンサ全体としては、弱点部を有する電極片8
aのみが切離され、電気的な弱点のない一定の耐電圧を
有する電極片の集合体となる。また、本実施例は、使用
時にあける部分的な絶縁破壊に対しても同様に作用する
First, when performing voltage treatment or withstanding voltage test after manufacturing,
When dielectric breakdown occurs at the weak point between the electrodes, self-recovery is possible. That is, between the vapor-deposited electrode 4 of the first metallized film 1 and the electrode 10a of the second metallized film 2 constituting the first capacitor C1, dielectric breakdown occurs between opposing points P and P-. If this dielectric breakdown occurs and is not recovered, a voltage equivalent to two stages in series will be applied to the electrode 11a connected to the electrode 10a in the vapor deposition zone 12, causing dielectric breakdown between Q and Q-. In this case, since a short circuit current flows, the short circuit between breakdown points P and P- or between breakdown points P and P- or between breakdown points P and Q and Q- will self-recover by instantaneous discharge, but between breakdown points P and P- and breakdown point Q,
In many cases, both Q and Q do not recover at the same time, so high voltage continues to be applied to the recovered side, leading to irreversible destruction. In that case, a high short-circuit current flows through the thin vapor deposition band 12a connecting the electrodes 10a and 11a to which these breakdown points belong, so that this vapor deposition band 12a becomes a fuse, as shown in FIGS. 1(E) and (F). It plays the role of cutting. That is, in this embodiment, one electrode piece 8a
Even if dielectric breakdown occurs in the electrode piece 8, this breakdown
Since it is completed only with a and does not spread to the outer electrode pieces, the capacitor as a whole consists of electrode pieces 8 with weak points.
Only part a is separated, resulting in an assembly of electrode pieces with no electrical weaknesses and a constant withstand voltage. Further, this embodiment similarly acts on partial dielectric breakdown that occurs during use.

従って、本実施例においては、耐電圧の低いばらつきの
ものがなくなり、耐電圧が上昇する。第3図は具体的な
絶縁破壊電圧の分布を示す図である。即ち、第3図は第
1の金属化フィルム1として厚さ5μ、幅5Qmmのポ
リエチレンテレフタレートフィルムを使用し、第2の金
属化フィルム2として厚さ5μ、幅48mmのポリプロ
ピレンフィルムを使用し、それぞれにアルミニウム蒸着
を施した場合について、従来例(A>と本発明(B)と
の絶縁破壊電圧の分布を示す図でおり、同図から、従来
例の平均値が約1360Vでおるのに対し、本発明の平
均値は1650Vと、約20%耐電圧か上昇することか
わかる。
Therefore, in this embodiment, there are no low variations in withstand voltage, and the withstand voltage increases. FIG. 3 is a diagram showing a specific distribution of dielectric breakdown voltage. That is, in FIG. 3, a polyethylene terephthalate film with a thickness of 5 μm and a width of 5 Qmm is used as the first metallized film 1, and a polypropylene film with a thickness of 5 μm and a width of 48 mm is used as the second metallized film 2. This is a diagram showing the distribution of dielectric breakdown voltage between the conventional example (A> and the present invention (B)) when aluminum vapor deposition is applied to It can be seen that the average value of the present invention is 1650V, which is an increase in withstand voltage of about 20%.

また、従来技術においては、耐電圧不良率が0゜4%ぐ
らい存在していたのに対し、本実施例では、耐電圧不良
率が0%であることが確認された。
Further, in the conventional technique, the withstand voltage failure rate was approximately 0.4%, whereas in this example, it was confirmed that the withstand voltage failure rate was 0%.

さらに、2段直列形の構造のコンデンサ特有の問題点と
して、従来では、一方のコンデンサが短絡した際に、残
る一方のコンデンサに全電圧が印加され、破壊が波及し
たり、容量が2倍になって回路定数に影響を与えること
があったが、本実施例においては、前述した通り、絶縁
破壊を生じた電極片で破壊を間欠できるため、破壊が波
及することはなく、また、短絡電流も、当該電極片にの
み流れるため、コンデンサ全体としては、容量が2倍に
なることはなく、回路定数に影響を与える恐れはない。
Furthermore, a problem unique to capacitors with a two-stage series structure is that when one capacitor is short-circuited, the full voltage is applied to the remaining capacitor, which can cause damage and double the capacitance. However, in this example, as mentioned above, the breakdown can be intermittent at the electrode piece where the insulation breakdown occurred, so the breakdown does not spread, and the short-circuit current However, since the current flows only through the electrode piece, the capacitance of the capacitor as a whole does not double, and there is no risk of affecting the circuit constants.

以上のように、本実施例においては、絶縁破壊を局部的
に回復、或いは完結でき、短絡時の回復性がよいため、
コンデンサ全体が完全には故障し難く、安全性に優れて
いる。
As described above, in this embodiment, dielectric breakdown can be locally recovered or completed, and recovery performance in the event of a short circuit is good.
The entire capacitor is completely resistant to failure and has excellent safety.

なお、本発明は、前記実施例に限定されるものではなく
、例えば使用する金属化フィルムの蒸着金属の種類やフ
ィルムの種類などの制約は存在せず、広く使用可能でお
る。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and can be widely used without any restrictions such as the type of vapor-deposited metal or the type of film used in the metallized film.

また、2枚の金属化フィルムを使用する代りに、−枚の
プラスチックフィルムの両側に第1図(A)(B)の蒸
着電極をそれぞれ蒸着し、この金属化フィルムと金属の
蒸着されていないプラスチックフィルムとを重ね合せて
構成してもほぼ同じ効果が得られる。
In addition, instead of using two metalized films, the vapor deposition electrodes shown in FIGS. Almost the same effect can be obtained even if a plastic film is stacked on top of the other.

ざらに、第1図(A)の蒸着電極を、第6図(A)のよ
うに、長さ方向に多数に細分化する構成も可能でおる。
Roughly speaking, it is also possible to construct a structure in which the vapor deposition electrode shown in FIG. 1(A) is subdivided into a large number of parts in the length direction as shown in FIG. 6(A).

一方、第1図(B)において、電極片8の両側の電極1
0.11を接続する蒸着帯12は、1本でなく複数本設
(ブることも可能でおる。
On the other hand, in FIG. 1(B), the electrodes 1 on both sides of the electrode piece 8
It is also possible to provide not one but a plurality of vapor deposition zones 12 connecting the 0.11.

ところで、前記実施例においては、2段直列形の構造と
した場合について述べたが、本発明は、第2図に示すよ
うな、4段直列形のコンデンサに応用することも可能で
おる。第2図<A>に示す金属化フィルム13は、幅方
向中央2箇所に2本のマージン部14を設けてフィルム
面を3分割し、両側には、第1図(A>の蒸着電極と同
様の分断されない蒸着電極15.16を設け、この間に
、第1図(B)と同様の分断電極を設けたものである。
Incidentally, in the above embodiment, a case of a two-stage series type structure was described, but the present invention can also be applied to a four-stage series type capacitor as shown in FIG. The metallized film 13 shown in FIG. 2 <A> has two margins 14 at two central locations in the width direction to divide the film surface into three parts, and on both sides are the vapor-deposited electrodes shown in FIG. 1 (A>). Similar undivided vapor deposition electrodes 15 and 16 are provided, and a divided electrode similar to that shown in FIG. 1(B) is provided between them.

また、第2図(8)に示す金属化フィルム17は、幅方
向両縁にマージン部18を設け、ざらに、幅方向中央部
にマージン部19を設け、このマージン部18.19間
に形成される2面に、それぞれ第1図(B)と同様の分
断電極を設けたものでおる。このように4段直列した場
合には、同様の効果を奏する上、ざらに耐電圧を向上で
きる。
Further, the metallized film 17 shown in FIG. 2 (8) has margin parts 18 on both edges in the width direction, a margin part 19 in the center part in the width direction, and a margin part 18 and 19 formed between the margin parts 18 and 19. A divided electrode similar to that shown in FIG. 1(B) is provided on each of the two surfaces. When four stages are connected in series in this way, not only the same effect can be achieved, but also the withstand voltage can be greatly improved.

即ち、本発明は、2段以上の多段直列形のコンデンサ一
般に同様に適用可能であり、耐電圧性の優れたコンデン
サを適用できる。
That is, the present invention is similarly applicable to general multi-stage series capacitors with two or more stages, and can be applied to capacitors with excellent voltage resistance.

[発明の効果] 以上説明した通り、本発明によれば、2段直列に接続し
た形になる構造のSHコンデンサにおいて、中間電極の
蒸着電極を、長さ方向の多数個の電極片とし、各電極片
を幅方向中央にて左右に分断し、この電極間をわずかな
幅の導通部で連結するという簡単な構成により、従来に
比べて、耐電圧性が高く、回路定数に影響を与えること
がなく、しかも安全性に優れたSHコンデンサを提供で
きる。
[Effects of the Invention] As explained above, according to the present invention, in an SH capacitor having a structure in which two stages are connected in series, the vapor deposited electrode of the intermediate electrode is formed into a large number of electrode pieces in the length direction, and each Due to the simple structure of dividing the electrode piece into left and right parts at the center in the width direction and connecting the electrodes with a conductive part with a small width, it has higher voltage resistance than conventional products and does not affect the circuit constants. Therefore, it is possible to provide an SH capacitor that is free from oxidation and has excellent safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるSHコンデンサの基本的な一実施
例を示す図でおり、(A)は第1の金属化フィルムを示
す平面図、(B)は中間電極となる第2の金属化フィル
ムを示す平面図、(C)はコンデンサ素子巻回途中を示
す斜視図、(D>は結線図、(E)は保安動作時を示す
平面図、(F)は同じく結線図、(G)は第1、第2の
金属化フィルムを重ね合せた状態を示す断面図、(H)
は(G)の結線図である。 第2図は本発明によるSHコンデンサの応用的な一実施
例を示す図であり、(A>は第1の金属化フィルムを示
す平面図、(B)は第2の金属化フィルムを示す平面図
、(C)は第1、第2の金属化フィルムを重ね合せた状
態を示す断面図、(D)は(C)の結線図である。 第3図は従来例と本発明の絶縁破壊電圧の分布をボすグ
ラフでおり、(A)は従来例、(B)は本発明である。 第4図乃至第7図は従来の異なるコンデンサを示す図で
ある。 1・・・第1の金属化フィルム、2・・・第2の金属化
フィルム、3,6,7,9,14,18.19・・・マ
ージン部、4,5,15.16・・・蒸着電極、8・・
・電極片、10.11・・・電極片の両側の電極、12
・・・蒸着帯、13.17・・・金属化フィルム、P。 P−、Q、Q−・・・破壊点。
FIG. 1 is a diagram showing a basic embodiment of the SH capacitor according to the present invention, in which (A) is a plan view showing the first metallized film, and (B) is a plan view showing the second metallized film serving as the intermediate electrode. A plan view showing the film, (C) a perspective view showing the capacitor element in the middle of winding, (D> is a wiring diagram, (E) a plan view showing the safety operation, (F) is also a wiring diagram, (G) (H) is a cross-sectional view showing a state in which the first and second metallized films are overlapped;
is a wiring diagram of (G). FIG. 2 is a diagram showing an applied embodiment of the SH capacitor according to the present invention, in which (A> is a plan view showing the first metallized film, and (B) is a plan view showing the second metallized film. Figure 3 (C) is a sectional view showing the state in which the first and second metallized films are overlapped, and (D) is a wiring diagram of (C). Figure 3 shows the dielectric breakdown of the conventional example and the present invention. These are graphs showing voltage distribution, where (A) is the conventional example and (B) is the present invention. Figures 4 to 7 are diagrams showing different conventional capacitors. 1... 1st metallized film, 2... second metallized film, 3, 6, 7, 9, 14, 18. 19... margin portion, 4, 5, 15. 16... vapor deposited electrode, 8...・
・Electrode piece, 10.11... Electrodes on both sides of the electrode piece, 12
... Vapor deposition zone, 13.17 ... Metallized film, P. P-, Q, Q-... Breaking point.

Claims (1)

【特許請求の範囲】  第1、第2のプラスチックフィルムを備え、第1のプ
ラスチックフィルムの片面には第1の蒸着電極が形成さ
れ、第2のプラスチックフィルムの片面もしくは第1の
プラスチックフィルムの残る片面には第2の蒸着電極が
形成され、この第1、第2のプラスチックフィルムを重
ね合せて巻回されて成るSHコンデンサにおいて、 前記第1の蒸着電極は、幅方向中央部にマージン部を有
するものとされ、 前記第2の蒸着電極は、第1の蒸着電極よりも幅を狭く
され、幅方向の両縁にマージン部を有するものとされ、
且つ長さ方向に向かつて多数に細かく分断され、さらに
、分断された各電極片は幅方向中央にて左右に分断され
、且つこの左右の電極間は、わずかな幅の導通部で連結
されたことを特徴とするSHコンデンサ。
[Claims] First and second plastic films are provided, a first vapor-deposited electrode is formed on one side of the first plastic film, and one side of the second plastic film or the remaining part of the first plastic film is provided. In an SH capacitor in which a second vapor-deposited electrode is formed on one side, and the first and second plastic films are overlapped and wound, the first vapor-deposited electrode has a margin portion at the center in the width direction. The second vapor deposition electrode has a width narrower than that of the first vapor deposition electrode, and has margin portions at both edges in the width direction,
In addition, it was divided into many pieces in the length direction, and further, each divided electrode piece was divided into left and right parts at the center in the width direction, and the left and right electrodes were connected by a conductive part with a small width. SH capacitors are characterized by:
JP63225178A 1988-09-07 1988-09-07 Sh capacitor Pending JPH0272609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225178A JPH0272609A (en) 1988-09-07 1988-09-07 Sh capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225178A JPH0272609A (en) 1988-09-07 1988-09-07 Sh capacitor

Publications (1)

Publication Number Publication Date
JPH0272609A true JPH0272609A (en) 1990-03-12

Family

ID=16825181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225178A Pending JPH0272609A (en) 1988-09-07 1988-09-07 Sh capacitor

Country Status (1)

Country Link
JP (1) JPH0272609A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104724U (en) * 1990-02-14 1991-10-30
US6757151B2 (en) * 2000-01-14 2004-06-29 Abb Ab Capacitor element for a power capacitor, a power capacitor comprising such element and a metallized film for a power capacitor
US6894886B2 (en) * 2000-01-14 2005-05-17 Abb Ab Power capacitor
EP1548767A1 (en) * 2002-10-10 2005-06-29 Matsushita Electric Industrial Co., Ltd. Metallized film capacitor
JP2007150297A (en) * 2005-11-23 2007-06-14 Asml Netherlands Bv Method of measuring magnification of projection system, manufacturing method for device, and computer program product
JP2011101042A (en) * 2005-04-14 2011-05-19 Panasonic Corp Case molded capacitor
WO2022259899A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Film capacitor
WO2022259900A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Film capacitor
WO2022270391A1 (en) * 2021-06-24 2022-12-29 京セラ株式会社 Film capacitor, combined capacitor, inverter and electric vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414911A (en) * 1987-07-08 1989-01-19 Shizuki Electric Capacitor with safety mechanism for series winding structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414911A (en) * 1987-07-08 1989-01-19 Shizuki Electric Capacitor with safety mechanism for series winding structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104724U (en) * 1990-02-14 1991-10-30
US6757151B2 (en) * 2000-01-14 2004-06-29 Abb Ab Capacitor element for a power capacitor, a power capacitor comprising such element and a metallized film for a power capacitor
US6894886B2 (en) * 2000-01-14 2005-05-17 Abb Ab Power capacitor
EP1548767A1 (en) * 2002-10-10 2005-06-29 Matsushita Electric Industrial Co., Ltd. Metallized film capacitor
EP1548767A4 (en) * 2002-10-10 2009-03-11 Panasonic Corp Metallized film capacitor
JP2011101042A (en) * 2005-04-14 2011-05-19 Panasonic Corp Case molded capacitor
JP2007150297A (en) * 2005-11-23 2007-06-14 Asml Netherlands Bv Method of measuring magnification of projection system, manufacturing method for device, and computer program product
JP4527099B2 (en) * 2005-11-23 2010-08-18 エーエスエムエル ネザーランズ ビー.ブイ. Method for measuring the magnification of a projection system, device manufacturing method and computer program product
WO2022259899A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Film capacitor
WO2022259900A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Film capacitor
WO2022270391A1 (en) * 2021-06-24 2022-12-29 京セラ株式会社 Film capacitor, combined capacitor, inverter and electric vehicle

Similar Documents

Publication Publication Date Title
US4434452A (en) Metallized film capacitor
WO2010090245A1 (en) Metalized film capacitor
WO2007139165A1 (en) Film capacitor
JPH0272609A (en) Sh capacitor
JP3870875B2 (en) Deposition film, film capacitor using the film, and inverter device using the capacitor
EP1254468B1 (en) A capacitor element for a power capacitor, a power capacitor comprising such element and a metallized film for a power capacitor
JP2006286988A (en) Metallization film capacitor
JPS5833683B2 (en) capacitor device
JP5647400B2 (en) Metallized film capacitors
JPH10144563A (en) Metallized film capacitor
JP2004095604A (en) Metallized film capacitor
CN210245323U (en) Internal-string type explosion-proof film capacitor
JP3935561B2 (en) Metallized film capacitors
JP5647402B2 (en) Metallized film capacitors
JPH09306782A (en) Metallized film capacitor
JPH09283366A (en) Capacitor
JPH1126281A (en) Metallized film capacitor
JP3173445B2 (en) Manufacturing method of film capacitor
JPS5824932B2 (en) capacitor device
JP2004087653A (en) Metallized film capacitor
JP2015153952A (en) Metalized film capacitor
JPH1126280A (en) Metallized film capacitor
JPH11251183A (en) Film capacitor
JP2013219400A (en) Metallized film capacitor
JP2002353060A (en) Metallized film capacitor