JPH0272361A - Electron ray resist having two-layered structure - Google Patents

Electron ray resist having two-layered structure

Info

Publication number
JPH0272361A
JPH0272361A JP22380888A JP22380888A JPH0272361A JP H0272361 A JPH0272361 A JP H0272361A JP 22380888 A JP22380888 A JP 22380888A JP 22380888 A JP22380888 A JP 22380888A JP H0272361 A JPH0272361 A JP H0272361A
Authority
JP
Japan
Prior art keywords
resist
upper layer
electron beam
layer
layer resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22380888A
Other languages
Japanese (ja)
Inventor
Yukari Tsurunaga
鶴永 ゆかり
Hiroko Nakamura
裕子 中村
Satoshi Takechi
敏 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22380888A priority Critical patent/JPH0272361A/en
Publication of JPH0272361A publication Critical patent/JPH0272361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To allow the exact transfer of the patterns of an upper layer resist to a lower layer by using a mixture composed of an electron ray decomposition type polymer consisting of polybutene sulfone or polyalpha-subsutd. acrylate and a phenol or cresol novolak resin introduced with a silicon-contg. substituent as the upper layer resist. CONSTITUTION:The upper layer resist of the resist having the two-layered structure is constituted of the mixture composed of the electron ray decomposition type polymer consisting of polybutene sulfone or polyalpha-substd. acrylate and the phenol novolak resin or cresol novolak resin introduced with the silicon- contg. substituent. The pattern accuracy is improved in this way and since the etching rate in RIE of O2 is low, the exact transfer of the upper layer resist pattern to the lower layer is possible and the accuracy of integrated circuits is improved.

Description

【発明の詳細な説明】 〔概要〕 二層構造レジストの上層レジストに関し、上層レジスト
のパターンを正確に下層に転写できる電子線レジストを
提供することを目的とし、ポリプテンサルフォン或いは
ポリα置換アクリル酸エステルからなる電子線分解型ポ
リマとシリコン含有置喚基が導入されたフェノール或い
はクレゾールノボランク樹脂との混合物を上層レジスト
に用い、二層構造電子線レジストを構成する。
[Detailed Description of the Invention] [Summary] Regarding the upper layer resist of a two-layer structure resist, the purpose is to provide an electron beam resist that can accurately transfer the pattern of the upper layer resist to the lower layer. A mixture of an electron beam decomposable polymer consisting of an acid ester and a phenol or cresol novolank resin into which a silicon-containing substituent group has been introduced is used as the upper resist layer to form a two-layer electron beam resist.

〔産業上の利用分野〕[Industrial application field]

本発明は耐酸素プラズマエツチング性に優れた二層構造
電子線レジストに関する。
The present invention relates to a two-layer electron beam resist with excellent oxygen plasma etching resistance.

半導体集積回路の形成には薄膜形成技術と写真蝕刻技術
(フォトリソグラフィ或いは電子線リソグラフィ)が多
用されており、これらの技術の進歩によって半導体単位
素子は益々微細化され、I、SIやVLSIのような集
積回路が実用化されている。
Thin film formation technology and photolithography (photolithography or electron beam lithography) are often used in the formation of semiconductor integrated circuits, and as these technologies advance, semiconductor unit elements are becoming increasingly finer, and semiconductor devices such as I, SI, and VLSI are becoming increasingly finer. integrated circuits have been put into practical use.

すなわち、配線パターンについて言えば、当初は被処理
基板上に形成した配線形成材料からなる薄膜の上にレジ
ストを被覆し、これに選択的に紫外線露光を施した後に
現像してレジストパターンを作り、これにウェットエツ
チング或いはドライエツチングを行って配線パターンの
形成が行われていた。
That is, regarding wiring patterns, initially a resist is coated on a thin film made of a wiring forming material formed on a substrate to be processed, and this is selectively exposed to ultraviolet light and then developed to create a resist pattern. Wiring patterns were formed by subjecting this to wet etching or dry etching.

然し、集積化が進んで最小パターン幅が1μm未満まで
微細化が進行してきた結果、露光光源として紫外線に代
わって電子線が使用されるようになった。
However, as integration has progressed and miniaturization has progressed to a minimum pattern width of less than 1 μm, electron beams have come to be used as exposure light sources instead of ultraviolet rays.

すなわち、紫外線露光による微細パターンの形成は波長
による制限から1μm程度に限られるのに対し、電子線
の波長は加速電圧により異なるもの\、0.1 人程度
と格段に短いために、サブミクロン領域の微細パターン
の形成が可能となる。
In other words, the formation of fine patterns by ultraviolet light exposure is limited to about 1 μm due to wavelength restrictions, whereas the wavelength of electron beams varies depending on the accelerating voltage\and is much shorter, about 0.1 μm, so it is difficult to form fine patterns in the submicron region. This makes it possible to form fine patterns.

次に、LSI、VLSIのような半導体素子製造プロセ
スにおいては、回路の多層化が必要であり、この際、下
層に配線パターンが存在すると、この上に膜形成する絶
縁層の表面に1〜2μmの段差を生ずることが多く、か
\る場合に従来の単層レジスト法を適用すると微細パタ
ーンを高精度で形成することが不可能になる。
Next, in the manufacturing process of semiconductor devices such as LSI and VLSI, it is necessary to make circuits multilayered, and in this case, if there is a wiring pattern in the lower layer, the surface of the insulating layer formed on top of the wiring pattern is 1 to 2 μm thick. In such cases, applying the conventional single-layer resist method makes it impossible to form fine patterns with high accuracy.

そこで、まず下層レジストを用いて平坦化し、この上に
耐酸素ドライエツチング性の優れた上層レジストを薄く
形成してドライエツチングして微細パターンを形成する
二層構造レジストが用いられている。
Therefore, a two-layer resist is used in which a lower resist layer is first flattened, and a thin upper resist layer with excellent oxygen dry etching resistance is formed on top of the lower resist layer and then dry etched to form a fine pattern.

〔従来の技術〕[Conventional technology]

二層構造レジストは下層レジストとして、フェノールノ
ボラック樹脂或いはクレゾールノボラック樹脂のように
酸素(0□)プラズマにより容易にドライエツチングさ
れる材料を例えば2μm程度にスピンコードして平坦化
し、 この上に上層レジストとして電子線照射により容易に分
解し、現像剤により可溶な状態となるが、非照射部分は
0□プラズマによっては耐性のある高分子材料(ポリマ
)を0.2〜0.3μm程度に’l’!’7 <塗布す
ることにより形成されている。
The two-layer resist is made by spin-coating a material that can be easily dry-etched by oxygen (0□) plasma, such as phenol novolac resin or cresol novolac resin, to a thickness of about 2 μm and flattening it as the lower layer resist, and then forming the upper layer resist on top of this. As a result, it is easily decomposed by electron beam irradiation and becomes soluble by developer, but the non-irradiated area is 0□ Depending on the plasma, the resistant polymer material (polymer) is reduced to about 0.2 to 0.3 μm. l'! '7 <It is formed by coating.

こ\で、上層レジストとしては、 ■ シリコン(Si)を+1N成元素としてもつポリメ
タクリル酸エステル、 ■ Siを構成元素としてもつオレフィンと二酸化硫黄
(SO,)との共重合よりなるポリマ、などが提案され
ている。
Here, as the upper layer resist, ■ polymethacrylic acid ester having silicon (Si) as a +1N element, ■ polymer made by copolymerizing olefin and sulfur dioxide (SO, ) having Si as a constituent element, etc. Proposed.

然し、これらの上層レジストは耐酸素プラズマエツチン
グ性が下層レジストの10倍程度に止まっており、酸素
プラズマエツチングを行って上層レジストパターンを下
層レジストに転写する工程で上層レジストも相当程度エ
ツチングされ、パターン精度が低下してしまうことが問
題である。
However, the oxygen plasma etching resistance of these upper layer resists is only about 10 times that of the lower layer resist, and in the process of performing oxygen plasma etching to transfer the upper layer resist pattern to the lower layer resist, the upper layer resist is also etched to a considerable extent and the pattern is The problem is that the accuracy decreases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上記したように従来の二層構造レジストは耐酸素プラ
ズマエツチング性が充分とは言えず、酸素プラズマエツ
チングを行って上層レジストパターンを下層レジストに
転写する工程で上層レジストもかなりエツチングされ、
それによりパターン精度が低下することが問題である。
As mentioned above, conventional two-layer structure resists cannot be said to have sufficient oxygen plasma etching resistance, and in the process of performing oxygen plasma etching to transfer the upper layer resist pattern to the lower layer resist, the upper layer resist is also etched considerably.
The problem is that pattern accuracy is thereby reduced.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は二層構造レジストの上層レジストがポリブ
テンサルフォン或いはポリα置換アクリル酸エステルな
どの電子線分解型ポリマとシリコン含有置換基が導入さ
れたフェノールノボラック樹脂或いはクレゾールノボラ
ック樹脂との混合物よりなる二層構造電子線レジストの
使用により解決することができる。
The above problem is solved when the upper layer of the two-layer resist is made of a mixture of an electron beam decomposable polymer such as polybutene sulfone or poly-α-substituted acrylic ester, and a phenol novolac resin or cresol novolac resin into which a silicon-containing substituent has been introduced. This problem can be solved by using a two-layer electron beam resist.

〔作用〕[Effect]

既に記したように二層構造上層レジストの必要条件は、 ■ 電子線照射により容易に分解すること、■ 耐02
 ドライエツチング性に優れていること、である。
As already mentioned, the necessary conditions for the upper layer resist of the two-layer structure are: ■ Easily decomposed by electron beam irradiation; ■ Durability 02
It has excellent dry etching properties.

本発明は上層レジストとして第1図に構造式を示すポリ
ブテンサルフォン或いは第2図に構造式を示すポリα置
換アクリル酸エステルのような電子線分解型ポリマと第
4図および第5図に構造式を示すSi含有置換基が導入
されたタレゾールノボランク樹脂あるいはフェノールノ
ボラック樹脂との混合物を用いるものである。
The present invention uses an electron beam decomposable polymer such as polybutene sulfone whose structural formula is shown in FIG. 1 or polyα-substituted acrylic ester whose structural formula is shown in FIG. A mixture of Talesol novolank resin or phenol novolak resin into which a Si-containing substituent shown by the formula is introduced is used.

発明者等は電子線照射により容易に分解するポリマとし
て知られており、主鎖にスルホニル基(−Sow)をも
つポリブテンサルフォン(Polybutensulf
on略称r’[ls)とポリα置換アクリル酸エステル
の三者を選んだ。
The inventors discovered that polybutensulfone (Polybutensulfone), which has a sulfonyl group (-Sow) in its main chain, is a polymer that is known to be easily decomposed by electron beam irradiation.
On abbreviation r' [ls) and polyα-substituted acrylic ester were selected.

そして、か\るポリマを感光剤として使用すると、電子
線照射によりポリブテンサルフォンの場合はC−8結合
が分解するため、また、ポリα置換アクリル酸エステル
の場合は主鎖のC−C結合が分解するためにポリマが低
分子量化し、現像液に溶は易くなる。
When such polymers are used as photosensitizers, C-8 bonds in polybutene sulfone decompose due to electron beam irradiation, and C-C bonds in the main chain of poly-α-substituted acrylic esters are decomposed by electron beam irradiation. decomposes, the polymer has a lower molecular weight and becomes easier to dissolve in a developer.

一方、非露光部は耐ドライエツチング性が優れているこ
とが必要であり、今まで耐酸素(0□)プラズマエツチ
ング性を要する用途には二酸化硅素(SiO□)膜やス
ピンオングラス(略称5OG)が用いられている。
On the other hand, the non-exposed area needs to have excellent dry etching resistance, and until now, applications that require oxygen (0□) plasma etching resistance have been made using silicon dioxide (SiO□) films and spin-on glass (abbreviated as 5OG). is used.

そこで、本発明はバインダ樹脂としてSi含有置換基が
導入されたクレゾールノボラック樹脂或いはフェノール
ノボラック樹脂を使用するものである。
Therefore, the present invention uses a cresol novolak resin or phenol novolac resin into which a Si-containing substituent has been introduced as a binder resin.

このようにすると酸素プラズマにより感光剤およびバイ
ンダ樹脂が分解する際にSi原子が酸素(0)原子と結
合してSingとなって表面を覆うため、耐ドライエツ
チング性を向上することができる。
In this case, when the photosensitive agent and binder resin are decomposed by oxygen plasma, Si atoms combine with oxygen (0) atoms to form Sings and cover the surface, thereby improving dry etching resistance.

〔実施例〕〔Example〕

実施例1−1: m(メタ)およびp (パラ)クレゾールとホルムアル
デヒドとをシリコーン変成し、第4図に示すような構造
式をもちSi含有量が14重量%のクレゾールノボラッ
ク樹脂を得た。
Example 1-1: m (meta) and p (para) cresol and formaldehyde were modified into silicone to obtain a cresol novolak resin having a structural formula as shown in FIG. 4 and having a Si content of 14% by weight.

この樹脂0.2gと、ラジカル重合によって得られ分子
量が約20万のポリブテンサルフォン0.8gとを混合
し、メチルセルソルブアセテートを溶媒に用い、5重量
%の電子線レジスト液を準備した。
0.2 g of this resin and 0.8 g of polybutene sulfone obtained by radical polymerization and having a molecular weight of about 200,000 were mixed to prepare a 5% by weight electron beam resist solution using methylcellosolve acetate as a solvent.

まず、Si基板上に市販のポジ型レジストである0FP
I?−80似東京応化製)をスピンコードし、200°
Cで1時間乾燥して厚さが2μlの下層レジスト層を形
成した。
First, we applied 0FP, a commercially available positive resist, on a Si substrate.
I? -80 (similar to Tokyo Ohka) was spin-coded and 200°
C for 1 hour to form a lower resist layer with a thickness of 2 μl.

次に、この上に先の電子線レジスト液をスピンコードし
た後に80℃で乾燥し、厚さが約2000人の上層レジ
スト層を形成した。
Next, the above electron beam resist solution was spin-coded on top of this and dried at 80° C. to form an upper resist layer having a thickness of about 2,000.

次に、加速電圧20kVの電子線で露光した後、メチル
イソブチルケトン(略称旧BK)で25秒現像した結果
、第3国人に示すような感度曲線を得、このとき0.8
μ鴎のライン・アンド・スペースを解像した。
Next, after exposure to an electron beam with an accelerating voltage of 20 kV, development was performed for 25 seconds with methyl isobutyl ketone (abbreviated as BK), resulting in a sensitivity curve as shown for third-country people, at which time 0.8
I resolved the lines and spaces of μ-gu.

次に、耐0□リアクテイブ・イオンエツチング(略称R
IE)性を調べるために、0□の流量を50cc/分と
し、真空度0.15 torr、出力50Wの条件で1
0分間に互ってプラズマエツチングを行ったが、膜減り
は見られなかった。
Next, 0□ reactive ion etching (abbreviated as R
IE) In order to investigate the
Plasma etching was performed for 0 minutes, but no film loss was observed.

実施例1−2= 先の実施例においてはクレゾールとホルムアルデヒドと
をシリコーン変成し、Si含有置換基の含イf量が14
重量%のクレゾールノボラック樹脂を用い、これをポリ
ブテンサルフォンと混合して電子線レジスト液を準備し
たが、今回はSi含有置換基の含有量が8重量%のもの
を用い、それ以外は実施例1−1と同様にして二層構造
レジストを作った。
Example 1-2 = In the previous example, cresol and formaldehyde were modified into silicone, and the content of Si-containing substituents was 14
% by weight of cresol novolac resin and mixed it with polybutene sulfone to prepare an electron beam resist solution.This time, we used one with a Si-containing substituent content of 8% by weight, and the rest was the same as in the example. A two-layer resist was prepared in the same manner as in 1-1.

然し、先と同じ条件でO!RIEを行った場合、約20
00人分の膜減りが観察されたが、感度と解像力は実施
例1−1と同様であった。
However, under the same conditions as before, O! If RIE is performed, approximately 20
Although a film reduction of 0.00 was observed, the sensitivity and resolution were the same as in Example 1-1.

実施例2−1; 第5図に構造式を示すSi含有置換基が導入されたシリ
コーン変成ノボラック樹脂0.96gをポリα置換アク
リル酸エステルの商品名であるCMR−1o。
Example 2-1: 0.96 g of a silicone-modified novolac resin into which a Si-containing substituent, the structural formula of which is shown in FIG.

(日本ゼオン製) 2.4 gと混合し、MCAを溶媒
として5重量%の電子線レジストを準備した。
(manufactured by Nippon Zeon) and mixed with 2.4 g to prepare a 5% by weight electron beam resist using MCA as a solvent.

次に、Si基板上に実施例1−1と同様に叶PR−80
0(東京応化製)をスピンコードして2μmの下層レジ
スト層を形成し、この上に先の電子線レジスト液をスピ
ンコードした後に80°Cで乾燥して厚さが約2000
人の上層レジスト層を形成した。
Next, the leaf PR-80 was placed on the Si substrate in the same manner as in Example 1-1.
0 (manufactured by Tokyo Ohka) to form a 2 μm lower resist layer, and after spin-coding the electron beam resist solution above, drying at 80°C to a thickness of approximately 2000°C.
Formed the upper resist layer of the person.

次に、先と同様に加速電圧20kVの電子線で露光した
のちメチルイソブチルケトン(略称旧BK)と酢酸エチ
ルの1:1溶液に1分間現像した結果、第3図已に示す
ような感度曲線を得ることができ、このときの感度は3
0μC/cm”であり、0.8 μmライン・アンド・
スペースを解像できた。
Next, as before, it was exposed to an electron beam with an accelerating voltage of 20 kV, and then developed for 1 minute in a 1:1 solution of methyl isobutyl ketone (abbreviated as BK) and ethyl acetate. As a result, a sensitivity curve as shown in Figure 3 was obtained. can be obtained, and the sensitivity at this time is 3
0 μC/cm” and 0.8 μm line and
I was able to resolve space.

次に、耐o□RIIE性を調べるために、0□の流量を
50cc/分とし、真空度0.15 torr、出力5
0Wの条件で10分間に亙ってプラズマエツチングを行
ったが、膜減りは見られなかった。
Next, in order to examine o
Plasma etching was performed for 10 minutes under 0W conditions, but no film loss was observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、感光剤として電子線分解型ボリマを使
用するためパターン精度が良く、また0゜の1?IEに
おけるエツチングレートが少ないために上層レジストパ
ターンを正確に下層に転写でき、これにより集積回路の
精度向上が可能となる。
According to the present invention, since an electron beam decomposition type volima is used as a photosensitizer, pattern accuracy is good, and 0° to 1? Since the etching rate in IE is low, the upper layer resist pattern can be accurately transferred to the lower layer, thereby making it possible to improve the precision of the integrated circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリブテンサルフォンの構造式、第2図はポリ
α置換アクリル酸エステルの構造式、 第3図は本発明に係る電子線分解型ポリマの感度曲線、 第4図はシリコン含有置換基が導入されたタレゾールノ
ボランク樹脂の構造式、 第5図はシリコン含有置換基が導入されたフェノールノ
ボラック樹脂の構造式、 である。 J−13 ノヌリフ゛テンヂルフ者ンG’)Ft−を武剖51 図 <oすcl  #qeア2す)し@ニスチルの2*Q’
−’茅   2.   図 不抱らツ月にδ秀ミ゛る11写赴角牛ヤガマリマグ1ど
に狽諭匈程年 3 ノ
Figure 1 is the structural formula of polybutene sulfone, Figure 2 is the structural formula of poly-α-substituted acrylic ester, Figure 3 is the sensitivity curve of the electron beam decomposable polymer according to the present invention, and Figure 4 is the silicon-containing substituent. Figure 5 is the structural formula of Talesol novolak resin into which a silicon-containing substituent has been introduced. J-13 Nonu Riften Dilf Person G')
-'Kaya 2. 11 photos of the horned cow Yagamarimag 1st year of the year 3

Claims (1)

【特許請求の範囲】[Claims] ポリブテンサルフォン成いはポリα置換アクリル酸エス
テルからなる電子線分解型ポリマとシリコン含有置換基
が導入されたフェノール或いはクレゾールノボラック樹
脂との混合物を上層レジストとして使用することを特徴
とする二層構造電子線レジスト。
A two-layer structure characterized in that a mixture of an electron beam decomposable polymer made of polybutene sulfone or poly-α-substituted acrylic ester and a phenol or cresol novolac resin into which a silicon-containing substituent has been introduced is used as an upper resist layer. Electron beam resist.
JP22380888A 1988-09-07 1988-09-07 Electron ray resist having two-layered structure Pending JPH0272361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22380888A JPH0272361A (en) 1988-09-07 1988-09-07 Electron ray resist having two-layered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22380888A JPH0272361A (en) 1988-09-07 1988-09-07 Electron ray resist having two-layered structure

Publications (1)

Publication Number Publication Date
JPH0272361A true JPH0272361A (en) 1990-03-12

Family

ID=16804044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22380888A Pending JPH0272361A (en) 1988-09-07 1988-09-07 Electron ray resist having two-layered structure

Country Status (1)

Country Link
JP (1) JPH0272361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137649A (en) * 1989-10-24 1991-06-12 Matsushita Electric Ind Co Ltd Fine pattern forming material and pattern forming method
JPH05114673A (en) * 1991-10-23 1993-05-07 Nikko Kyodo Co Ltd Back fixing agent for manufacturing tab tape carrier
US5627307A (en) * 1995-11-20 1997-05-06 Fortec Co., Ltd. Method for measuring intensity index of odor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137649A (en) * 1989-10-24 1991-06-12 Matsushita Electric Ind Co Ltd Fine pattern forming material and pattern forming method
JPH05114673A (en) * 1991-10-23 1993-05-07 Nikko Kyodo Co Ltd Back fixing agent for manufacturing tab tape carrier
US5627307A (en) * 1995-11-20 1997-05-06 Fortec Co., Ltd. Method for measuring intensity index of odor

Similar Documents

Publication Publication Date Title
JP2919004B2 (en) Pattern formation method
JPH0376742B2 (en)
JP2007017976A (en) Underlayer composition containing heterocyclic aromatic structure to be used in multilayer lithography process, lithography structure, method for forming material layer or material element on substrate
JP2707785B2 (en) Resist composition and pattern forming method
JPH02191957A (en) Resist composition
JPH0722156B2 (en) Method for forming pattern of semiconductor device
JPH0272361A (en) Electron ray resist having two-layered structure
JPH0727216B2 (en) Pattern formation method
JPH05158235A (en) Resist composition and resist pattern forming method
JP2714967B2 (en) Method of forming resist pattern
JPH0477899B2 (en)
JPH028850A (en) Electron ray resist having double structure
JPS62138843A (en) Composite resist structural body
JPH0334053B2 (en)
JPS60254036A (en) Formation of pattern
JPH03283418A (en) Resist pattern forming method
JPS6256947A (en) Composition for flattened layer for resist having two-layered structure
JP2506952B2 (en) Fine pattern formation method
JPH05216232A (en) Resist composition and method for forming resist pattern
JPH02156244A (en) Pattern forming method
JPS61260242A (en) Formation of resist pattern
JPS588131B2 (en) Manufacturing method of semiconductor device
JPS62247523A (en) Manufacture of semiconductor device
JPH02252231A (en) Fine pattern forming method
JPH0429149A (en) Pattern forming material and formation of pattern