JPH0272132A - Production of phenol - Google Patents

Production of phenol

Info

Publication number
JPH0272132A
JPH0272132A JP63223610A JP22361088A JPH0272132A JP H0272132 A JPH0272132 A JP H0272132A JP 63223610 A JP63223610 A JP 63223610A JP 22361088 A JP22361088 A JP 22361088A JP H0272132 A JPH0272132 A JP H0272132A
Authority
JP
Japan
Prior art keywords
catalyst
benzene
phenol
oxygen
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63223610A
Other languages
Japanese (ja)
Inventor
Fujio Matsuda
松田 藤夫
Kozo Kato
加藤 高藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63223610A priority Critical patent/JPH0272132A/en
Publication of JPH0272132A publication Critical patent/JPH0272132A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain phenol from raw material of low cost with one process in high yield by contact reacting in vapor phase of benzene, hydrogen chloride and oxygen in the presence of catalyst. CONSTITUTION:Benzene, hydrogen chloride, preferably aqueous solution of hydrochloric acid and oxygen are subjected to contact reaction in vapor phase in the presence of a catalyst having both functions of oxychlorinating function and hydrolyzing function such as copper phosphate, chromium phosphate or iron phosphate and preferably in the co-existence of water, usually in an atmosphere of oxygen or oxygen-containing inert gas, under normal pressure or increased pressure at a temperature of 200-500 deg.C, preferably 250-475 deg.C, thus phenol is obtained from benzene of low cost with one process in high yield and in high purity as by-product is small and selectivity is excellent. Besides, by-produced hydrogen chloride is able to be reused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フェノールの新規な製法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a new method for producing phenol.

更に詳しくは、ベンゼンと塩化水素と酸素とを反応させ
て、1工程でフェノールを製造する方法に関するもので
ある。
More specifically, the present invention relates to a method for producing phenol in one step by reacting benzene, hydrogen chloride, and oxygen.

〔従来の技術〕[Conventional technology]

従来、ベンゼンからフェノールを1工程で製造する方法
としては、触媒の存在下に、ベンゼンと酸素とを反応さ
せる直接酸化法が知られている。
Conventionally, as a method for producing phenol from benzene in one step, a direct oxidation method in which benzene and oxygen are reacted in the presence of a catalyst is known.

しかし、この場合、ベンゼンの完全酸化が起こり、フェ
ノールの選択率が大変低い(特開昭56−87527号
)。
However, in this case, complete oxidation of benzene occurs and the selectivity for phenol is very low (Japanese Patent Application Laid-open No. 87527/1983).

また、ベンゼンと亜酸化窒素とを触媒の存在下に反応さ
せて、フェノールを製造する方法も知られている。しか
し、この場合、原料の亜酸化窒素は高価である上に、フ
ェノールの収率は低い(触媒、21.103.276(
1982))。
Furthermore, a method for producing phenol by reacting benzene and nitrous oxide in the presence of a catalyst is also known. However, in this case, the raw material nitrous oxide is expensive and the yield of phenol is low (Catalyst, 21.103.276 (
1982)).

また、2工程からなるフェノール製造法としては、中間
体としてモノクロロベンゼンを経由する方法がある。す
なわち、第1段目の工程では、ベンゼンの塩素化または
オキシ塩素化により、モノクロロベンゼンを製造する。
Further, as a phenol production method consisting of two steps, there is a method using monochlorobenzene as an intermediate. That is, in the first step, monochlorobenzene is produced by chlorination or oxychlorination of benzene.

第2段目の工程では液相または気相反応において、モノ
クロ口ペンゼンを加水分解してフェノールを製造する。
In the second step, monochrome penzene is hydrolyzed to produce phenol in a liquid phase or gas phase reaction.

しかし、この2工程のフェノール製造法は、副生物が多
く、選択率が低い上に、製造工程が?!雑である。その
ため、ベンゼンから1工程でフェノールを製造する方法
が望まれていたが、いまだ工業化されていない。
However, this two-step phenol production method produces many by-products, has low selectivity, and requires a long manufacturing process. ! It's rough. Therefore, a method for producing phenol from benzene in one step has been desired, but it has not yet been commercialized.

〔発明が解決しようとする課題] 本発明の課題は、高収率でベンゼンからフェノールを1
工程で製造する工業的方法を提供することである。すな
わち、本発明の課題は、ベンゼンから1工程でフェノー
ルを製造する方法であるベンゼンの直接酸化法でみられ
た完全酸化を無くし、ベンゼンからフェノールを1工程
で製造する方法を提供することである。
[Problem to be solved by the invention] The problem of the present invention is to obtain phenol from benzene in a high yield.
The purpose is to provide an industrial method for manufacturing in a process. That is, an object of the present invention is to provide a method for producing phenol from benzene in one step by eliminating the complete oxidation seen in the direct oxidation method of benzene, which is a method for producing phenol from benzene in one step. .

〔!i題を解決するための手段〕[! Means to solve problem i]

本発明者らは、上記課題に関して種々検討した結果、従
来の2工程からなるフェノール製造法、すなわち、第1
段階でベンゼンをオキシ塩素化してモノクロロベンゼン
を製造し、第2段階でモノクロロベンゼンを加水分解し
てフェノールを製造する方法に着目し、ベンゼンのオキ
シ塩素化工程とモノクロロベンゼンの加水分解工程を合
併して、1工程でベンゼンのオキシ塩素化とモノクロロ
ベンゼンの加水分解とを実施することを検討した結果、
触媒として、オキシ塩素化と加水分解の2つの機能を持
つ触媒を用いることにより、1工程でベンゼンからフェ
ノールが収率良く得られることを見出し、本発明の方法
に至った。
As a result of various studies regarding the above-mentioned problems, the present inventors discovered that the conventional phenol production method consisting of two steps, namely,
Focusing on a method in which benzene is oxychlorinated to produce monochlorobenzene in the second step, and monochlorobenzene is hydrolyzed to produce phenol in the second step, the benzene oxychlorination process and the monochlorobenzene hydrolysis process are combined. As a result of considering carrying out oxychlorination of benzene and hydrolysis of monochlorobenzene in one step,
The inventors have discovered that phenol can be obtained from benzene in a high yield in one step by using a catalyst that has the dual functions of oxychlorination and hydrolysis, leading to the method of the present invention.

すなわち、本発明は、 触媒の存在下に、ベンゼンと塩化水素と酸素とを1工程
で気相接触反応させることを特徴とするフェノールの製
法である。
That is, the present invention is a method for producing phenol, which is characterized in that benzene, hydrogen chloride, and oxygen are subjected to a gas phase catalytic reaction in one step in the presence of a catalyst.

本発明では1工程でオキシ塩素化と加水分解とを実施す
るものである。その反応は、次式のように進行するもの
と考えられる。
In the present invention, oxychlorination and hydrolysis are carried out in one step. The reaction is thought to proceed as shown in the following equation.

2C&)+6 +21(CI+O!→2C,H,CI 
+28.O(])2C6H5C+ +2HzO→2C&
H5OH+2)1cI  (2)2CJi +  ox
  →2C6HsOH(3)(1)式はベンゼンをオキ
シ塩素化して、モノクロロベンゼンを生成する反応を示
す、(2)式は生成したモノクロロベンゼンを加水分解
して、フェノールを生成する反応を示す。(3)式は(
1)式と(2)式とを合併したものである。すなわち、
1工程でベンゼンをオキシ塩素化してモノクロロベンゼ
ンを生成し、さらに生成したモノクロロベンゼンを加水
分解すれば、(3)式のように1工程でベンゼンからフ
ェノールを製造することができる。この際、原料として
消耗するのはベンゼンと酸素であり、塩化水素と水は反
応には必要であるが、消耗しないと考えられる。
2C&)+6 +21(CI+O!→2C,H,CI
+28. O(])2C6H5C+ +2HzO→2C&
H5OH+2)1cI (2)2CJi + ox
→2C6HsOH (3) Formula (1) shows the reaction of oxychlorinating benzene to produce monochlorobenzene. Formula (2) shows the reaction of hydrolyzing the produced monochlorobenzene to produce phenol. Equation (3) is (
This is a combination of Equation 1) and Equation (2). That is,
By oxychlorinating benzene to produce monochlorobenzene in one step and further hydrolyzing the produced monochlorobenzene, phenol can be produced from benzene in one step as shown in equation (3). At this time, benzene and oxygen are consumed as raw materials, while hydrogen chloride and water are necessary for the reaction but are not consumed.

すなわち、ベンゼンから中間体としてモノクロロベンゼ
ンを経由して、l工程でフェノールを製造できる。また
、本発明による反応はベンゼンの直接酸化ではないので
、ベンゼンの完全酸化は極力制御できる。
That is, phenol can be produced from benzene via monochlorobenzene as an intermediate in one step. Furthermore, since the reaction according to the present invention is not a direct oxidation of benzene, complete oxidation of benzene can be controlled as much as possible.

本発明の方法に用いられる触媒は、オキシ塩素化機能を
有する触媒と加水分解8G能を有する触媒とからなる。
The catalyst used in the method of the present invention consists of a catalyst having an oxychlorination function and a catalyst having an 8G hydrolysis ability.

すなわち、本発明に用いられる触媒はオキシ塩素化作用
をする部分と加水分解作用をする部分とから成る。更に
詳しく説明するならば、本発明に用いられる触媒はオキ
シ塩素化作用をする活性点と加水分解作用をする活性点
を有する。
That is, the catalyst used in the present invention consists of a part that performs an oxychlorination action and a part that performs a hydrolysis action. More specifically, the catalyst used in the present invention has active sites that perform oxychlorination and active sites that perform hydrolysis.

それ故、本発明による触媒を用いることにより、オキシ
塩素化と加水分解の2つの反応が1つの工程で実施可能
となる。
Therefore, by using the catalyst according to the invention, the two reactions of oxychlorination and hydrolysis can be carried out in one step.

本発明に用いられる触媒の使用方法は次の3種類である
The catalyst used in the present invention can be used in the following three ways.

(1)1種類の触媒の上にオキシ塩素化作用をする活性
点と加水分解作用をする活性点とを含有する。
(1) One type of catalyst contains active sites that perform oxychlorination and active sites that perform hydrolysis.

すなわち、1MHの触媒がオキシ塩素化機能と加水分解
機能とを持つ。
That is, the 1MH catalyst has an oxychlorination function and a hydrolysis function.

(2)オキシ塩素化機能を有する触媒と加水分解機能を
有する触媒の2種類の触媒を混合して使用する。
(2) Two types of catalysts are used in combination: a catalyst with an oxychlorination function and a catalyst with a hydrolysis function.

(3)オキシ塩素化触媒層と加水分解触媒層の2層より
成る。前層にオキシ塩素化機能を有する触媒、後層に加
水分解機能を有する触媒を用いる。
(3) Consists of two layers: an oxychlorination catalyst layer and a hydrolysis catalyst layer. A catalyst having an oxychlorination function is used in the front layer, and a catalyst having a hydrolysis function is used in the rear layer.

本発明に用いられるオキシ塩素化機能を有する触媒は、
通常、塩化銅、塩化鉄、塩化クロム等の金属ハロゲン化
物、酸化銅、酸化鉄、酸化クロム等の金属酸化物、銅、
鉄、クロム等の金属の少なくとも1種以上を含有する触
媒である。これらは単独または組合せで使用され、かつ
、シリカ、アルミナ、シリカ−アルミナ、ゼオライト、
ケイソウ土、活性白土、酸化チタン、酸化マグネシウム
などの担体に担持して使用してもよい。更に、化業工業
社発行、京都大学多羅間研究室瘍「反応別触媒分類表2
」第188頁の第4.3.5表に記載のオキシクロル化
触媒の中の金属塩化物−Al2O2、金属ハロゲン化物
、CuCIt  KCI  AhOz 、CuCIz−
KCI も本発明に使用できる触媒に含まれる。
The catalyst having an oxychlorination function used in the present invention is
Usually, metal halides such as copper chloride, iron chloride, chromium chloride, metal oxides such as copper oxide, iron oxide, chromium oxide, copper,
It is a catalyst containing at least one metal such as iron and chromium. These may be used alone or in combination and may include silica, alumina, silica-alumina, zeolite,
It may be used by being supported on a carrier such as diatomaceous earth, activated clay, titanium oxide, or magnesium oxide. Furthermore, published by Kagyo Kogyo Co., Ltd., published by Tarama Laboratory, Kyoto University, “Catalyst Classification Table by Reaction 2”
"Metal chlorides in the oxychlorination catalysts listed in Table 4.3.5 on page 188 - Al2O2, metal halides, CuCIt KCI AhOz, CuCIz-
KCI is also included in the catalysts that can be used in the present invention.

本発明に用いられる加水分解機能を有する触媒は、モノ
クロロベンゼンを加水分解してフェノールを生成する触
媒である。例えば、化学工業社、京都大学多羅間研究室
逼「反応別触媒分類表1」第166〜167頁および「
反応別触媒分頚表2」第198IWニ記iのクロルベン
ゼンの加水分解触媒、特開昭63−48238号に記載
の加水分解触媒、産業図書株式会社発行、田部浩三、竹
下常−著「酸塩基触媒」第160頁表4−1固体酸塩基
の種類に記載の金属酸化物、金属塩等である。これらの
うち、リン酸、リン酸塩、5iOzゲル、CuCIz 
、Cu、Nl(,01(等が優れた触媒作用を有してい
る。
The catalyst having a hydrolysis function used in the present invention is a catalyst that hydrolyzes monochlorobenzene to produce phenol. For example, Kagaku Kogyosha, Kyoto University Tarama Laboratory, “Catalyst Classification Table by Reaction 1,” pp. 166-167 and “
The hydrolysis catalyst for chlorobenzene described in No. 198 IW 2, "Catalyst Partition Table 2 by Reaction", the hydrolysis catalyst described in JP-A No. 63-48238, published by Sangyo Tosho Co., Ltd., written by Kozo Tabe and Tsune Takeshita, "Acid These are metal oxides, metal salts, etc. listed in Table 4-1 Types of Solid Acid Bases on page 160 of ``Base Catalysts''. Among these, phosphoric acid, phosphate, 5iOz gel, CuCIz
, Cu, Nl(,01(, etc.) have excellent catalytic action.

リン酸塩のうち、特に希土類金属のリン酸塩、例えば、
イツトリウム、ランタン、セリウムのリン酸塩が好まし
い。
Among phosphates, especially those of rare earth metals, e.g.
Phosphates of yttrium, lanthanum, and cerium are preferred.

本発明に用いられる触媒に、オキシ塩素化機能と加水分
解機能の両方の機能を持つ化合物として、例えば、リン
酸銅、リン酸クロム、リン酸鉄等がある。
The catalyst used in the present invention includes, for example, copper phosphate, chromium phosphate, iron phosphate, and the like as compounds having both an oxychlorination function and a hydrolysis function.

本発明の方法で使用される塩化水素は、通常、塩酸水溶
液が望ましく、その濃度は特に制限はないが、0.1〜
35−1%の塩酸水溶液が好ましい。また、(1)式で
示されるように、ベンゼンのオキシ塩素化反応によって
、理論量の水は生成するが、本発明による工程にさらに
水を添加することによってより良い効果が得られる。ま
た、塩化水素とは別に反応雰囲気中に直接水を添加して
も良い。
The hydrogen chloride used in the method of the present invention is usually preferably an aqueous hydrochloric acid solution, and its concentration is not particularly limited, but from 0.1 to
A 35-1% aqueous hydrochloric acid solution is preferred. Further, as shown in formula (1), a theoretical amount of water is produced by the oxychlorination reaction of benzene, but a better effect can be obtained by further adding water to the process according to the present invention. Furthermore, water may be added directly to the reaction atmosphere separately from hydrogen chloride.

ベンゼンおよび塩化水素の使用量は、すべてのベンゼン
が対応するフェノールに変化するためには、(1)式に
示すように、ベンゼンに対して等モル以上の塩化水素が
必要であるが、ジクロロベンゼンの副生を抑制するため
に、ベンゼンに対して等モル以下の塩化水素を使用する
のが望ましい。
The amount of benzene and hydrogen chloride to be used is as shown in equation (1), in order for all benzene to change into the corresponding phenol, an equimolar amount or more of hydrogen chloride is required relative to benzene, but dichlorobenzene In order to suppress the by-product of hydrogen chloride, it is desirable to use hydrogen chloride in an amount equal to or less than the mole of benzene.

本発明の方法においては、反応は、通常、酸素または酸
素含有不活性ガス雰囲気中、常圧または加圧下において
実施される。不活性ガスとしては、窒素、ヘリウム、ア
ルゴン、二酸化炭素等があげられる。または、酸素のか
わりに空気を使用することもできる。
In the method of the present invention, the reaction is usually carried out in an oxygen or oxygen-containing inert gas atmosphere under normal pressure or increased pressure. Examples of the inert gas include nitrogen, helium, argon, carbon dioxide, and the like. Alternatively, air can be used instead of oxygen.

本発明の方法において、反応温度は200〜500°C
1好ましくは250〜475°Cの範囲である。200
”f4満ではモノクロロベンゼンが多(生成し、soo
’cを越えるとフェノールの収率が減少し、副生物が多
く生成する。
In the method of the present invention, the reaction temperature is 200-500°C
1 Preferably, the temperature is in the range of 250 to 475°C. 200
``When f4 is full, monochlorobenzene is produced in large quantities, soo
If 'c is exceeded, the yield of phenol decreases and a large amount of by-products are produced.

本発明の方法は気相で実施することができる。The method of the invention can be carried out in the gas phase.

すなわち、固定層、流動層または移動層反応器のいずれ
でも実施できる。また、反応器または反応管中で、前記
触媒の存在下に、ベンゼン、酸素および塩化水素の蒸気
を加熱することにより、本発明の方法は実施される。こ
の際、原料蒸気中に、水または水草気を添加することに
より、より収率良く、より安全にフェノールを得ること
ができる。
That is, it can be carried out in a fixed bed, fluidized bed or moving bed reactor. The process of the invention is also carried out by heating benzene, oxygen and hydrogen chloride vapors in the presence of the catalyst in a reactor or reaction tube. At this time, by adding water or aquatic plants to the raw material vapor, phenol can be obtained in a higher yield and more safely.

本発明の方法において、フェノールは、反応生成物から
適当な方法、たとえば、蒸留のような常法によって容易
に分離精製できる。
In the method of the present invention, phenol can be easily separated and purified from the reaction product by an appropriate method, for example, a conventional method such as distillation.

本発明の方法において、副生ずる塩化水素は、反応器ま
たは反応管中に戻して、ベンゼンのオキシ塩素化に再使
用できる。また、副生ずるモノクロロベンゼンを加水分
解すれば、フェノールとなる。
In the process of the present invention, by-product hydrogen chloride can be returned to the reactor or reaction tube and reused for the oxychlorination of benzene. Furthermore, if monochlorobenzene, which is a by-product, is hydrolyzed, it becomes phenol.

〔実施例] 以下、実施例により本発明の詳細な説明する。〔Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 粒状の銅クロム触媒(日揮化学N  201 、CuO
37%、CrzOs46%、l’1nJ4%)10gに
、リン酸HsPOa 1.0 gおよび水3.Ogを含
浸させ、120°Cにて3時間乾燥した後、得られた銅
クロム−リン酸触媒を内径15鵬のパイレックスガラス
製流通型反応管に充填した。その反応管を、空気中、4
00°Cで2時間、さらに500’Cで2時間焼成した
Example 1 Granular copper chromium catalyst (JGC N 201, CuO
37%, CrzOs46%, l'1nJ4%), 1.0 g of phosphoric acid HsPOa and 3.0 g of water. After impregnating with Og and drying at 120°C for 3 hours, the obtained copper chromium-phosphoric acid catalyst was filled into a Pyrex glass flow-through reaction tube having an inner diameter of 15 mm. The reaction tube was placed in air for 4
It was fired at 00°C for 2 hours and then at 500'C for 2 hours.

この反応管の前部は、原料挿入管およびガス導入管に連
結され、原料気化部を構成し、後部は空冷部を経て受器
と連結されていた。この反応管の内温を350°Cに保
ち、液空間速度1.0d/hrでベンゼンおよび11.
7wt%塩酸水溶液を別々に原料挿入管より反応部に押
入し、これと同時に空気30m1/minを常圧下で通
じた。
The front part of this reaction tube was connected to a raw material insertion pipe and a gas introduction pipe to constitute a raw material vaporization part, and the rear part was connected to a receiver via an air cooling part. The internal temperature of this reaction tube was maintained at 350°C, and benzene and 11.
A 7 wt % aqueous hydrochloric acid solution was separately introduced into the reaction section through the raw material insertion tube, and at the same time, air was passed through at 30 ml/min under normal pressure.

反応管を出て凝縮した反応生成物をガスクロマトグラフ
にて分析すると、ベンゼン転化率13%、フェノール選
択率32%、フェノール収率4゜2%でフェノールが得
られた。他にモノクロロベンゼンが選択率43%で得ら
れた。他に不明の副生物が少量得られた。
When the reaction product condensed after exiting the reaction tube was analyzed by gas chromatography, phenol was obtained with a benzene conversion rate of 13%, a phenol selectivity of 32%, and a phenol yield of 4.2%. In addition, monochlorobenzene was obtained with a selectivity of 43%. A small amount of other unknown by-products were also obtained.

比較例1 実施例1で実施した方法において、触媒として粒状の銅
クロム触媒(日蓮化学N −201) 5 dのみを内
径15調の反応管に充填した後、窒素中で400°Cで
2時間焼成した。以下、実施例1と同様な操作で反応し
た後、分析すると、モノクロロベンゼンが主生成物であ
り、フェノールの生成は観察されなかった。
Comparative Example 1 In the method carried out in Example 1, only 5 d of granular copper chromium catalyst (Nichiren Chemical N-201) was filled as a catalyst into a reaction tube with an inner diameter of 15 mm, and then the reaction tube was heated at 400°C for 2 hours in nitrogen. Fired. After the reaction was carried out in the same manner as in Example 1, analysis revealed that monochlorobenzene was the main product, and no phenol was observed to be produced.

比較例2 100 g (0,23mモル)のLa(NO3)s 
・6HJを400dの水に溶解して溶液(1)を調製す
ると共に、51g (0,52モル)のH3P0.を4
00dの水に溶解して溶液(2)を調製した0次に、溶
液(2)を溶液(1)に攪拌しながら添加した後、さら
にNH3水溶液を添加して、pH6に調節してから3時
間撹拌した。その後、母液から沈澱物をろ過し、5rの
水で洗浄した。この沈澱物を120°Cで12時間乾燥
し、さらに400°Cで3時間、空気中で焼成した後、
LaPO,触媒を得た。
Comparative Example 2 100 g (0.23 mmol) of La(NO3)s
- Prepare solution (1) by dissolving 6HJ in 400 d of water, and at the same time add 51 g (0.52 mol) of H3P0. 4
Solution (2) was prepared by dissolving 00d in water.Next, solution (2) was added to solution (1) with stirring, and then an aqueous NH3 solution was added to adjust the pH to 6. Stir for hours. Thereafter, the precipitate was filtered from the mother liquor and washed with 5R of water. This precipitate was dried at 120°C for 12 hours, and then calcined in air at 400°C for 3 hours.
LaPO, a catalyst was obtained.

実施例1で実施した方法において、触媒としてLaPO
4触媒5Idを内径15mmの反応管に充填した後、4
00°Cで2時間、窒素中で焼成した。
In the method carried out in Example 1, LaPO was used as a catalyst.
After filling a reaction tube with an inner diameter of 15 mm with 4 catalysts 5Id, 4
Calcined at 00°C for 2 hours under nitrogen.

以下、実施例1と同様な良作で反応し、分析すると、微
量のモノクロロベンゼンは生成したが、フェノールはほ
とんど生成しなかった。
Thereafter, a reaction was carried out in the same manner as in Example 1, and when analyzed, a trace amount of monochlorobenzene was produced, but almost no phenol was produced.

実施例2 比較例2で調製したLaPO,触媒5gにCuCIt 
・2 HzOO,34gと水4.0gを含浸させた後、
120°Cで1時間乾燥し、−夜装置した。このLaP
On−CuCI□触媒を内径15aII11の反応管に
充填し、空気中でsoo’cで3時間焼成した。
Example 2 CuCIt was added to 5 g of LaPO and catalyst prepared in Comparative Example 2.
・After impregnating 2 HzOO, 34g and 4.0g of water,
It was dried at 120°C for 1 hour and then stored overnight. This LaP
The On-CuCI□ catalyst was filled into a reaction tube with an inner diameter of 15aII11, and calcined in air at soo'c for 3 hours.

以下、実施例1と同様な操作で反応し、分析した結果を
次に示す。
The reaction was carried out in the same manner as in Example 1, and the results of analysis are shown below.

第1表 実施例3 実施例2においてLaPOa触媒の代わりYPO,触媒
を用いてYPO4CLICI!触媒を調製し、反応温度
400°Cとして、それ以外は実施例2と同様に実施し
た結果、ベンゼン転化率15%、フェノール選択率48
%、モノクロロベンゼン選択率36%を得た。
Table 1 Example 3 In Example 2, using YPO as a catalyst instead of LaPOa catalyst, YPO4CLICI! A catalyst was prepared and the reaction temperature was set to 400°C, but otherwise the procedure was carried out in the same manner as in Example 2. As a result, the benzene conversion rate was 15% and the phenol selectivity was 48%.
%, and a monochlorobenzene selectivity of 36% was obtained.

実施例4 実施例2においてLaPOa触媒の代わりにCePO−
触媒を用いてCePOa −CuC1,触媒を調製し、
反応温度を400’Cとして、それ以外は実施例2と同
様に実施した結果、ベンゼン転化率12%、フェノール
選択率35%、モノクロロベンゼン選択率51%を得た
Example 4 In Example 2, CePO-
Prepare the CePOa-CuCl, catalyst using a catalyst,
The reaction temperature was set to 400'C, and the same procedure as in Example 2 was carried out except that, as a result, a benzene conversion rate of 12%, a phenol selectivity of 35%, and a monochlorobenzene selectivity of 51% were obtained.

実施例5 実施例1において、銅クロム触媒の代わりに、クロミア
−アルミナ触媒(8蓮化学N−401、Crt0312
%、MgO3%、AhOs75%)を用いて、クロミア
−アルミナ−リン酸触媒を調製して、それ以外は実施例
1と同様に実施した結果、ベンゼン転化率12%、フェ
ノール選択率32%、モノクロロベンゼン選択率45%
を得た。
Example 5 In Example 1, a chromia-alumina catalyst (8 Ren Kagaku N-401, Crt0312
%, MgO 3%, AhOs 75%) to prepare a chromia-alumina-phosphoric acid catalyst. Chlorobenzene selectivity 45%
I got it.

実施例6 実施例1で実施した方法において、銅クロムリン酸触媒
の代わりに粒状に成形した CLIz(PO4)z  ’3HzOの5蔵を反応管に
充填し、反応温度を450°Cとし、それ以外は実施例
1と同様に実施した結果、ベンゼン転化率15%、フェ
ノール選択率38%、モノクロロベンゼン選択率32%
を得た。
Example 6 In the method carried out in Example 1, instead of the copper chromium phosphate catalyst, the reaction tube was filled with granulated CLIz(PO4)z'3HzO, and the reaction temperature was 450°C, and the other conditions were As a result of carrying out the same procedure as in Example 1, the benzene conversion rate was 15%, the phenol selectivity was 38%, and the monochlorobenzene selectivity was 32%.
I got it.

実施例7 実施例1で実施した方法において、銅クロムリン酸触媒
の代わりに粒状に成形した CrPOa  ・6H20の5dを反応管に充填し、反
応温度を450’Cとし、それ以外は実施例1と同様に
実施した結果、ベンゼン転化率II%、フェノール選択
率26%、モノクロロベンゼン選択率38%を得た。
Example 7 In the method carried out in Example 1, 5d of granular CrPOa 6H20 was filled in the reaction tube instead of the copper chromium phosphate catalyst, and the reaction temperature was set to 450'C, except for the same procedure as in Example 1. As a result of carrying out the same procedure, a benzene conversion rate of II%, a phenol selectivity of 26%, and a monochlorobenzene selectivity of 38% were obtained.

実施例8 実施例1で実施した方法において、洞クロムーリン酸触
媒の代わりに、CrPO=  ・6)1xO12,76
g(0,05モル)とCu1(PO4)z  ・31(
zo 21.73g(0,05モル)を混合し、水を加
えて錬った後、120°Cで2時間および400’Cで
5時間焼成した後、その5dを反応管に充填し、反応温
度を450°Cとし、それ以外は実施例1と同様に実施
した結果、ベンゼン転化率14%、フェノール選択率4
1%、モノクロロベンゼン選択率37%を得た。
Example 8 In the method carried out in Example 1, instead of the chromium-phosphate catalyst, CrPO= .6) 1xO12,76
g (0.05 mol) and Cu1(PO4)z ・31(
After mixing 21.73 g (0.05 mol) of zo, adding water and kneading, calcining at 120°C for 2 hours and 400'C for 5 hours, the 5d was filled into a reaction tube and reacted. The temperature was set to 450°C, and the other conditions were the same as in Example 1. As a result, the benzene conversion rate was 14%, and the phenol selectivity was 4.
1% and a monochlorobenzene selectivity of 37%.

実施例9 実施例1で実施した方法において、洞クロムリン酸触媒
の代わりに、銅クロム触媒5gと比較例2のLaPO4
触媒5gを混合して反応管に充填し、それ以外は実施例
1と同様に実施した結果、ベンゼン転化率16%、フェ
ノール選択率31%、モノクロロベンゼン選1尺率40
%を得た。
Example 9 In the method carried out in Example 1, 5 g of copper chromium catalyst and LaPO4 of Comparative Example 2 were used instead of the chromium phosphate catalyst.
5 g of catalyst was mixed and charged into the reaction tube, and the rest was carried out in the same manner as in Example 1. As a result, the benzene conversion rate was 16%, the phenol selectivity was 31%, and the monochlorobenzene selection rate was 40%.
I got %.

実施例10 実施例1で実施した方法において、洞クロムリン酸触媒
の代わりに、洞クロム触媒5gを前店とし、比較例2の
LaPOm触媒5gを後層として反応管に2層にして充
填し、それ以外は実施例1と同様に実施した結果、ベン
ゼン転化率18%、フェノール選択率28%、モノクロ
ロベンゼン選択率42%を得た。
Example 10 In the method carried out in Example 1, instead of the inner chromium phosphate catalyst, 5 g of the inner chromium catalyst was used as the front layer and 5 g of the LaPOm catalyst of Comparative Example 2 was used as the back layer, and the reaction tube was filled in two layers. Other than that, the same procedure as in Example 1 was carried out, and as a result, a benzene conversion rate of 18%, a phenol selectivity of 28%, and a monochlorobenzene selectivity of 42% were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法では、触媒の存在下に、ベンゼンと塩化水
素と酸素とを気相接触反応させて、1工程でフェノール
を製造することができる。
In the method of the present invention, phenol can be produced in one step by subjecting benzene, hydrogen chloride, and oxygen to a gas phase contact reaction in the presence of a catalyst.

本発明の方法によれば、次のような利点がある。According to the method of the present invention, there are the following advantages.

(1)原料がベンゼンのように安価なものである。(1) The raw material is cheap like benzene.

(2)■工程でベンゼンからフェノールが製造される。(2) Phenol is produced from benzene in step (■).

(3)  フェノールの収率が良い。(3) Good yield of phenol.

(4)副生物が少なく、選択率が良く、したがって高純
度のフェノールを得ることができる。
(4) There are few by-products, the selectivity is good, and therefore highly pure phenol can be obtained.

(5)副生ずる塩化水素は再び使用することができる。(5) Hydrogen chloride produced as a by-product can be used again.

(6)  (3)式に示すように、全体としてはベンゼ
ンと酸素の酸化反応であるが、完全酸化を抑制すること
ができる。
(6) As shown in equation (3), the overall reaction is an oxidation reaction between benzene and oxygen, but complete oxidation can be suppressed.

(7)副生ずるモノクロロベンゼンを加水分解してフェ
ノールとすることができる。
(7) Monochlorobenzene produced as a by-product can be hydrolyzed into phenol.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)触媒の存在下に、ベンゼンと塩化水素と酸素とを1
工程で気相接触反応させることを特徴とするフェノール
の製法。 2)水の共存下に気相接触反応を行う請求項1に記載の
製法。 3)触媒がオキシ塩素化機能および加水分解機能を有す
る触媒である請求項1に記載の製法。 4)触媒がオキシ塩素化機能および加水分解機能を有す
る触媒である請求項2に記載の製法。 5)塩化水素が塩酸水溶液である請求項1ないし4に記
載の製法。
[Claims] 1) In the presence of a catalyst, benzene, hydrogen chloride, and oxygen are
A method for producing phenol characterized by a gas phase catalytic reaction in the process. 2) The method according to claim 1, wherein the gas phase catalytic reaction is carried out in the presence of water. 3) The method according to claim 1, wherein the catalyst has an oxychlorination function and a hydrolysis function. 4) The method according to claim 2, wherein the catalyst has an oxychlorination function and a hydrolysis function. 5) The method according to any one of claims 1 to 4, wherein the hydrogen chloride is an aqueous hydrochloric acid solution.
JP63223610A 1988-09-08 1988-09-08 Production of phenol Pending JPH0272132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223610A JPH0272132A (en) 1988-09-08 1988-09-08 Production of phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223610A JPH0272132A (en) 1988-09-08 1988-09-08 Production of phenol

Publications (1)

Publication Number Publication Date
JPH0272132A true JPH0272132A (en) 1990-03-12

Family

ID=16800893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223610A Pending JPH0272132A (en) 1988-09-08 1988-09-08 Production of phenol

Country Status (1)

Country Link
JP (1) JPH0272132A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948683A (en) * 1997-10-18 1999-09-07 Engelhard Corporation Catalyst for selective oxidation of unsaturated hydrocarbons and methods of making and using the same
WO2006038705A1 (en) * 2004-10-05 2006-04-13 Sumitomo Chemical Company, Limited Method for producing hydroxy compound
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2006306833A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2007063209A (en) * 2005-09-01 2007-03-15 Sumitomo Chemical Co Ltd Method for producing cyclohexanone
CN106492860A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of iron phosphate/manganese phosphate/yttrium phosphate composite catalyst
CN106492857A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of cobalt oxide compound phosphoric acid yttrium catalyst
CN106492853A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of titanium dioxide compound phosphoric acid yttrium catalyst
CN106492852A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of zinc oxide compound phosphoric acid yttrium catalyst
CN106540721A (en) * 2016-10-19 2017-03-29 常州大学 A kind of preparation method of copper oxide compound phosphoric acid yttrium catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948683A (en) * 1997-10-18 1999-09-07 Engelhard Corporation Catalyst for selective oxidation of unsaturated hydrocarbons and methods of making and using the same
WO2006038705A1 (en) * 2004-10-05 2006-04-13 Sumitomo Chemical Company, Limited Method for producing hydroxy compound
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
US7807855B2 (en) 2004-10-05 2010-10-05 Sumitomo Chemical Company, Limited Process for producing hydroxy compound
JP2006306833A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2007063209A (en) * 2005-09-01 2007-03-15 Sumitomo Chemical Co Ltd Method for producing cyclohexanone
CN106492860A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of iron phosphate/manganese phosphate/yttrium phosphate composite catalyst
CN106492857A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of cobalt oxide compound phosphoric acid yttrium catalyst
CN106492853A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of titanium dioxide compound phosphoric acid yttrium catalyst
CN106492852A (en) * 2016-10-19 2017-03-15 常州大学 A kind of preparation method of zinc oxide compound phosphoric acid yttrium catalyst
CN106540721A (en) * 2016-10-19 2017-03-29 常州大学 A kind of preparation method of copper oxide compound phosphoric acid yttrium catalyst

Similar Documents

Publication Publication Date Title
KR100237976B1 (en) Vanadium-phosphorous based oxide, its production, catalyst for vaporation comprising the sameand partial vapor-phase oxidation for hydrocarbon
JPH0272132A (en) Production of phenol
JPS61236753A (en) Production of diethylenetriamine
US4171316A (en) Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
US5239115A (en) Method for producing methacrylic acid
US3253014A (en) Process for preparing acrylonitrile by catalytic synthesis from olefins, ammonia and oxygen
US5571770A (en) Catalyst for fluorination of 1,1,1,-trifluoro-2,2-dichloroethane and method for preparing the same
JPH0242033A (en) Production of methacrylic acid and/or methacrolein
JP7252771B2 (en) Method for producing 1-chloro-2,2-difluoroethylene
JPH02115138A (en) Production of phenol and aniline
RU2109720C1 (en) Method of synthesis of 1,1,1-trifluoro-2-chloroethane
US3475505A (en) Process for the preparation of 1,2-dichlorethane
JPH0710782A (en) Production of isobutylene and methacrolein
US3065057A (en) Method of preparing cyanogen
JPH0134208B2 (en)
JP3500676B2 (en) Method for producing phosphorus-vanadium oxide catalyst precursor
JPS585188B2 (en) Method for producing acrylonitrile
JPS58140036A (en) Preparation of carbonyl compound
JP2638679B2 (en) Method for producing methacrylic acid
JP2000053611A (en) Reduction of propionic acid in acrylic acid mixture gas
JPH03236338A (en) Production of phenol
JPS60161974A (en) Preparation of tetrachlorophthalic anhydride
JPS61291539A (en) Production of acrylic acid
JPS625420B2 (en)