JPH03236338A - Production of phenol - Google Patents

Production of phenol

Info

Publication number
JPH03236338A
JPH03236338A JP2031373A JP3137390A JPH03236338A JP H03236338 A JPH03236338 A JP H03236338A JP 2031373 A JP2031373 A JP 2031373A JP 3137390 A JP3137390 A JP 3137390A JP H03236338 A JPH03236338 A JP H03236338A
Authority
JP
Japan
Prior art keywords
catalyst
phenol
yield
benzene
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031373A
Other languages
Japanese (ja)
Inventor
Fujio Matsuda
松田 藤夫
Kozo Kato
高蔵 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2031373A priority Critical patent/JPH03236338A/en
Publication of JPH03236338A publication Critical patent/JPH03236338A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the title compound in high yield by vapor phase catalytic reaction between benzene and water using a catalyst containing barium peroxide and/or barium oxide, copper phosphate and calcium phosphate. CONSTITUTION:The objective phenol can be obtained by vapor phase catalytic reaction at 300-550 deg.C between benzene and water using a catalyst made up of 10-70mol% of copper sulfate, 20-50mol% of barium peroxide, 20-50mol% of barium oxide and 20-50mol% of calcium phosphate. The catalyst may be carried on silica, alumina etc., or, for granulation, mixed with silicon oxide as binder. Alternatively, production of the catalyst of porous type by incorporating the original catalyst with e.g. cellulose and by burning off said cellulose in pretreatment will positively contribute to the higher yield of the phenol.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェノールの製法に関する。さらに詳しくは本
発明はベンゼンと水とを気相接触反応させて、1工程で
フェノールを製造する方法に用いる触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a process for producing phenol. More specifically, the present invention relates to a catalyst used in a method for producing phenol in one step by subjecting benzene and water to a gas phase catalytic reaction.

〔従来の技術〕[Conventional technology]

従来、ベンゼンからフェノールを1工程で製造する方法
としては、触媒の存在下にベンゼンと酸素とを反応させ
る直接酸化法が知られている。しかし、この場合、ベン
ゼンの完全酸化が起こり、フェノールの選択率が大変低
い(特開昭56−87527号)。
Conventionally, as a method for producing phenol from benzene in one step, a direct oxidation method in which benzene and oxygen are reacted in the presence of a catalyst is known. However, in this case, complete oxidation of benzene occurs and the selectivity for phenol is very low (Japanese Patent Application Laid-open No. 87527/1983).

また、ベンゼンと亜酸化窒素とを触媒の存在下に反応さ
せて、フェノールを製造する方法も知られている。しか
し、この場合、原料の亜酸化窒素は高価である上に、フ
ェノールの収率は低い(特開昭58−146522 )
Furthermore, a method for producing phenol by reacting benzene and nitrous oxide in the presence of a catalyst is also known. However, in this case, the raw material nitrous oxide is expensive and the yield of phenol is low (Japanese Patent Application Laid-Open No. 146522/1983).
.

本発明者らはベンゼンと水とを気相接触反応させて、1
工程でフェノールを製造する新規なフェノール製法を検
討してきた。また、その際に使用する触媒として、リン
酸および/またはリン酸塩を含有する触媒を開示した。
The present inventors carried out a gas phase contact reaction between benzene and water, and
We have been investigating a new phenol production method that produces phenol in a process. Moreover, as a catalyst used at that time, a catalyst containing phosphoric acid and/or a phosphate salt was disclosed.

しかしながら、この方法ではまだフェノールの収率が十
分ではなく、フェノールの収率を向上させるために触媒
の改良が望まれていた。
However, this method still does not provide a sufficient yield of phenol, and it has been desired to improve the catalyst in order to improve the yield of phenol.

〔発明が解決しようとする課題] 本発明の課題は、高収率でヘンゼンからフエノルを1工
程で製造する工業的方法を提供することである。すなわ
ち、本発明の課題は、ベンゼンと水との気相接触反応に
おいて、高収率でフェノルを製造する触媒を提供するこ
とである。
[Problem to be Solved by the Invention] An object of the present invention is to provide an industrial method for producing phenol from Hensen in one step with high yield. That is, an object of the present invention is to provide a catalyst that produces phenol in high yield in a gas phase catalytic reaction between benzene and water.

(課題を解決するための手段〕 本発明者らは、上記課題に関して種々検討した結果、ヘ
ンゼンと水との気相接触反応において、触媒がリン政調
である場合にはリン政調触媒の活性は十分ではなく、−
回通過によるフェノールの収率は6%に過ぎない。本発
明者らはリン政調を第一成分とし、これに第二成分を添
加することによりフェノール収率を向上させる触媒を見
出す目的のもとに添加物質について研究した結果、過酸
化バリウムおよび酸化バリウムが添加物質として極めて
有効であることを見出した。
(Means for Solving the Problems) As a result of various studies regarding the above problems, the present inventors found that in the gas phase contact reaction between Hensen and water, when the catalyst is a phosphorus catalyst, the activity of the phosphorus catalyst is sufficient. rather than −
The yield of phenol from the double pass is only 6%. The present inventors conducted research on additive substances with the aim of finding a catalyst that improves the phenol yield by using phosphorus as the first component and adding a second component to it. As a result, barium peroxide and barium oxide was found to be extremely effective as an additive substance.

すなわち、l化バリウムおよび/または酸化バIJウム
をリン政調に添加することによって得た触媒Mi威酸物
用いてヘンゼンと水を気相接触反応した場合には、8%
のフェノールの一回通過収率が得られることを見出した
That is, when Hensen and water are subjected to a gas phase contact reaction using a catalyst Mi oxide obtained by adding barium chloride and/or barium oxide to phosphorus, 8%
It was found that a single pass yield of phenol of

すなわち、本発明の要旨とするところは、上記した新規
な触媒Mi戒物の存在下に、ヘンゼンと水を気相接触反
応させることにある。
That is, the gist of the present invention is to cause a gas phase contact reaction between Hensen and water in the presence of the above-mentioned novel catalyst Mi compound.

さらに詳しくは、本発明に用いられる触媒は、過酸化バ
リウムおよび酸化バリウムからなる群から選ばれた一種
または二種の物質とリン政調を含有する触媒である。
More specifically, the catalyst used in the present invention is a catalyst containing one or two substances selected from the group consisting of barium peroxide and barium oxide and phosphate.

さらに上記した本発明による触媒にリン酸カルシウムを
添加することがフェノールの収率向上に良い効果がある
ことを見出した。すなわち、本発明に用いられる触媒は
、過酸化バリウムおよび酸化バリウムからなる群から選
ばれた一種または二種の物質とリン政調およびリン酸カ
ルシウムを含有する触媒をも含む。
Furthermore, it has been found that adding calcium phosphate to the above-mentioned catalyst according to the present invention has a positive effect on improving the yield of phenol. That is, the catalyst used in the present invention also includes a catalyst containing one or two substances selected from the group consisting of barium peroxide and barium oxide, phosphate, and calcium phosphate.

よた、本発明者らは本発明による触媒として、リン政調
、リン酸カルシウム、過酸化バリウムおよび酸化バリウ
ムを含有する触媒がフェノールの収率に最も良い効果が
あることを見出した。
Furthermore, the present inventors have found that the catalyst according to the present invention containing phosphate, calcium phosphate, barium peroxide and barium oxide has the best effect on the yield of phenol.

本発明による触媒中におけるリン政調の含量は特に制限
するものではないが、モル%で表わすと1〜80%、好
ましくは10〜70%である。また、過酸化バリウムの
含量は特に制限するものではないが、モル%で表られす
と10〜60%、好ましくは20〜50%である。また
、酸化バリウムの含量は特に制限するものではないが、
10〜60%、好ましくは20〜50%の範囲である。
The content of phosphorus in the catalyst of the present invention is not particularly limited, but expressed in mol% is 1 to 80%, preferably 10 to 70%. Further, the content of barium peroxide is not particularly limited, but expressed in mol% is 10 to 60%, preferably 20 to 50%. In addition, the content of barium oxide is not particularly limited, but
It ranges from 10 to 60%, preferably from 20 to 50%.

また、リン酸カルシウムの含量は特に制限するものでは
ないが、10〜60%、好ましくは20〜50%の範囲
である。
Further, the content of calcium phosphate is not particularly limited, but is in the range of 10 to 60%, preferably 20 to 50%.

また、本発明による触媒をシリカ、アルミナ、シリカ−
アルミナ、ゼオライト、ケイソウ土、活性白土、酸化チ
タン、酸化マグネシウム、活性炭などの担体に担持して
使用してもよい。
Moreover, the catalyst according to the present invention can be used as a catalyst of silica, alumina, silica
It may be used by being supported on a carrier such as alumina, zeolite, diatomaceous earth, activated clay, titanium oxide, magnesium oxide, or activated carbon.

また、触媒物質を造粒するためにバインダーとしてケイ
ソウ土、コロイダルシリカ等の酸化珪素を触媒物質の中
に混合して使用してもよい。
Further, in order to granulate the catalyst material, silicon oxide such as diatomaceous earth or colloidal silica may be mixed into the catalyst material and used as a binder.

また、セルローズ、澱粉、その他の有機化合物や炭等の
粉末、粒、繊維等を触媒の中に混合し、触媒の前処理の
時に焼却し、空洞を残し、多孔質の触媒を製造すれば、
触媒の性能、特にフェノール収率向上に良い効果がある
In addition, if powders, grains, fibers, etc. of cellulose, starch, other organic compounds, charcoal, etc. are mixed into the catalyst and incinerated during pretreatment of the catalyst, leaving cavities and producing a porous catalyst.
It has a positive effect on catalyst performance, especially on improving phenol yield.

ヘンゼンおよび水の使用量は特に限定されるものではな
いが、すべてのヘンゼンが対応するフェノールに変化す
るためには、ベンゼンに対して等モル以上の水が必要で
ある。
Although the amounts of henzene and water to be used are not particularly limited, in order for all of the henzene to be converted into the corresponding phenol, an equimolar or more amount of water is required relative to benzene.

本発明の方法においては、反応は、通常、不活性ガス雰
囲気中、常圧または加圧下において実施される。不活性
ガスとしては窒素、ヘリウム、アルゴン、二酸化炭素等
があげられる。
In the method of the present invention, the reaction is usually carried out in an inert gas atmosphere under normal pressure or increased pressure. Examples of the inert gas include nitrogen, helium, argon, and carbon dioxide.

本発明の方法において、反応温度は200〜600°C
1好ましくは300〜550’Cの範囲である。200
°C未満では本発明による反応が起こらず、600°C
を越えると副生物が多く生成する。
In the method of the present invention, the reaction temperature is 200-600°C
1 preferably in the range of 300 to 550'C. 200
The reaction according to the present invention does not occur below 600°C.
Exceeding this will produce many by-products.

本発明の方法は気相で実施することができる。The method of the invention can be carried out in the gas phase.

すなわち、固定層、流動層または移動層反応器のいずれ
でも実施できる。また、反応器または反応管中で、前記
触媒の存在下に、ベンゼンおよび水を加熱することによ
り、本発明の方法は実施される。
That is, it can be carried out in a fixed bed, fluidized bed or moving bed reactor. The process of the invention is also carried out by heating benzene and water in the presence of the catalyst in a reactor or reaction tube.

本発明の方法において、フェノールは反応生成物から適
当な方法、たとえば、蒸留のような常法によって容易に
分離精製できる。
In the method of the present invention, phenol can be easily separated and purified from the reaction product by an appropriate method, for example, a conventional method such as distillation.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 試薬Cu:+(PO4)z ’ 3HzO13,6g 
(0,031モル)、Ca:+(PO4)z  7.8
g(0,025モル) 、Ba0z 8.6g(0,0
5モル)およびBaO7,8g (0,05モル)を粉
砕機でよく混合した。これを20m/mφX 10m/
mの錠剤にした後、乳鉢で10〜32メツシユに破砕し
た。
Example 1 Reagent Cu: +(PO4)z' 3HzO13.6g
(0,031 mol), Ca:+(PO4)z 7.8
g (0,025 mol), Ba0z 8.6 g (0,0
5 mol) and 7.8 g (0.05 mol) of BaO were thoroughly mixed in a grinder. This is 20m/mφX 10m/
The tablets were made into 10 to 32 mesh tablets in a mortar.

この触媒5 mlを内径15nunのパイレックスガラ
ス製流通型反応管に充填した。その反応管を窒素中40
0’Cで1時間焼成した。
5 ml of this catalyst was filled into a Pyrex glass flow-through reaction tube having an inner diameter of 15 nm. The reaction tube was placed in nitrogen for 40 minutes.
It was baked at 0'C for 1 hour.

この反応管の前部は、1京料挿入管およびガス導入管に
連結され、原料気化部を構威し、後部は空冷部を経て受
器と連結されていた。この反応管の内温を500°Cに
保ち、液空間速度1.0m/hrでヘンゼン、1.2m
N/hrで水を別々に原料挿入管より反応部に挿入し1
.これと同時に窒素35+1/minを常圧下で通した
The front part of this reaction tube was connected to the 1,000 yen feed insertion pipe and the gas introduction pipe, forming a raw material vaporization section, and the rear part was connected to the receiver via an air cooling section. The internal temperature of this reaction tube was maintained at 500°C, and the liquid space velocity was 1.0 m/hr.
Water was separately introduced into the reaction section from the raw material insertion tube at a rate of N/hr.
.. At the same time, nitrogen was passed through at 35+1/min under normal pressure.

反応管を出て凝縮した反応生成物をガスクロマトグラフ
にて分析すると、ベンゼン転化率8.2%、フェノール
選択率98.1%、フェノール収率8.0%でフェノー
ルが得られた。副生物はほとんど得られなかった。また
、ガス分析の結果、二酸化炭素および一酸化炭素の生成
はほとんど観察されなかった。
When the reaction product condensed after exiting the reaction tube was analyzed by gas chromatography, phenol was obtained with a benzene conversion rate of 8.2%, a phenol selectivity of 98.1%, and a phenol yield of 8.0%. Almost no by-products were obtained. Furthermore, as a result of gas analysis, almost no production of carbon dioxide or carbon monoxide was observed.

実施例2 実施例1の触媒の代わりに試薬 CLI3(PO4)Z ・3H2013,6g (0,
031モル)、Ca5(PO4)z  7.8g (0
,025モル)およびBa0z 8.6g(0,05モ
ル)の混合物を触媒とし、以下、実施例1と同様に実施
した結果、ベンゼン転化率8.1%、フェノール選択率
92.6%、フェノール収率7.5%でフェノールを得
た。また、二酸化炭素および一酸化炭素の生成が少量観
察された。
Example 2 Reagent CLI3(PO4)Z ・3H2013,6g (0,
031 mol), Ca5(PO4)z 7.8g (0
, 025 mol) and 8.6 g (0.05 mol) of Ba0z as a catalyst, the following procedure was carried out in the same manner as in Example 1. As a result, the benzene conversion rate was 8.1%, the phenol selectivity was 92.6%, and the phenol selectivity was 92.6%. Phenol was obtained with a yield of 7.5%. Also, small amounts of carbon dioxide and carbon monoxide production were observed.

実施例3 実施例1の触媒の代わりに試薬 Cuz(Po4)z ・3H2013,6g (0,0
31モル)、Caz(PO4)z  7.8g (0,
025モル)およびBaO7,8g(0,05モル)の
混合物を触媒とし、以下、実施例1と同様に実施した結
果、ベンゼン転化率7.4%、フェノール選択率97.
8%、フェノール収率7,2%でフェノールを得た。ま
た、二酸化炭素および一酸化炭素の生成が微量観察され
た。
Example 3 Reagent Cuz(Po4)z ・3H2013,6g (0,0
31 mol), Caz(PO4)z 7.8g (0,
Using a mixture of 0.25 mol) and 7.8 g (0.05 mol) of BaO as a catalyst, the same procedure as in Example 1 was carried out, resulting in a benzene conversion of 7.4% and a phenol selectivity of 97.
Phenol was obtained with a phenol yield of 8% and a phenol yield of 7.2%. In addition, trace amounts of carbon dioxide and carbon monoxide were observed.

実施例4 実施例1の触媒の代わりに試薬 Cuz(PO4)z + 3H2013,6g (0,
031モル)、Ba0z 8.6 g (0,05モル
)およびBaO7,8g (0,05モル)の混合物を
触媒とし、以下、実施例1と同様に実施した結果、ベン
ゼン転化率8.0%、フェノール選択率91.3%、フ
ェノール収率7.3%でフェノールを得た。また、二酸
化炭素および一酸化炭素の生成が少量観察された。
Example 4 Reagent Cuz(PO4)z + 3H2013,6g (0,
031 mol), Ba0z 8.6 g (0.05 mol) and BaO 7.8 g (0.05 mol) as a catalyst, the same procedure as in Example 1 was carried out, and as a result, the benzene conversion rate was 8.0%. , phenol was obtained with a phenol selectivity of 91.3% and a phenol yield of 7.3%. Also, small amounts of carbon dioxide and carbon monoxide production were observed.

実施例5 実施例1の触媒の代わりに試薬 Cu、(PO4)z ・3Hz0 13.6g (0,
031モル)およびBa0z 8.6g (0,05モ
ル)の混合物を触媒とし、以下、実施例1と同様に実施
した結果、ベンゼン転化率7.8%、フェノール選択率
92.3%、フェノール収率7.2%でフェノールを得
た。また、二酸化炭素および一酸化炭素の生成が少量観
察された。
Example 5 Reagent Cu, (PO4)z ・3Hz0 13.6g (0,
Using a mixture of 0.31 mol) and 8.6 g (0.05 mol) of BaOz as a catalyst, the following procedure was carried out in the same manner as in Example 1. As a result, the benzene conversion rate was 7.8%, the phenol selectivity was 92.3%, and the phenol yield was 7.8%. Phenol was obtained with a yield of 7.2%. Also, small amounts of carbon dioxide and carbon monoxide production were observed.

実施例6 実施例1の触媒の代わりに試薬 Cu1(POa)z H3HJ  13.6g (0,
031モル)およびBaO7,8g’(0,05モル)
の混合物を触媒とし、以下、実施例1と同様に実施した
結果、ベンゼン転化率7.5%、フェノール選択率93
.3%、フェノール収率7.0%でフェノールを得た。
Example 6 Reagent Cu1(POa)z H3HJ 13.6g (0,
031 mol) and BaO7.8 g' (0.05 mol)
Using a mixture of as a catalyst, the following procedure was carried out in the same manner as in Example 1. As a result, the benzene conversion rate was 7.5% and the phenol selectivity was 93.
.. Phenol was obtained with a phenol yield of 7.0%.

また、二酸化炭素および一酸化炭素の生成が少量観察さ
れた。
Also, small amounts of carbon dioxide and carbon monoxide production were observed.

比較例1 実施例1の触媒の代わりに試薬 Cu:+(POJz ・3HzOを触媒として、以下、
実施例1と同様に実施した結果、ベンゼン転化率6.2
%、フェノールM 択率91,9%、フェノール収率5
.7%でフェノールを得た。また、二酸化炭素および一
酸化炭素の生成が少量観察された。
Comparative Example 1 Using the reagent Cu:+(POJz ・3HzO as a catalyst instead of the catalyst in Example 1, the following
As a result of carrying out the same procedure as in Example 1, the benzene conversion rate was 6.2.
%, phenol M selectivity 91.9%, phenol yield 5
.. Phenol was obtained at 7%. Also, small amounts of carbon dioxide and carbon monoxide production were observed.

比較例2 実施例1の触媒の代かりに試薬 CLI3(PO4)2 ・3HJ  13.6g (0
,031モル)およびcas(PO,)、 7.8g 
(0,025モル) c7)混合物を触媒とし、以下、
実施例1と同様に実施した結果、ベンゼン転化$6.5
%、フェノール選択率93.8%、フェノール収率6.
1%でフェノールを得た。また、二酸化炭素および一酸
化炭素の生成が少量観察された。
Comparative Example 2 Reagent CLI3(PO4)2 ・3HJ 13.6g (0
,031 mol) and cas(PO,), 7.8 g
(0,025 mol) c7) Using the mixture as a catalyst, the following:
As a result of carrying out the same procedure as in Example 1, the benzene conversion was $6.5.
%, phenol selectivity 93.8%, phenol yield 6.
Phenol was obtained at 1%. Also, small amounts of carbon dioxide and carbon monoxide production were observed.

(発明の効果〕 本発明によれば、ヘンゼンからフェノールを1工程で従
来になく高収率で製造することができる。
(Effects of the Invention) According to the present invention, phenol can be produced from Hensen in one step at a higher yield than ever before.

Claims (1)

【特許請求の範囲】 1)ベンゼンと水とを気相接触反応させ、フェノールを
製造するに際し、過酸化バリウムおよび酸化バリウムか
らなる群から選ばれた一種または二種の物質とリン酸銅
を含有する触媒を用いることを特徴とするフェノールの
製法。 2)過酸化バリウムおよび酸化バリウムからなる群から
選ばれた一種または二種の物質とリン酸銅およびリン酸
カルシウムを含有する触媒を用いて行う請求項1に記載
の製法。
[Claims] 1) When producing phenol by subjecting benzene and water to a gas phase contact reaction, the product contains one or two substances selected from the group consisting of barium peroxide and barium oxide and copper phosphate. A method for producing phenol characterized by using a catalyst. 2) The method according to claim 1, which is carried out using a catalyst containing one or two substances selected from the group consisting of barium peroxide and barium oxide, and copper phosphate and calcium phosphate.
JP2031373A 1990-02-14 1990-02-14 Production of phenol Pending JPH03236338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031373A JPH03236338A (en) 1990-02-14 1990-02-14 Production of phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031373A JPH03236338A (en) 1990-02-14 1990-02-14 Production of phenol

Publications (1)

Publication Number Publication Date
JPH03236338A true JPH03236338A (en) 1991-10-22

Family

ID=12329453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031373A Pending JPH03236338A (en) 1990-02-14 1990-02-14 Production of phenol

Country Status (1)

Country Link
JP (1) JPH03236338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952532A (en) * 1997-07-31 1999-09-14 Sunoco, Inc. Hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5962752A (en) * 1997-07-31 1999-10-05 Sun Company, Inc. Leached alumina vanadyl catalysts for hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5981424A (en) * 1997-07-31 1999-11-09 Sunoco, Inc. (R&M) Catalysts for hydroxylation and ammination of aromatics using molecular oxygen as the terminal oxidant without coreductant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952532A (en) * 1997-07-31 1999-09-14 Sunoco, Inc. Hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5962752A (en) * 1997-07-31 1999-10-05 Sun Company, Inc. Leached alumina vanadyl catalysts for hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5981424A (en) * 1997-07-31 1999-11-09 Sunoco, Inc. (R&M) Catalysts for hydroxylation and ammination of aromatics using molecular oxygen as the terminal oxidant without coreductant

Similar Documents

Publication Publication Date Title
US4271008A (en) Production of ethylene
US5493061A (en) Process for the conversion of phenol to hydroquinone and catechol
JPH03236338A (en) Production of phenol
KR950006529B1 (en) Process for producing methacrylic acid
JPH0272132A (en) Production of phenol
JP2519976B2 (en) Method for producing oxygen-containing compound
JPH02115138A (en) Production of phenol and aniline
JPH053455B2 (en)
JPH03173840A (en) Production of chlorotrifluoroethylene
JP3856872B2 (en) Method for producing high purity carbon monoxide
JPS6251269B2 (en)
US4185022A (en) Furfuryl alcohol production process
JPS63295528A (en) Production of glyoxylic acids
US2456378A (en) Process of synthesizing carbazole
JPS5899473A (en) Preparation of alpha-acetyl lactones
US4304723A (en) Process for manufacturing maleic anhydride
JPH03115249A (en) Continuous production of organic acid ester
US5187307A (en) Selectivity in the oxidative dehydrogenation of alkyl glycolate
JPS58146562A (en) Preparation of indoline
RU1839169C (en) Method of phenol synthesis
JPS6147822B2 (en)
JP2000053611A (en) Reduction of propionic acid in acrylic acid mixture gas
US4415475A (en) Mixed metal oxide catalyst containing titanium, boron and molybdenum values
JPH07145133A (en) Production of phenoxy-substituted benzonitrile
SU721436A1 (en) Method of preparing phthalic anhydride