JP2006306833A - Method for producing hydroxy compound - Google Patents

Method for producing hydroxy compound Download PDF

Info

Publication number
JP2006306833A
JP2006306833A JP2005319197A JP2005319197A JP2006306833A JP 2006306833 A JP2006306833 A JP 2006306833A JP 2005319197 A JP2005319197 A JP 2005319197A JP 2005319197 A JP2005319197 A JP 2005319197A JP 2006306833 A JP2006306833 A JP 2006306833A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
hydrogen chloride
compound
hydroxy compound
hydrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005319197A
Other languages
Japanese (ja)
Other versions
JP4935052B2 (en
Inventor
Toshiaki Ui
利明 宇井
Tetsuya Suzuta
哲也 鈴田
Takeo Seo
健男 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005319197A priority Critical patent/JP4935052B2/en
Publication of JP2006306833A publication Critical patent/JP2006306833A/en
Application granted granted Critical
Publication of JP4935052B2 publication Critical patent/JP4935052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02P20/121

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hydroxy compound, which method is one for producing the hydroxy compound by the hydrolysis of a chlorinated hydrocarbon compound and has an excellent feature that hydrochloric acid recovered from the formed hydrogen chloride and unreacted water can be efficiently utilized, and hydrogen chloride can be recovered from the hydrochloric acid in a manner efficient from the viewpoint of energy saving. <P>SOLUTION: The method for producing the hydroxy compound comprises the hydrolysis step of bringing a chlorinated hydrocarbon into contact with hydrochloric acid to obtain a mixture containing a hydroxy compound and hydrogen chloride, the hydrochloric acid separation step of separating the mixture from the hydrolysis step into a portion based on hydrochloric acid and a portion based on a chlorinated hydrocarbon compound and a hydroxy compound, and the hydrogen chloride separation step of separating and recovering the portion based on hydrochloric acid from the portion obtained from the hydrochloric acid separation step and recirculating the remainder into the hydrolysis step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒドロキシ化合物の製造方法に関するものである。更に詳しくは、本発明は、塩素化炭化水素化合物の加水分解によるヒドロキシ化合物の製造する方法であって、生成する塩化水素と未反応水から回収される塩酸を効率的に利用することができ、かつ該塩酸から塩化水素を省エネルギーの観点から効率的に回収できるという優れた特徴を有するヒドロキシ化合物の製造方法に関するものである。   The present invention relates to a method for producing a hydroxy compound. More specifically, the present invention is a method for producing a hydroxy compound by hydrolysis of a chlorinated hydrocarbon compound, which can efficiently use the hydrogen chloride produced and hydrochloric acid recovered from unreacted water, In addition, the present invention relates to a method for producing a hydroxy compound having an excellent feature that hydrogen chloride can be efficiently recovered from the hydrochloric acid from the viewpoint of energy saving.

たとえばベンゼンのような炭化水素と塩化水素と酸素から塩素化炭化水素化合物であるモノクロルベンゼンを経由して、間接的にフェノールのようなヒドロキシ化合物を製造する方法はRaschigプロセスと呼ばれ公知である。このプロセスは、ベンゼンと塩化水素と酸素より、オキシクロリネーション法によりモノクルベンゼンを製造し、モノクロルベンゼンを加水分解してフェノールを製造するとともに、副生する塩化水素は回収してモノクロルベンゼン製造用のオキシクロリネーション法に用いるというプロセスである。(たとえば、特許文献1参照)   For example, a method for producing a hydroxy compound such as phenol indirectly from a hydrocarbon such as benzene, hydrogen chloride, and oxygen via monochlorobenzene, which is a chlorinated hydrocarbon compound, is known as Raschig process. In this process, monoclebenzene is produced from benzene, hydrogen chloride and oxygen by the oxychlorination method, monochlorobenzene is hydrolyzed to produce phenol, and by-product hydrogen chloride is recovered to produce monochlorobenzene. This process is used for the oxychlorination method. (For example, see Patent Document 1)

また、発明者らは、オキシクロリネーション法を用いず、塩素を用いた塩素化反応によりモノクロルベンゼンを製造し、塩素化および加水分解で副生する塩化水素を回収し、酸化反応で塩素にリサイクルし再利用するというプロセスを提案した。(特許文献2)   In addition, the inventors manufactured monochlorobenzene by chlorination reaction using chlorine without using the oxychlorination method, recovered hydrogen chloride by-produced by chlorination and hydrolysis, and recycled it to chlorine by oxidation reaction. And proposed a process of reuse. (Patent Document 2)

しかしながら、加水分解反応では、大量の未反応水が存在するため、副生する塩化水素は濃度の低い塩酸となって回収され、その塩酸から塩化水素の回収には多大のエネルギーが必要であるという難点がある。特に、得られる塩酸の塩化水素濃度が操作圧力下での塩化水素及び水の共沸組成より小さい場合には、単純な蒸留操作では塩化水素を取り出すことはできず、硫酸、塩化カルシウム、塩化マグネシウム等の強電解質の添加、あるいは特許文献3に示されるような異なった圧力下での二段蒸留といった手段が必要になり、プロセスが複雑になるという問題があった。   However, since a large amount of unreacted water is present in the hydrolysis reaction, the by-produced hydrogen chloride is recovered as low-concentration hydrochloric acid, and recovery of hydrogen chloride from the hydrochloric acid requires a great deal of energy. There are difficulties. In particular, when the hydrogen chloride concentration of the resulting hydrochloric acid is smaller than the azeotropic composition of hydrogen chloride and water under the operating pressure, hydrogen chloride cannot be removed by simple distillation operation, and sulfuric acid, calcium chloride, magnesium chloride Thus, there is a problem that the process becomes complicated because means such as addition of a strong electrolyte such as two-stage distillation under different pressures as shown in Patent Document 3 are required.

米国特許第3221063号明細書U.S. Pat. No. 3,322,063 特願2004−292339明細書Japanese Patent Application No. 2004-292339 特開2001−139305号公報JP 2001-139305 A

かかる状況において、本発明が解決しようとする課題は、塩素化炭化水素化合物を加水分解してヒドロキシ化合物を製造する方法であって、生成する塩化水素と未反応水から回収される塩酸を、効率的に利用することができ、かつ、該塩酸から塩化水素を省エネルギーの観点から効率的に回収できるという優れた特徴を有するヒドロキシ化合物の製造方法を提供する点にある。   In such a situation, the problem to be solved by the present invention is a method for producing a hydroxy compound by hydrolyzing a chlorinated hydrocarbon compound, wherein the generated hydrogen chloride and hydrochloric acid recovered from unreacted water are efficiently used. The present invention is to provide a method for producing a hydroxy compound which has an excellent characteristic that it can be used efficiently and hydrogen chloride can be efficiently recovered from the hydrochloric acid from the viewpoint of energy saving.

すなわち、本発明は、下記の工程を含むヒドロキシ化合物の製造方法に係るものである。
加水分解工程:塩素化炭化水素化合物と塩酸を接触させることにより、ヒドロキシ化合物と塩化水素を含む混合物を得る工程
塩酸分離工程:加水分解工程で得た混合物を、塩酸を主とする部分と塩素化炭化水素化合物及びヒドロキシ化合物を主とする部分に分離する工程
塩化水素分離工程:塩酸分離工程で得た塩酸を主とする部分より塩化水素を主とする部分を分離して回収し、残部を加水分解工程へリサイクルする工程
That is, the present invention relates to a method for producing a hydroxy compound including the following steps.
Hydrolysis step: A step of obtaining a mixture containing a hydroxy compound and hydrogen chloride by bringing a chlorinated hydrocarbon compound into contact with hydrochloric acid. Hydrochloric acid separation step: Chlorination of the mixture obtained in the hydrolysis step with a portion mainly composed of hydrochloric acid. Step of separating hydrocarbon compound and hydroxy compound into main parts Hydrogen chloride separation step: Separating and recovering the main part of hydrogen chloride from the main part of hydrochloric acid obtained in the hydrochloric acid separation process, and hydrolyzing the remainder Process to recycle to decomposition process

本発明により、塩素化炭化水素化合物の加水分解によるヒドロキシ化合物の製造する方法であって、生成する塩化水素と未反応水から回収される塩酸を、効率的に利用することができ、かつ該塩酸から塩化水素を省エネルギーの観点から効率的に回収できるという優れた特徴を有するヒドロキシ化合物の製造方法を提供することができる。   According to the present invention, there is provided a method for producing a hydroxy compound by hydrolysis of a chlorinated hydrocarbon compound, wherein the generated hydrogen chloride and hydrochloric acid recovered from unreacted water can be efficiently used, and the hydrochloric acid Therefore, it is possible to provide a method for producing a hydroxy compound having an excellent feature that hydrogen chloride can be efficiently recovered from the viewpoint of energy saving.

本発明の加水分解工程は、塩素化炭化水素化合物と塩酸を接触させることにより、ヒドロキシ化合物と塩化水素を含む混合物を得る工程である。   The hydrolysis step of the present invention is a step of obtaining a mixture containing a hydroxy compound and hydrogen chloride by bringing a chlorinated hydrocarbon compound into contact with hydrochloric acid.

塩素化炭化水素化合物としては、メチルクロライド、エチルクロライド、アリルクロライドのような鎖状炭化水素に塩素原子が一つ置換した塩素化炭化水素化合物や、四塩化炭素のような塩素原子が複数個置換されたもの、モノクロルベンゼン、1,2−、1,3−又は1,4−ジクロルベンゼン、1,2,3−、1,2,4−又は1,3,5−トリクロルベンゼン、テトラクロルベンゼン、ペンタクロルベンゼン又はヘキサクロルベンゼン、モノ又はポリクロロトルエン、モノ又はポリクロロキシレン等の芳香族化合物に塩素原子が、一つ、又は複数個置換された化合物を挙げることができる。また、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く。)等の置換基で置換されていてもよい。更に、上記の単環式芳香族化合物の他に、ナフタレン環、アントラセン環等の多環式芳香族化合物であってもよい。また、芳香環に直接塩素が置換された化合物のみならず、塩化ベンジル、クミルクロライドのように芳香環の置換基が塩素化されたものであってもよい。   Chlorinated hydrocarbon compounds include chlorinated hydrocarbon compounds in which one chlorine atom is substituted for chain hydrocarbons such as methyl chloride, ethyl chloride, and allyl chloride, and multiple chlorine atoms such as carbon tetrachloride are substituted. Monochlorobenzene, 1,2-, 1,3- or 1,4-dichlorobenzene, 1,2,3-, 1,2,4- or 1,3,5-trichlorobenzene, tetrachloro An aromatic compound such as benzene, pentachlorobenzene or hexachlorobenzene, mono- or polychlorotoluene, mono- or polychloroxylene, or the like can be exemplified by compounds in which one or more chlorine atoms are substituted. Moreover, the aromatic ring of those compounds may be substituted with a substituent such as a nitro group, an amino group, or an alkyl group (excluding a methyl group). Further, in addition to the monocyclic aromatic compound, a polycyclic aromatic compound such as a naphthalene ring or an anthracene ring may be used. Further, not only compounds in which the aromatic ring is directly substituted with chlorine, but also those in which the aromatic ring substituents are chlorinated, such as benzyl chloride and cumyl chloride.

芳香族化合物としてベンゼンを用い、塩素化芳香族化合物であるモノクロルベンゼン又はジクロルベンゼンを得る方法が産業上の観点から特に重要である。   A method of obtaining chloroaromatic monochlorobenzene or dichlorobenzene by using benzene as an aromatic compound is particularly important from an industrial viewpoint.

ヒドロキシ化合物としては、メタノール、エタノール、アリルアルコールのような鎖状炭化水素にヒドロキシ基が一つついたアルコール類や、ペンタエリトリトールのようなヒドロキシ基が複数個置換されたもの、フェノール、クレゾール、カテコール、レゾルシン、ハイドロキノン等の芳香族化合物にヒドロキシ基が一つ、又は複数個置換された化合物を挙げることができる。また、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く)等の置換基で置換されていてもよい。芳香族化合物の場合は、上記の単環式芳香族化合物の他に、ナフタレン環であるナフトール、アントラセン環等の多環式芳香族化合物であってもよい。また、芳香環に直接ヒドロキシ基が置換された化合物のみならず、ベンジルアルコール、クミルアルコールのように芳香環の置換基がヒドロキシ化されたものであってもよい。   Examples of the hydroxy compound include alcohols having a single hydroxy group in a chain hydrocarbon such as methanol, ethanol, and allyl alcohol, those substituted with a plurality of hydroxy groups such as pentaerythritol, phenol, cresol, catechol, An aromatic compound such as resorcin, hydroquinone or the like may be mentioned in which one or more hydroxy groups are substituted. Moreover, the aromatic ring of those compounds may be substituted with a substituent such as a nitro group, an amino group, or an alkyl group (excluding a methyl group). In the case of an aromatic compound, in addition to the above monocyclic aromatic compound, a polycyclic aromatic compound such as naphthol or anthracene ring which is a naphthalene ring may be used. Further, not only compounds in which an aromatic ring is directly substituted with a hydroxy group, but also those in which an aromatic ring substituent is hydroxylated, such as benzyl alcohol and cumyl alcohol.

用いる塩酸は、特に制限はない。   The hydrochloric acid to be used is not particularly limited.

加水分解工程に供給する原料は、塩素化炭化水素化合物と水であるが、加水分解工程にて回収された塩酸を原料として用いることが、本発明の特徴である。つまり、塩酸中の水が反応に寄与し消失するが、塩化水素が副生するため、加水分解工程にて回収される塩酸の塩化水素濃度は加水分解反応を行うことにより増加する。   The raw materials supplied to the hydrolysis step are a chlorinated hydrocarbon compound and water, but it is a feature of the present invention that hydrochloric acid recovered in the hydrolysis step is used as a raw material. That is, water in hydrochloric acid contributes to the reaction and disappears, but since hydrogen chloride is by-produced, the hydrogen chloride concentration of hydrochloric acid recovered in the hydrolysis step increases by performing the hydrolysis reaction.

塩素化炭化水素化合物が塩素化芳香族化合物であり、ヒドロキシ化合物がヒドロキシ芳香族化合物である場合、とりわけ塩素化炭化水素化合物がモノクロルベンゼンであり、ヒドロキシ化合物がフェノールである場合が産業上の観点から特に重要である。   From an industrial point of view, when the chlorinated hydrocarbon compound is a chlorinated aromatic compound and the hydroxy compound is a hydroxy aromatic compound, especially when the chlorinated hydrocarbon compound is monochlorobenzene and the hydroxy compound is phenol. Of particular importance.

塩素化炭化水素化合物と塩酸を反応させる方法は、特に制限はなく、公知の方法を使用することができる。具体的な方法の例を示すと、次のとおりである。反応は、液相、気相いずれによっても実施されるが、通常は気相反応を用いる。反応形態としては、固定床、流動床、移動床のいずれでもよい。塩酸中の水と塩素化炭化水素のモル比(水/塩素化炭化水素)は通常0.5以上、10以下であり、反応温度は160℃以上、600℃以下であり、反応圧力は減圧、常圧、加圧いずれでもよいが、通常は常圧である。モノクロルベンゼン等の塩素化芳香族化合物の場合は、触媒として担持燐酸系触媒、担持銅系触媒を用いることができる。   There is no restriction | limiting in particular in the method of making a chlorinated hydrocarbon compound and hydrochloric acid react, A well-known method can be used. An example of a specific method is as follows. The reaction is carried out in either a liquid phase or a gas phase, but usually a gas phase reaction is used. The reaction form may be a fixed bed, a fluidized bed, or a moving bed. The molar ratio of water to chlorinated hydrocarbon in hydrochloric acid (water / chlorinated hydrocarbon) is usually 0.5 or more and 10 or less, the reaction temperature is 160 ° C. or more and 600 ° C. or less, the reaction pressure is reduced, Either normal pressure or increased pressure may be used, but it is usually normal pressure. In the case of a chlorinated aromatic compound such as monochlorobenzene, a supported phosphoric acid catalyst or a supported copper catalyst can be used as the catalyst.

加水分解反応は、結晶性メタロシリケート触媒及び/又は金属担持結晶性メタロシリケート触媒を用い手行うことが、加水分解反応の活性、選択性向上の観点から好ましい。   The hydrolysis reaction is preferably carried out manually using a crystalline metallosilicate catalyst and / or a metal-supported crystalline metallosilicate catalyst from the viewpoint of improving the activity and selectivity of the hydrolysis reaction.

結晶性メタロシリケート触媒としては、Siを必須成分として含み、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種又は2種以上の金属元素を含み、Siと他金属原子比、Si/Me原子比(ここに、Meは、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種又は2種以上の金属元素を示す)が、5以上である結晶性メタロシリケートがより好ましいが、Me成分を実質的に含まない二酸化ケイ素からなる結晶性シリケートでもよい。   The crystalline metallosilicate catalyst contains Si as an essential component, and includes Al, Cu, Ga, Fe, B, Zn, Cr, Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, and Bi. Including one or more metal elements selected from Nb, etc., Si and other metal atomic ratio, Si / Me atomic ratio (where Me is Al, Cu, Ga, Fe, B, Zn, Cr 1 or 2 or more metal elements selected from Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, Bi, Nb, etc.) are crystalline metallosilicates having 5 or more Is more preferable, but it may be a crystalline silicate composed of silicon dioxide substantially free of the Me component.

さらに、それらの結晶性メタロシリケート上に、上記Me成分をさらに担持したものを触媒として用いてもよい。   Further, a catalyst in which the above Me component is further supported on the crystalline metallosilicate may be used as a catalyst.

塩酸中の塩化水素濃度については、塩化水素が加水分解反応に悪影響を与えない程度であることが望ましい。用いられる塩素化炭化水素化合物の種類、加水分解反応条件、加水分解反応用触媒によって用いられる塩酸中の塩化水素濃度は異なると思われるが、モノクロルベンゼンを結晶性メタロシリケート触媒、及び/又は金属担持結晶性メタロシリケート触媒を用いて加水分解を実施する場合は、21重量%以下が良好である。   The concentration of hydrogen chloride in hydrochloric acid is desirably such that hydrogen chloride does not adversely affect the hydrolysis reaction. The type of chlorinated hydrocarbon compound used, hydrolysis reaction conditions, and hydrogen chloride concentration in hydrochloric acid used depending on the catalyst for hydrolysis reaction may differ, but monochlorobenzene is a crystalline metallosilicate catalyst and / or metal supported In the case of carrying out hydrolysis using a crystalline metallosilicate catalyst, 21% by weight or less is good.

本発明の塩酸分離工程は、加水分解工程で得た混合物を、塩酸を主とする部分と塩素化炭化水素化合物及びヒドロキシ化合物を主とする部分に分離する工程である。   The hydrochloric acid separation step of the present invention is a step of separating the mixture obtained in the hydrolysis step into a portion mainly composed of hydrochloric acid and a portion mainly composed of a chlorinated hydrocarbon compound and a hydroxy compound.

ヒドロキシ化合物、未反応塩素化炭化水素化合物等の有機物を主とする油層と、未反応水、生成塩化水素を主とする塩酸層に油水分離するため、公知の油水分離操作により塩酸層を分離することができる。油層と塩酸層の分離が不十分な場合は、塩酸と相互溶解度の低い有機溶媒を用いた抽出操作により油層と塩酸層を分離してもよい。また、回収された塩酸層中に微量含まれるヒドロキシ化合物、塩素化炭化水素、有機溶媒等の有機物は、抽出、蒸留等の操作により、さらに除去することも可能である。上記の操作で塩酸分離工程にて塩酸を回収され、すくなくともその一部は、直接的、又は間接的に加水分解工程にリサイクルされる。間接的にリサイクルするとは、回収された塩酸を塩化水素分離工程等他の工程を経由した後、加水分解工程にリサイクルすることを意味する。   In order to separate oil-water into an oil layer mainly composed of organic substances such as hydroxy compounds and unreacted chlorinated hydrocarbon compounds and a hydrochloric acid layer mainly composed of unreacted water and produced hydrogen chloride, the hydrochloric acid layer is separated by a known oil-water separation operation. be able to. When the separation of the oil layer and the hydrochloric acid layer is insufficient, the oil layer and the hydrochloric acid layer may be separated by an extraction operation using an organic solvent having low mutual solubility with hydrochloric acid. In addition, organic substances such as hydroxy compounds, chlorinated hydrocarbons, and organic solvents contained in trace amounts in the recovered hydrochloric acid layer can be further removed by operations such as extraction and distillation. By the above operation, hydrochloric acid is recovered in the hydrochloric acid separation step, and at least a part of it is recycled directly or indirectly to the hydrolysis step. Indirect recycling means that the recovered hydrochloric acid is recycled to the hydrolysis step after passing through other steps such as a hydrogen chloride separation step.

本発明の塩化水素分離工程は、塩酸分離工程で得た塩酸を主とする部分より塩化水素を主とする部分を分離して回収し、残部を加水分解工程へリサイクルする工程である。   The hydrogen chloride separation step of the present invention is a step of separating and recovering a portion mainly containing hydrogen chloride from a portion mainly containing hydrochloric acid obtained in the hydrochloric acid separation step, and recycling the remainder to the hydrolysis step.

塩化水素分離工程は、塩酸分離工程にて回収された塩酸については、前述のように塩化水素濃度が上昇してくるので、蒸留操作により濃度上昇分の塩化水素を留出回収させ、残りの塩酸を加水分解工程の原料として用いる工程である。塩化水素分離工程は通常蒸留塔が用いられ、塔頂に塩化水素を留出回収し塔底に残塩酸を得るが、蒸留塔の操作圧力は0.1MPa〜1.0MPaが望ましく、より好ましくは0.1〜0.7MPaである。その際の残塩酸の濃度は、操作圧力に応じた共沸組成となり0.1MPa時 21重量%で1.0MPa時 13重量%である。該操作圧力が低すぎると真空設備を必要とし設備費高となり残塩酸濃度も高くなって塩化水素回収率の低下となる。一方該操作圧力が高過ぎると残塩酸濃度が低くなり塩化水素回収率が高くなるが、塔底温度が高くなるため装置材料の腐食が進行しやすく、また、高温の加熱源を必要とするため省エネルギーの点から好ましくない。蒸留により留出した塩化水素については、塩化水素を利用する種々の用途に適用できるが、塩素化炭化水素化合物製造のための原料として用いることもできる。具体的には、塩素化炭化水素化合物製造用の原料塩素を得るための塩酸酸化反応用原料として利用されるか、又は、オキシクロリネーション用の原料として用いることもできる。   In the hydrogen chloride separation process, the hydrochloric acid recovered in the hydrochloric acid separation process increases the hydrogen chloride concentration as described above. Therefore, by distilling and collecting the hydrogen chloride corresponding to the increased concentration by distillation, the remaining hydrochloric acid is recovered. Is used as a raw material for the hydrolysis step. In the hydrogen chloride separation step, a distillation column is usually used, and hydrogen chloride is distilled and recovered at the top of the column to obtain residual hydrochloric acid at the bottom. The operation pressure of the distillation column is preferably 0.1 MPa to 1.0 MPa, more preferably. 0.1 to 0.7 MPa. The concentration of residual hydrochloric acid at that time is an azeotropic composition corresponding to the operating pressure, and is 21 wt% at 0.1 MPa and 13 wt% at 1.0 MPa. If the operating pressure is too low, vacuum equipment is required and the equipment costs are increased, and the concentration of residual hydrochloric acid is increased, resulting in a decrease in the hydrogen chloride recovery rate. On the other hand, if the operating pressure is too high, the residual hydrochloric acid concentration decreases and the hydrogen chloride recovery rate increases, but the tower bottom temperature increases, so that the corrosion of the equipment material tends to proceed, and a high-temperature heating source is required. It is not preferable from the viewpoint of energy saving. Although hydrogen chloride distilled by distillation can be applied to various uses using hydrogen chloride, it can also be used as a raw material for producing chlorinated hydrocarbon compounds. Specifically, it can be used as a raw material for hydrochloric acid oxidation reaction for obtaining raw material chlorine for producing a chlorinated hydrocarbon compound, or can be used as a raw material for oxychlorination.

次に本発明を実施例により説明する。
実施例1におけるモノクロルベンゼン転化率、フェノール選択率は、次の定義による。
モノクロルベンゼン転化率(%)=(反応したモノクロルベンゼンのモル数)/(供給したモノクロルベンゼンのモル数)×100
フェノール選択率(%)=(生成したフェノールのモル数)/(反応したモノクロルベンゼンのモル数)×100
ベンゼン選択率(%)=(生成したベンゼンのモル数)/(反応したモノクロルベンゼンのモル数)×100
Next, the present invention will be described with reference to examples.
The monochlorobenzene conversion rate and phenol selectivity in Example 1 are based on the following definitions.
Monochlorobenzene conversion (%) = (number of moles of reacted monochlorobenzene) / (number of moles of supplied monochlorobenzene) × 100
Phenol selectivity (%) = (number of moles of phenol produced) / (number of moles of reacted monochlorobenzene) × 100
Benzene selectivity (%) = (number of moles of benzene produced) / (number of moles of reacted monochlorobenzene) × 100

実施例1(加水分解工程 反応実施例)
イオン交換水40ml中に、市販の塩化銅二水和物(和光製 99.9重量%PUA)10.0gを攪拌、溶解させ塩化銅水溶液を調製した。その塩化銅水溶液中に、市販のH−ZSM−5ゼオライト(N.E.ケムキャット製 Si/Al=15 1.6mmφ押出し成型品)20.0gを添加し、スターラーにて攪拌下に8時間浸漬しイオン交換を行った。固形分をろ過、イオン交換水による水洗した後、120℃で4時間乾燥、さらに空気流通下400℃で5時間焼成し、触媒を得た。得られた触媒をアルカリ溶融/ICP−AES法にてCu含有量を測定したところ、3.0重量%であった。
Example 1 (Hydrolysis step reaction example)
In 40 ml of ion-exchanged water, 10.0 g of commercially available copper chloride dihydrate (99.9% by weight PUA manufactured by Wako) was stirred and dissolved to prepare an aqueous copper chloride solution. 20.0 g of commercially available H-ZSM-5 zeolite (Si / Al = 15 1.6 mmφ extruded product manufactured by NE Chemcat) was added to the aqueous copper chloride solution and immersed for 8 hours under stirring with a stirrer. Then, ion exchange was performed. The solid content was filtered, washed with ion-exchanged water, dried at 120 ° C. for 4 hours, and further calcined at 400 ° C. for 5 hours under air flow to obtain a catalyst. When the Cu content of the obtained catalyst was measured by an alkali melting / ICP-AES method, it was 3.0% by weight.

この触媒1gを、内径17mmφの石英製固定床反応器に充填し、454℃に保持した。SiCを充填し、窒素11ml/minを流通させた200℃の固定床蒸発器に、17%塩酸水溶液を0.65g/hr さらに、モノクロルベンゼン(和光製 特級)を3.16g/hrで供給して製造した混合ガスを上記石英製固定床反応器に供給して反応を開始した。   1 g of this catalyst was charged into a quartz fixed bed reactor having an inner diameter of 17 mmφ and maintained at 454 ° C. To a fixed bed evaporator at 200 ° C. filled with SiC and flowing 11 ml / min of nitrogen, 17% hydrochloric acid aqueous solution was supplied at 0.65 g / hr, and monochlorobenzene (special grade manufactured by Wako) was supplied at 3.16 g / hr. The mixed gas produced in this way was supplied to the quartz fixed bed reactor to start the reaction.

時間経過後、生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率11.8%、フェノール選択率92.5%、ベンゼン選択率5.6%であった。   After a lapse of time, the product gas was absorbed in a toluene solvent, and the product was analyzed by gas chromatography. Monochlorobenzene conversion was 11.8%, phenol selectivity was 92.5%, and benzene selectivity was 5.6%. It was.

本発明は、たとえば図1のフローと表1の物質収支により最適に実施することができる。
モノクロルベンゼン(流体番号4)と塩酸(流体番号2、塩化水素濃度19.4重量%)を加水分解工程(A)に供給し、加熱・気化させた後、銅担持セオライト触媒を充填した反応器でモノクロルベンゼンと水を反応させ、フェノールと塩化水素を生成させる。この際、副反応によりベンゼンが生成する。生成したフェノール、塩化水素、ベンゼン及び未反応のモノクロルベンゼン、水を含む反応混合物(流体番号5)は塩酸分離工程(B)に供給し、主に塩化水素、水からなる塩酸層(流体番号6)と、主にフェノール、モノクロルベンゼン、ベンゼンからなる油層(流体番号7)に分離する。
The present invention can be optimally implemented by the flow shown in FIG. 1 and the material balance shown in Table 1, for example.
Monochlorobenzene (fluid number 4) and hydrochloric acid (fluid number 2, hydrogen chloride concentration 19.4% by weight) are supplied to the hydrolysis step (A), heated and vaporized, and then filled with a copper-supported theolite catalyst. Reacts monochlorobenzene with water to produce phenol and hydrogen chloride. At this time, benzene is produced by a side reaction. The reaction mixture (fluid number 5) containing the produced phenol, hydrogen chloride, benzene, unreacted monochlorobenzene, and water is supplied to the hydrochloric acid separation step (B), and the hydrochloric acid layer (fluid number 6) mainly composed of hydrogen chloride and water. ) And an oil layer (fluid number 7) mainly composed of phenol, monochlorobenzene and benzene.

塩酸分離工程で得られる塩酸層は塩化水素分離工程(C)に供給し、蒸留塔で塩化水素ガスを放散させることにより、頂部から塩化水素を主とするガス(流体番号8)を、塔底から蒸留塔の供給原料より塩化水素濃度が減少した塩酸(流体番号9)を得る。塔底から得られる塩酸は外部から供給される水(流体番号1)と共に加水分解工程に供給し、反応原料として利用する。   The hydrochloric acid layer obtained in the hydrochloric acid separation step is supplied to the hydrogen chloride separation step (C), and the hydrogen chloride gas is diffused in the distillation tower, so that the gas mainly containing hydrogen chloride (fluid number 8) is To obtain hydrochloric acid (fluid number 9) having a reduced hydrogen chloride concentration from the feedstock of the distillation column. Hydrochloric acid obtained from the bottom of the column is supplied to the hydrolysis step together with water (fluid number 1) supplied from the outside and used as a reaction raw material.

塩酸分離工程で得られる油層はヒドロキシ化合物精製工程に供給し、蒸留によってベンゼンを主とする留分(流体番号10)、モノクロルベンゼンを主とする留分(流体番号11)、フェノールを主とする留分(流体番号12)に分離する。モノクロルベンゼンを主とする留分は外部から供給される新モノクロルベンゼン(流体番号3)と共に加水分解に供給し、反応原料として利用する。ベンゼンを主とする留分はモノクロルベンゼンの製造原料として利用することができる。   The oil layer obtained in the hydrochloric acid separation step is supplied to the hydroxy compound refining step, and by distillation, a fraction mainly containing benzene (fluid number 10), a fraction mainly containing monochlorobenzene (fluid number 11), and phenol are mainly used. Separate into fractions (fluid number 12). A fraction mainly composed of monochlorobenzene is supplied to hydrolysis together with new monochlorobenzene (fluid number 3) supplied from the outside and used as a reaction raw material. A fraction mainly composed of benzene can be used as a raw material for producing monochlorobenzene.

Figure 2006306833
Figure 2006306833









本発明を実施するフローの例である。It is an example of the flow which implements this invention.

符号の説明Explanation of symbols

A:加水分解工程
B:塩酸分離工程
C:塩化水素分離工程
D:ヒドロキシ化合物精製工程
A: Hydrolysis step B: Hydrochloric acid separation step C: Hydrogen chloride separation step D: Hydroxy compound purification step

Claims (5)

下記の工程を含むヒドロキシ化合物の製造方法。
加水分解工程:塩素化炭化水素化合物と塩酸を接触させることにより、ヒドロキシ化合物と塩化水素を含む混合物を得る工程
塩酸分離工程:加水分解工程で得た混合物を、塩酸を主とする部分と塩素化炭化水素化合物及びヒドロキシ化合物を主とする部分に分離する工程
塩化水素分離工程:塩酸分離工程で得た塩酸を主とする部分より塩化水素を主とする部分を分離して回収し、残部を加水分解工程へリサイクルする工程
The manufacturing method of the hydroxy compound including the following process.
Hydrolysis step: A step of obtaining a mixture containing a hydroxy compound and hydrogen chloride by bringing a chlorinated hydrocarbon compound into contact with hydrochloric acid. Hydrochloric acid separation step: Chlorination of the mixture obtained in the hydrolysis step with a portion mainly composed of hydrochloric acid. Step of separating hydrocarbon compound and hydroxy compound into main parts Hydrogen chloride separation step: Separating and recovering the main part of hydrogen chloride from the main part of hydrochloric acid obtained in the hydrochloric acid separation process, and hydrolyzing the remainder Process to recycle to decomposition process
塩化水素分離工程における操作圧力が0.1〜1.0MPaである請求項1記載の製造方法。 The production method according to claim 1, wherein the operation pressure in the hydrogen chloride separation step is 0.1 to 1.0 MPa. 塩素化炭化水素化合物が塩素化芳香族化合物であり、ヒドロキシ化合物がヒドロキシ芳香族化合物である請求項1記載の製造方法。 The process according to claim 1, wherein the chlorinated hydrocarbon compound is a chlorinated aromatic compound, and the hydroxy compound is a hydroxy aromatic compound. 塩素化炭化水素化合物がモノクロルベンゼンであり、ヒドロキシ化合物がフェノールである請求項1記載の製造方法。 The process according to claim 1, wherein the chlorinated hydrocarbon compound is monochlorobenzene and the hydroxy compound is phenol. 加水分解工程において、結晶性メタロシリケート触媒及び/又は金属担持結晶性メタロシリケート触媒を用いる請求項1記載の製造方法。
The production method according to claim 1, wherein in the hydrolysis step, a crystalline metallosilicate catalyst and / or a metal-supported crystalline metallosilicate catalyst is used.
JP2005319197A 2005-03-30 2005-11-02 Method for producing phenol Expired - Fee Related JP4935052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319197A JP4935052B2 (en) 2005-03-30 2005-11-02 Method for producing phenol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005098187 2005-03-30
JP2005098187 2005-03-30
JP2005319197A JP4935052B2 (en) 2005-03-30 2005-11-02 Method for producing phenol

Publications (2)

Publication Number Publication Date
JP2006306833A true JP2006306833A (en) 2006-11-09
JP4935052B2 JP4935052B2 (en) 2012-05-23

Family

ID=37474126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319197A Expired - Fee Related JP4935052B2 (en) 2005-03-30 2005-11-02 Method for producing phenol

Country Status (1)

Country Link
JP (1) JP4935052B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161665A (en) * 2005-12-15 2007-06-28 Sumitomo Chemical Co Ltd Method for producing hydroxy compound and chlorine
JP2008126123A (en) * 2006-11-20 2008-06-05 Sumitomo Chemical Co Ltd Method for preparing catalyst for hydrolysis reaction and catalyst for hydrolysis reaction
JP2008156248A (en) * 2006-12-21 2008-07-10 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272132A (en) * 1988-09-08 1990-03-12 Mitsui Toatsu Chem Inc Production of phenol
JP2001247518A (en) * 1999-12-28 2001-09-11 Mitsubishi Chemicals Corp Method of producing diaryl carbonate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272132A (en) * 1988-09-08 1990-03-12 Mitsui Toatsu Chem Inc Production of phenol
JP2001247518A (en) * 1999-12-28 2001-09-11 Mitsubishi Chemicals Corp Method of producing diaryl carbonate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161665A (en) * 2005-12-15 2007-06-28 Sumitomo Chemical Co Ltd Method for producing hydroxy compound and chlorine
JP2008126123A (en) * 2006-11-20 2008-06-05 Sumitomo Chemical Co Ltd Method for preparing catalyst for hydrolysis reaction and catalyst for hydrolysis reaction
JP2008156248A (en) * 2006-12-21 2008-07-10 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Also Published As

Publication number Publication date
JP4935052B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
KR101045717B1 (en) Method for producing hexafluoro-1,3-butadiene
US8415516B2 (en) Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane
MXPA06012058A (en) Liquid phase oxidation of p-xylene to terephthalic acid in the presence of a catalyst system containing nickel, manganese, and bromine atoms.
JP4935052B2 (en) Method for producing phenol
US7807855B2 (en) Process for producing hydroxy compound
JP5040109B2 (en) Process for producing phenol and chlorine
JPS59225137A (en) Preparation of 2,3,5-trimethylbenzoquinone
JP2006131617A (en) Method for producing hydroxy compound
CN107641067B (en) Alpha-bromination method of o-diketone
JPH0782206A (en) Production of fluorenone
JP5196341B2 (en) Method for producing biphenyl derivative
JP5212692B6 (en) Method for producing 2,2&#39;-bis (trifluoromethyl) -4,4&#39;-diaminobiphenyl
JP4967281B2 (en) Method for producing cyclohexanone
JP2010235516A (en) Method for producing purified diol
JP2001240568A (en) Preparation method of 1-chloroheptafluorocyclopentene
JP2008156248A (en) Method for producing hydroxy compound
JP3832837B2 (en) Method for producing 3,3 &#39;, 5,5&#39;-tetraalkyl-4,4&#39;-biphenol
JPH06211729A (en) Production of flourenone
JP3860820B2 (en) Method for producing 3,3 &#39;, 5,5&#39;-tetraalkyl-4,4&#39;-biphenol
JP5023618B2 (en) Method for dehydration of hydrolysis reaction mixture
US20040242942A1 (en) Process for producing 2,5-bis(trifluoromethyl)nitrobenzene
US2894035A (en) Preparation of m-chloroaniline
JP4472271B2 (en) Method for producing phenol
JP2006160611A (en) Method for producing monochlorobenzene
US20140094627A1 (en) Method for producing 4,4&#39;-diformyldiphenylalkane

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees