JP2007161665A - Method for producing hydroxy compound and chlorine - Google Patents

Method for producing hydroxy compound and chlorine Download PDF

Info

Publication number
JP2007161665A
JP2007161665A JP2005361493A JP2005361493A JP2007161665A JP 2007161665 A JP2007161665 A JP 2007161665A JP 2005361493 A JP2005361493 A JP 2005361493A JP 2005361493 A JP2005361493 A JP 2005361493A JP 2007161665 A JP2007161665 A JP 2007161665A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
hydrochloric acid
chlorine
compound
hydroxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005361493A
Other languages
Japanese (ja)
Other versions
JP5040109B2 (en
Inventor
Takeo Seo
健男 瀬尾
Toshiaki Ui
利明 宇井
Tetsuya Suzuta
哲也 鈴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005361493A priority Critical patent/JP5040109B2/en
Publication of JP2007161665A publication Critical patent/JP2007161665A/en
Application granted granted Critical
Publication of JP5040109B2 publication Critical patent/JP5040109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hydroxy compound and chlorine, by which by-produced water and unreacted hydrogen chloride are recovered and then efficiently recycled in processes. <P>SOLUTION: This method for producing the hydroxy compound and the chlorine comprises the following processes. A hydrolysis: a chlorinated hydrocarbon compound is contacted with the chlorine to obtain a mixture comprising the hydroxy compound and hydrogen chloride. Hydrogen chloride separation: a portion consisting mainly of hydrogen chloride is separated and recovered from a portion consisting mainly of hydrochloric acid, and the remainder is recycled to the hydrolysis process. Oxidation: the hydrogen chloride is reacted with oxygen to obtain chlorine and water. Chlorine separating recovery: the reaction mixture of the oxidation process is separated into a portion consisting mainly of chlorine, a portion consisting mainly of oxygen, and a portion consisting mainly of water and the unreacted hydrogen chloride; a part of the portion consisting mainly of the oxygen is recycled to the oxidation process; and the portion consisting mainly of water and the unreacted hydrogen chloride is recycled to the hydrolysis process and/or the hydrogen chloride separation process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒドロキシ化合物および塩素の製造方法に関するものである。更に詳しくは、本発明は、塩素化炭化水素化合物の加水分解によりヒドロキシ化合物と塩化水素を得、得られる塩化水素の酸化反応により塩素を得るヒドロキシ化合物および塩素の製造方法であって、酸化で副生する生成水と未反応塩化水素を塩酸として回収し、プロセス内で効率的に再利用できるという優れた特徴を有するヒドロキシ化合物および塩素の製造方法に関するものである。   The present invention relates to a method for producing a hydroxy compound and chlorine. More particularly, the present invention relates to a hydroxy compound and a method for producing chlorine, wherein a hydroxy compound and hydrogen chloride are obtained by hydrolysis of a chlorinated hydrocarbon compound, and chlorine is obtained by an oxidation reaction of the resulting hydrogen chloride. The present invention relates to a method for producing a hydroxy compound and chlorine having excellent characteristics that the produced water and unreacted hydrogen chloride are recovered as hydrochloric acid and can be efficiently reused in the process.

たとえばベンゼンのような炭化水素と塩化水素と酸素から塩素化炭化水素化合物であるモノクロルベンゼンを経由して、間接的にフェノールのようなヒドロキシ化合物を製造する方法はRaschigプロセスと呼ばれ公知である。このプロセスは、ベンゼンと塩化水素と酸素より、オキシクロリネーション法によりモノクロルベンゼンを製造し、モノクロルベンゼンを加水分解してフェノールを製造するとともに、副生する塩化水素は回収してモノクロルベンゼン製造用のオキシクロリネーション法に用いるというプロセスである(たとえば、特許文献1参照)。   For example, a method for producing a hydroxy compound such as phenol indirectly from a hydrocarbon such as benzene, hydrogen chloride, and oxygen via monochlorobenzene, which is a chlorinated hydrocarbon compound, is known as Raschig process. In this process, monochlorobenzene is produced from benzene, hydrogen chloride and oxygen by the oxychlorination method, monochlorobenzene is hydrolyzed to produce phenol, and by-produced hydrogen chloride is recovered to produce monochlorobenzene. It is a process of using for the oxychlorination method (for example, refer patent document 1).

また、発明者らは、オキシクロリネーション法を用いず、塩素を用いた塩素化反応によりモノクロルベンゼンを製造し、塩素化および加水分解で副生する塩化水素を回収し、酸化反応で塩素を製造し再利用するというプロセスを提案した(特許文献2)。   In addition, the inventors manufactured monochlorobenzene by chlorination reaction using chlorine without using the oxychlorination method, recovered hydrogen chloride by-produced by chlorination and hydrolysis, and produced chlorine by oxidation reaction. Then, a process of reusing was proposed (Patent Document 2).

しかしながら、加水分解反応では、大量の未反応水が存在するため、副生する塩化水素は濃度の低い塩酸となって回収され、その塩酸からの塩化水素の回収には多大のエネルギーが必要であるという難点がある。特に、得られる塩酸の塩化水素濃度が操作圧力下での塩化水素および水の共沸組成より小さい場合には、単純な蒸留操作では塩化水素を取り出すことはできず、硫酸、塩化カルシウム、塩化マグネシウム等の強電解質の添加、あるいは特許文献3に示されるような異なった圧力下での二段蒸留といった手段が必要になり、プロセスが複雑になるという問題があった。   However, since a large amount of unreacted water is present in the hydrolysis reaction, the by-produced hydrogen chloride is recovered as hydrochloric acid having a low concentration, and much energy is required to recover hydrogen chloride from the hydrochloric acid. There is a difficulty. In particular, when the hydrogen chloride concentration of the resulting hydrochloric acid is smaller than the azeotropic composition of hydrogen chloride and water under the operating pressure, hydrogen chloride cannot be removed by simple distillation operation, and sulfuric acid, calcium chloride, magnesium chloride Thus, there is a problem that the process becomes complicated because means such as addition of a strong electrolyte such as two-stage distillation under different pressures as shown in Patent Document 3 are required.

そこで発明者らは加水分解の原料として水の代わりに塩酸を用いることにより加水分解後に分離回収される塩酸中の塩化水素濃度を高め、これより高純度の塩化水素を残部の塩酸と分離して取り出し、残部の塩酸は加水分解の原料の一部としてリサイクルするプロセスを提案した(特許文献4)。しかし、取り出した塩化水素の酸化して塩素を製造する場合、酸化で生成する水および未反応塩化水素の有効利用方法は示されていない。   Therefore, the inventors increased the concentration of hydrogen chloride in hydrochloric acid separated and recovered after hydrolysis by using hydrochloric acid instead of water as a raw material for hydrolysis, and separated high-purity hydrogen chloride from the remaining hydrochloric acid. A process was proposed in which the remaining hydrochloric acid was recycled as part of the hydrolysis raw material (Patent Document 4). However, in the case of producing chlorine by oxidizing the extracted hydrogen chloride, an effective method for utilizing water generated by the oxidation and unreacted hydrogen chloride is not shown.

米国特許第3221063号明細書U.S. Pat. No. 3,322,063 特願2004−292339号明細書Japanese Patent Application No. 2004-292339 特開2001−139305号公報JP 2001-139305 A 特願2005−098187号明細書Japanese Patent Application No. 2005-098187

かかる状況において、本発明が解決しようとする課題は、塩素化炭化水素化合物の加水分解によりヒドロキシ化合物と塩化水素を得、得られる塩化水素の酸化反応により塩素を得るヒドロキシ化合物および塩素の製造方法であって、酸化で副生する生成水と未反応塩化水素を塩酸として回収し、プロセス内で効率的に再利用することができるという優れた特徴を有するヒドロキシ化合物および塩素の製造方法を提供する点にある。   In such a situation, the problem to be solved by the present invention is a hydroxy compound and hydrogen chloride obtained by hydrolysis of a chlorinated hydrocarbon compound, and chlorine is obtained by oxidation reaction of the resulting hydrogen chloride and a method for producing chlorine. And providing a method for producing a hydroxy compound and chlorine having excellent characteristics that product water generated by oxidation and unreacted hydrogen chloride are recovered as hydrochloric acid and can be efficiently reused in the process. It is in.

すなわち、本発明は、下記の工程を含むヒドロキシ化合物および塩素の製造方法に係るものである。
加水分解工程:塩素化炭化水素化合物と塩酸を接触させることにより、ヒドロキシ化合物と塩化水素を含む混合物を得る工程
塩酸分離工程:加水分解工程で得た混合物を、塩酸を主とする部分と塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分に分離する工程
塩化水素分離工程:塩酸分離工程で得た塩酸を主とする部分より塩化水素を主とする部分を分離して回収し、残部を加水分解工程へリサイクルする工程
酸化工程:塩化水素分離工程で得た塩化水素を酸素と反応させて塩素と水を得る工程
塩素分離回収工程:酸化工程の反応混合物を、塩素を主とする部分、酸素を主とする部分および水と未反応塩化水素を主とする部分に分離し、酸素を主とする部分の少なくとも一部を酸化工程へリサイクルし、水と未反応塩化水素を主とする部分を加水分解工程および/または塩化水素分離工程にリサイクルする工程
That is, this invention relates to the manufacturing method of the hydroxy compound and chlorine containing the following processes.
Hydrolysis step: A step of obtaining a mixture containing a hydroxy compound and hydrogen chloride by bringing a chlorinated hydrocarbon compound into contact with hydrochloric acid. Hydrochloric acid separation step: Chlorination of the mixture obtained in the hydrolysis step with a portion mainly composed of hydrochloric acid. Step of separating hydrocarbon compound and hydroxy compound into main parts Hydrogen chloride separation process: Separating and recovering the main part of hydrogen chloride from the main part of hydrochloric acid obtained in the hydrochloric acid separation process, and hydrolyzing the remainder Process for recycling to decomposition process Oxidation process: Process for obtaining chlorine and water by reacting hydrogen chloride obtained in the hydrogen chloride separation process with chlorine Chlorine separation and recovery process: Part of the reaction mixture of the oxidation process, mainly oxygen, oxygen Are separated into a main part of water and a part mainly of water and unreacted hydrogen chloride, and at least a part of the main part of oxygen is recycled to the oxidation process, and water and unreacted hydrogen chloride are separated. A step of recycling a portion with the hydrolysis step and / or hydrogen chloride separation step

本発明により、塩素化炭化水素化合物の加水分解によりヒドロキシ化合物と塩化水素を得、得られる塩化水素の酸化反応により塩素を得るヒドロキシ化合物および塩素の製造方法であって、酸化で副生する生成水と未反応塩化水素を塩酸として回収し、プロセス内で効率的に再利用することができるという優れた特徴を有するヒドロキシ化合物および塩素の製造方法を提供することができる。   According to the present invention, a hydroxy compound and hydrogen chloride are obtained by hydrolysis of a chlorinated hydrocarbon compound, and chlorine is obtained by an oxidation reaction of the resulting hydrogen chloride. It is possible to provide a method for producing a hydroxy compound and chlorine having an excellent feature that unreacted hydrogen chloride is recovered as hydrochloric acid and can be efficiently reused in the process.

本発明の加水分解工程は、塩素化炭化水素化合物と塩酸を接触させることにより、ヒドロキシ化合物と塩化水素を含む混合物を得る工程である。   The hydrolysis step of the present invention is a step of obtaining a mixture containing a hydroxy compound and hydrogen chloride by bringing a chlorinated hydrocarbon compound into contact with hydrochloric acid.

塩素化炭化水素化合物としては、メチルクロライド、エチルクロライド、アリルクロライドのような鎖状炭化水素に塩素原子が一つ置換した塩素化炭化水素化合物や、四塩化炭素のような塩素原子が複数個置換されたもの、モノクロルベンゼン、1,2−、1,3−または1,4−ジクロルベンゼン、1,2,3−、1,2,4−または1,3,5−トリクロルベンゼン、テトラクロルベンゼン、ペンタクロルベンゼンまたはヘキサクロルベンゼン、モノまたはポリクロロトルエン、モノまたはポリクロロキシレン等の芳香族化合物に塩素原子が、一つ、または複数個置換された化合物を挙げることができる。また、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く。)等の置換基で置換されていてもよい。更に、上記の単環式芳香族化合物の他に、ナフタレン環、アントラセン環等の多環式芳香族化合物であってもよい。また、芳香環に直接塩素が置換された化合物のみならず、塩化ベンジル、クミルクロライドのように芳香環の置換基が塩素化されたものであってもよい。   Chlorinated hydrocarbon compounds include chlorinated hydrocarbon compounds in which one chlorine atom is substituted for chain hydrocarbons such as methyl chloride, ethyl chloride, and allyl chloride, and multiple chlorine atoms such as carbon tetrachloride are substituted. Monochlorobenzene, 1,2-, 1,3- or 1,4-dichlorobenzene, 1,2,3-, 1,2,4- or 1,3,5-trichlorobenzene, tetrachloro An aromatic compound such as benzene, pentachlorobenzene or hexachlorobenzene, mono- or polychlorotoluene, mono- or polychloroxylene, or the like can be exemplified by compounds in which one or more chlorine atoms are substituted. Moreover, the aromatic ring of those compounds may be substituted with a substituent such as a nitro group, an amino group, or an alkyl group (excluding a methyl group). Further, in addition to the monocyclic aromatic compound, a polycyclic aromatic compound such as a naphthalene ring or an anthracene ring may be used. Further, not only compounds in which the aromatic ring is directly substituted with chlorine, but also those in which the aromatic ring substituents are chlorinated, such as benzyl chloride and cumyl chloride.

芳香族化合物としてベンゼンを用い、塩素化芳香族化合物であるモノクロルベンゼンまたはジクロルベンゼンを得る方法が産業上の観点から特に重要である。   A method of obtaining monochlorobenzene or dichlorobenzene, which is a chlorinated aromatic compound, using benzene as the aromatic compound is particularly important from an industrial viewpoint.

ヒドロキシ化合物としては、メタノール、エタノール、アリルアルコールのような鎖状炭化水素にヒドロキシ基が一つついたアルコール類や、ペンタエリトリトールのようなヒドロキシ基が複数個置換されたもの、フェノール、クレゾール、カテコール、レゾルシン、ハイドロキノン等の芳香族化合物にヒドロキシ基が一つ、または複数個置換された化合物を挙げることができる。また、それらの化合物の芳香環がニトロ基、アミノ基、アルキル基(メチル基を除く)等の置換基で置換されていてもよい。芳香族化合物の場合は、上記の単環式芳香族化合物の他に、ナフタレン環であるナフトール、アントラセン環等の多環式芳香族化合物であってもよい。また、芳香環に直接ヒドロキシ基が置換された化合物のみならず、ベンジルアルコール、クミルアルコールのように芳香環の置換基がヒドロキシ化されたものであってもよい。   Examples of the hydroxy compound include alcohols having a single hydroxy group on a chain hydrocarbon such as methanol, ethanol, and allyl alcohol, those substituted with a plurality of hydroxy groups such as pentaerythritol, phenol, cresol, catechol, An aromatic compound such as resorcin, hydroquinone or the like can be exemplified by a compound in which one or more hydroxy groups are substituted. Moreover, the aromatic ring of those compounds may be substituted with a substituent such as a nitro group, an amino group, or an alkyl group (excluding a methyl group). In the case of an aromatic compound, in addition to the above monocyclic aromatic compound, a polycyclic aromatic compound such as naphthol or anthracene ring which is a naphthalene ring may be used. Further, not only compounds in which an aromatic ring is directly substituted with a hydroxy group, but also those in which an aromatic ring substituent is hydroxylated, such as benzyl alcohol and cumyl alcohol.

用いる塩酸は、特に制限はない。   The hydrochloric acid to be used is not particularly limited.

加水分解工程に供給する原料は、塩素化炭化水素化合物と水であるが、加水分解工程にて回収された塩酸を原料として用いることが、本発明の特徴である。つまり、塩酸中の水が反応に寄与し消失するが、塩化水素が副生するため、加水分解工程にて回収される塩酸の塩化水素濃度は加水分解反応を行うことにより増加する。   The raw materials supplied to the hydrolysis step are a chlorinated hydrocarbon compound and water, but it is a feature of the present invention that hydrochloric acid recovered in the hydrolysis step is used as a raw material. That is, water in hydrochloric acid contributes to the reaction and disappears, but hydrogen chloride is by-produced, so that the hydrogen chloride concentration of hydrochloric acid recovered in the hydrolysis step is increased by performing the hydrolysis reaction.

塩素化炭化水素化合物が塩素化芳香族化合物であり、ヒドロキシ化合物がヒドロキシ芳香族化合物である場合、とりわけ塩素化炭化水素化合物がモノクロルベンゼンであり、ヒドロキシ化合物がフェノールである場合が産業上の観点から特に重要である。   From an industrial point of view, when the chlorinated hydrocarbon compound is a chlorinated aromatic compound and the hydroxy compound is a hydroxy aromatic compound, especially when the chlorinated hydrocarbon compound is monochlorobenzene and the hydroxy compound is phenol. Of particular importance.

塩素化炭化水素化合物と塩酸を反応させる方法は、特に制限はなく、公知の方法を使用することができる。具体的な方法の例を示すと、次のとおりである。反応は、液相、気相いずれによっても実施されるが、通常は気相反応を用いる。反応形態としては、固定床、流動床、移動床のいずれでもよい。塩酸中の水と塩素化炭化水素のモル比(水/塩素化炭化水素)は通常0.5以上、10以下であり、反応温度は160℃以上、600℃以下であり、反応圧力は減圧、常圧、加圧いずれでもよいが、通常は常圧である。モノクロルベンゼン等の塩素化芳香族化合物の場合は、触媒として担持燐酸系触媒、担持銅系触媒を用いることができる。   There is no restriction | limiting in particular in the method of making a chlorinated hydrocarbon compound and hydrochloric acid react, A well-known method can be used. An example of a specific method is as follows. The reaction is carried out in either a liquid phase or a gas phase, but usually a gas phase reaction is used. The reaction form may be a fixed bed, a fluidized bed, or a moving bed. The molar ratio of water to chlorinated hydrocarbon in hydrochloric acid (water / chlorinated hydrocarbon) is usually 0.5 or more and 10 or less, the reaction temperature is 160 ° C. or more and 600 ° C. or less, the reaction pressure is reduced, Either normal pressure or increased pressure may be used, but it is usually normal pressure. In the case of a chlorinated aromatic compound such as monochlorobenzene, a supported phosphoric acid catalyst or a supported copper catalyst can be used as the catalyst.

加水分解反応は、結晶性メタロシリケート触媒および/または金属担持結晶性メタロシリケート触媒を用い手行うことが、加水分解反応の活性、選択性向上の観点から好ましい。   The hydrolysis reaction is preferably carried out manually using a crystalline metallosilicate catalyst and / or a metal-supported crystalline metallosilicate catalyst from the viewpoint of improving the activity and selectivity of the hydrolysis reaction.

結晶性メタロシリケート触媒としては、Siを必須成分として含み、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種または2種以上の金属元素を含み、Siと他金属原子比、Si/Me原子比(ここに、Meは、Al、Cu、Ga、Fe、B、Zn、Cr、Be、Co、La、Ge、Ti、Zr、Hf、V、Ni、Sb、Bi、Nb等から選ばれる1種または2種以上の金属元素を示す)が、5以上である結晶性メタロシリケートがより好ましいが、Me成分を実質的に含まない二酸化ケイ素からなる結晶性シリケートでもよい。   The crystalline metallosilicate catalyst contains Si as an essential component, and includes Al, Cu, Ga, Fe, B, Zn, Cr, Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, and Bi. 1 or 2 or more metal elements selected from Nb, etc., Si and other metal atomic ratio, Si / Me atomic ratio (where Me is Al, Cu, Ga, Fe, B, Zn, Cr 1 or 2 or more metal elements selected from Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, Bi, Nb, etc.), a crystalline metallosilicate having 5 or more Is more preferable, but it may be a crystalline silicate composed of silicon dioxide substantially free of the Me component.

さらに、それらの結晶性メタロシリケート上に、上記Me成分をさらに担持したものを触媒として用いてもよい。   Further, a catalyst in which the above Me component is further supported on the crystalline metallosilicate may be used as a catalyst.

塩酸中の塩化水素濃度については、塩化水素が加水分解反応に悪影響を与えない程度であることが望ましい。用いられる塩素化炭化水素化合物の種類、加水分解反応条件、加水分解反応用触媒によって用いられる塩酸中の塩化水素濃度は異なると思われるが、モノクロルベンゼンを結晶性メタロシリケート触媒および/または金属担持結晶性メタロシリケート触媒を用いて加水分解を実施する場合は、21重量%以下が良好である。   The concentration of hydrogen chloride in hydrochloric acid is desirably such that hydrogen chloride does not adversely affect the hydrolysis reaction. The type of chlorinated hydrocarbon compound used, hydrolysis reaction conditions, and the hydrogen chloride concentration in hydrochloric acid used by the hydrolysis reaction catalyst may differ, but monochlorobenzene is a crystalline metallosilicate catalyst and / or metal-supported crystal. In the case where the hydrolysis is carried out using a conductive metallosilicate catalyst, 21% by weight or less is good.

本発明の塩酸分離工程は、加水分解工程で得た混合物を、塩酸を主とする部分と塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分に分離する工程である。   The hydrochloric acid separation step of the present invention is a step of separating the mixture obtained in the hydrolysis step into a portion mainly composed of hydrochloric acid and a portion mainly composed of a chlorinated hydrocarbon compound and a hydroxy compound.

ヒドロキシ化合物、未反応塩素化炭化水素化合物等の有機物を主とする油層と、未反応水、生成塩化水素を主とする塩酸層に油水分離するため、公知の油水分離操作により塩酸層を分離することができる。油層と塩酸層の分離が不十分な場合は、塩酸と相互溶解度の低い有機溶媒を用いた抽出操作により油層と塩酸層を分離してもよい。また、回収された塩酸層中に微量含まれるヒドロキシ化合物、塩素化炭化水素、有機溶媒等の有機物は、抽出、蒸留等の操作により、さらに除去することも可能である。上記の操作で塩酸分離工程にて塩酸を回収され、すくなくともその一部は、直接的、または間接的に加水分解工程にリサイクルされる。間接的にリサイクルするとは、回収された塩酸を塩化水素分離工程等他の工程を経由した後、加水分解工程にリサイクルすることを意味する。   In order to separate oil-water into an oil layer mainly composed of organic substances such as hydroxy compounds and unreacted chlorinated hydrocarbon compounds and a hydrochloric acid layer mainly composed of unreacted water and produced hydrogen chloride, the hydrochloric acid layer is separated by a known oil-water separation operation be able to. When the separation of the oil layer and the hydrochloric acid layer is insufficient, the oil layer and the hydrochloric acid layer may be separated by an extraction operation using an organic solvent having low mutual solubility with hydrochloric acid. In addition, organic substances such as hydroxy compounds, chlorinated hydrocarbons, and organic solvents contained in trace amounts in the recovered hydrochloric acid layer can be further removed by operations such as extraction and distillation. By the above operation, hydrochloric acid is recovered in the hydrochloric acid separation step, and at least a part thereof is recycled directly or indirectly to the hydrolysis step. Indirect recycling means that the recovered hydrochloric acid is recycled to the hydrolysis step after passing through other steps such as a hydrogen chloride separation step.

本発明の塩化水素分離工程は、塩酸分離工程で得た塩酸を主とする部分より塩化水素を主とする部分を分離して回収し、残部を加水分解工程へリサイクルする工程である。   The hydrogen chloride separation step of the present invention is a step of separating and recovering a portion mainly containing hydrogen chloride from a portion mainly containing hydrochloric acid obtained in the hydrochloric acid separation step, and recycling the remainder to the hydrolysis step.

塩化水素分離工程は、塩酸分離工程にて回収された塩酸については、前述のように塩化水素濃度が上昇してくるので、蒸留操作により濃度上昇分の塩化水素を留出回収させ、残りの塩酸を加水分解工程の原料として用いる工程である。塩化水素分離工程は通常蒸留塔が用いられ、塔頂に塩化水素を留出回収し塔底に残塩酸を得るが、蒸留塔の操作圧力は0.1MPa〜1.0MPaが望ましく、より好ましくは0.1〜0.7MPaである。その際の残塩酸の濃度は、操作圧力に応じた共沸組成となり0.1MPa時 21重量%で1.0MPa時 13重量%である。該操作圧力が低すぎると真空設備を必要とし設備費高となり残塩酸濃度も高くなって塩化水素回収率の低下となる。一方該操作圧力が高過ぎると残塩酸濃度が低くなり塩化水素回収率が高くなるが、塔底温度が高くなるため装置材料の腐食が進行しやすく、また、高温の加熱源を必要とするため省エネルギーの点から好ましくない。蒸留により留出した塩化水素については、塩化水素を利用する種々の用途に適用できるが、塩素化炭化水素化合物製造のための原料として用いることもできる。具体的には、塩素化炭化水素化合物製造用の原料塩素を得るための塩化水素酸化反応用原料として利用されるか、または、オキシクロリネーション用の原料として用いることもできる。   In the hydrogen chloride separation step, the hydrochloric acid recovered in the hydrochloric acid separation step increases the concentration of hydrogen chloride as described above. Therefore, by distilling and recovering the increased concentration of hydrogen chloride by distillation, the remaining hydrochloric acid is recovered. Is used as a raw material for the hydrolysis step. In the hydrogen chloride separation step, a distillation column is usually used, and hydrogen chloride is distilled and recovered at the top of the column to obtain residual hydrochloric acid at the bottom. The operating pressure of the distillation column is desirably 0.1 MPa to 1.0 MPa, more preferably. 0.1 to 0.7 MPa. The concentration of residual hydrochloric acid at that time becomes an azeotropic composition corresponding to the operating pressure, and is 21 wt% at 0.1 MPa and 13 wt% at 1.0 MPa. If the operating pressure is too low, vacuum equipment is required and the equipment costs are increased, and the concentration of residual hydrochloric acid is increased, resulting in a decrease in the hydrogen chloride recovery rate. On the other hand, if the operating pressure is too high, the residual hydrochloric acid concentration decreases and the hydrogen chloride recovery rate increases, but the tower bottom temperature increases, so that the corrosion of the equipment material tends to proceed, and a high-temperature heating source is required. It is not preferable from the viewpoint of energy saving. Although hydrogen chloride distilled by distillation can be applied to various uses utilizing hydrogen chloride, it can also be used as a raw material for producing chlorinated hydrocarbon compounds. Specifically, it can be used as a raw material for a hydrogen chloride oxidation reaction for obtaining raw material chlorine for producing a chlorinated hydrocarbon compound, or can be used as a raw material for oxychlorination.

本発明における酸化工程は、加水分解工程で得た塩化水素を酸素と反応させて塩素と水を得る工程である。   The oxidation step in the present invention is a step of obtaining chlorine and water by reacting hydrogen chloride obtained in the hydrolysis step with oxygen.

塩化水素と酸素を反応させる方法については、特に制限はなく、公知の方法を使用することができる。具体的な方法の例を示すと、次のとおりである。塩化水素と酸素のモル比(塩化水素/酸素)は0.5〜2.0であり、反応温度は200〜500℃、好ましくは200〜380℃であり、反応圧力は0.1〜5MPaであり、空塔速度は0.7〜10m/sである。反応器としては、固定床反応器、流動床反応器、移動床反応器を用いることができる。反応には触媒として酸化クロム触媒、酸化ルテニウム触媒を用いることができる。   There is no restriction | limiting in particular about the method of making hydrogen chloride and oxygen react, A well-known method can be used. An example of a specific method is as follows. The molar ratio of hydrogen chloride to oxygen (hydrogen chloride / oxygen) is 0.5 to 2.0, the reaction temperature is 200 to 500 ° C., preferably 200 to 380 ° C., and the reaction pressure is 0.1 to 5 MPa. Yes, the superficial velocity is 0.7-10 m / s. As the reactor, a fixed bed reactor, a fluidized bed reactor, or a moving bed reactor can be used. In the reaction, a chromium oxide catalyst or a ruthenium oxide catalyst can be used as a catalyst.

本発明における塩素分離回収工程は、酸化工程の反応混合物を、塩素を主とする部分、酸素を主とする部分および水と未反応塩化水素を主とする部分に分離し、酸素を主とする部分の少なくとも一部を酸化工程へリサイクルし、水と未反応塩化水素を主とする部分を加水分解工程および/または塩化水素分離工程にリサイクルする工程である。   The chlorine separation and recovery step in the present invention separates the reaction mixture of the oxidation step into a portion mainly composed of chlorine, a portion mainly composed of oxygen and a portion mainly composed of water and unreacted hydrogen chloride, and mainly composed of oxygen. In this step, at least a part of the portion is recycled to the oxidation step, and the portion mainly composed of water and unreacted hydrogen chloride is recycled to the hydrolysis step and / or the hydrogen chloride separation step.

酸化工程の反応混合物は、塩素、塩化水素、水および酸素を含んでいる。これらの成分を本工程で塩素、塩化水素および水からなる塩酸、酸素に分離し、回収するのである。   The reaction mixture of the oxidation step contains chlorine, hydrogen chloride, water and oxygen. These components are separated and recovered in this step into hydrochloric acid and oxygen consisting of chlorine, hydrogen chloride and water.

塩素分離回収工程を実施するには、たとえば吸収、凝縮、蒸留を用いればよい。塩化水素、水についてはについては、凝縮、または溶媒に吸収させ塩酸として分離、回収する。酸化工程での塩化水素の反応率が低く、未反応塩化水素が反応生成水に全量溶解しない場合は、塩化水素分離工程で塩化水素を回収した残部として得られる塩化水素濃度が低下した塩酸を吸収液として用いることにより塩化水素を完全に溶解させてもよい。回収した塩酸は加水分解工程または塩酸分離工程にリサイクルし、直接もしくは間接に加水分解の原料として利用する。ここで回収した塩酸の塩化水素濃度が、塩化水素と水の共沸組成より大きい場合は塩酸中の塩化水素の一部を容易に回収可能であり、塩化水素分離工程に供給するのが望ましい。また、ここで得られた塩素は、炭化水素化合物の塩素化による塩素化炭化水素の製造に用いることができる。   In order to perform the chlorine separation and recovery step, for example, absorption, condensation, and distillation may be used. About hydrogen chloride and water, it is condensed or absorbed in a solvent and separated and recovered as hydrochloric acid. If the reaction rate of hydrogen chloride in the oxidation process is low and the entire amount of unreacted hydrogen chloride does not dissolve in the reaction product water, it absorbs hydrochloric acid with reduced hydrogen chloride concentration obtained as the remainder from the recovery of hydrogen chloride in the hydrogen chloride separation process. Hydrogen chloride may be completely dissolved by using it as a liquid. The recovered hydrochloric acid is recycled to the hydrolysis step or the hydrochloric acid separation step and used directly or indirectly as a raw material for hydrolysis. If the hydrogen chloride concentration of the hydrochloric acid recovered here is larger than the azeotropic composition of hydrogen chloride and water, it is possible to easily recover a part of the hydrogen chloride in the hydrochloric acid and supply it to the hydrogen chloride separation step. Moreover, the chlorine obtained here can be used for production of chlorinated hydrocarbons by chlorination of hydrocarbon compounds.

本発明においては、下記のヒドロキシ化合物精製工程を用いることが望ましい。
ヒドロキシ化合物精製工程:塩酸分離工程で得た塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分を、塩素化炭化水素化合物を主とする部分とヒドロキシ化合物を主とする部分と不純物を主とする部分に分離し、塩素化炭化水素化合物を主とする部分の少なくとも一部を加水分解工程にリサイクルする工程
In the present invention, it is desirable to use the following hydroxy compound purification step.
Hydroxy compound purification process: Chlorinated hydrocarbon compound and part mainly composed of hydroxy compound obtained in hydrochloric acid separation process, part composed mainly of chlorinated hydrocarbon compound, part mainly composed of hydroxy compound and impurities A process that separates the parts and recycles at least a part of the parts mainly composed of chlorinated hydrocarbon compounds to the hydrolysis process.

塩酸分離工程で得られた油層にはヒドロキシ化合物、未反応塩素化炭化水素化合物に加え加水分解で副生する炭化水素化合物などの不純物が少量含まれる。これらを本工程で塩素化炭化水素化合物を主とする部分、ヒドロキシ化合物を主とする部分、不純物を主とする部分に分離し、精製されたヒドロキシ化合物を得るとともに、塩素化炭化水素化合物は加水分解の原料としてリサイクルするのである。   The oil layer obtained in the hydrochloric acid separation step contains a small amount of impurities such as a hydroxy compound, an unreacted chlorinated hydrocarbon compound, and a hydrocarbon compound by-produced by hydrolysis. In this step, these are separated into a part mainly composed of chlorinated hydrocarbon compounds, a part mainly composed of hydroxy compounds, and a part mainly composed of impurities to obtain a purified hydroxy compound, and the chlorinated hydrocarbon compound is hydrolyzed. It is recycled as a raw material for decomposition.

ヒドロキシ化合物精製工程を実施するには、たとえば蒸留を用いればよい。その際、不純物を主とする部分は含まれる不純物成分の沸点に応じて、2つ以上の留分として分離回収してもよい。   For example, distillation may be used to carry out the hydroxy compound purification step. At that time, the portion mainly containing impurities may be separated and recovered as two or more fractions according to the boiling point of the impurity component contained.

本発明においては、下記の塩化水素精製工程を用いることが望ましい。
塩化水素精製工程:塩化水素分離工程で得た塩化水素を主とする部分より塩素化芳香族化合物およびヒドロキシ化合物を主とする部分を分離して回収し、残りの塩化水素を酸化工程へ送る工程
In the present invention, it is desirable to use the following hydrogen chloride purification step.
Hydrogen chloride refining process: The process of separating and recovering the main part of chlorinated aromatic compound and hydroxy compound from the main part of hydrogen chloride obtained in the hydrogen chloride separation process and sending the remaining hydrogen chloride to the oxidation process

本工程における精製方法としては、たとえば、冷却して気液分離し、気体として精製塩化水素を得る方法や、吸着により不純物を除去する方法が挙げられる。これら両方法を併用することもできる。   Examples of the purification method in this step include a method of cooling and gas-liquid separation to obtain purified hydrogen chloride as a gas, and a method of removing impurities by adsorption. Both of these methods can be used in combination.

本発明を、炭化水素としてベンゼンを用い、ヒドロキシ化合物としてフェノールを得る場合の例である
<実施例1(加水分解工程 反応実施例)>
実施例1におけるモノクロルベンゼン転化率、フェノール選択率は、次の定義による。
The present invention is an example of using benzene as a hydrocarbon and obtaining phenol as a hydroxy compound <Example 1 (hydrolysis step reaction example)>
The monochlorobenzene conversion rate and phenol selectivity in Example 1 are based on the following definitions.

モノクロルベンゼン転化率(%)=(反応したモノクロルベンゼンのモル数)/(供給したモノクロルベンゼンのモル数)×100
フェノール選択率(%)=(生成したフェノールのモル数)/(反応したモノクロルベンゼンのモル数)×100
ベンゼン選択率(%)=(生成したベンゼンのモル数)/(反応したモノクロルベンゼンのモル数)×100イオン交換水40ml中に、市販の塩化銅二水和物(和光製 99.9重量%PUA)10.0gを攪拌、溶解させ塩化銅水溶液を調製した。その塩化銅水溶液中に、市販のH−ZSM−5ゼオライト(N.E.ケムキャット製 Si/Al=15 1.6mmφ押出し成型品)20.0gを添加し、スターラーにて攪拌下に8時間浸漬しイオン交換を行った。固形分をろ過、イオン交換水による水洗した後、120℃で4時間乾燥、さらに空気流通下400℃で5時間焼成し、触媒を得た。得られた触媒をアルカリ溶融/ICP−AES法にてCu含有量を測定したところ、3.0重量%であった。
Monochlorobenzene conversion (%) = (number of moles of reacted monochlorobenzene) / (number of moles of supplied monochlorobenzene) × 100
Phenol selectivity (%) = (number of moles of phenol produced) / (number of moles of reacted monochlorobenzene) × 100
Benzene selectivity (%) = (number of moles of benzene produced) / (number of moles of reacted monochlorobenzene) × 100 Commercially available copper chloride dihydrate (99.9% by weight, manufactured by Wako) in 40 ml of ion-exchanged water PUA) 10.0 g was stirred and dissolved to prepare an aqueous copper chloride solution. 20.0 g of commercially available H-ZSM-5 zeolite (Si / Al = 15 1.6 mmφ extruded product manufactured by NE Chemcat) was added to the aqueous copper chloride solution and immersed for 8 hours under stirring with a stirrer. Then, ion exchange was performed. The solid content was filtered, washed with ion-exchanged water, dried at 120 ° C. for 4 hours, and further calcined at 400 ° C. for 5 hours under air flow to obtain a catalyst. When the Cu content of the obtained catalyst was measured by an alkali melting / ICP-AES method, it was 3.0% by weight.

この触媒1gを、内径17mmφの石英製固定床反応器に充填し、454℃に保持した。SiCを充填し、窒素11ml/minを流通させた200℃の固定床蒸発器に、17%塩酸水溶液を0.65g/hr さらに、モノクロルベンゼン(和光製 特級)を3.16g/hrで供給して製造した混合ガスを上記石英製固定床反応器に供給して反応を開始した。   1 g of this catalyst was charged into a quartz fixed bed reactor having an inner diameter of 17 mmφ and maintained at 454 ° C. To a fixed bed evaporator at 200 ° C. filled with SiC and flowing 11 ml / min of nitrogen, 17% hydrochloric acid aqueous solution was supplied at 0.65 g / hr and monochlorobenzene (special grade manufactured by Wako) was supplied at 3.16 g / hr. The mixed gas produced in this way was supplied to the quartz fixed bed reactor to start the reaction.

1.5時間経過後、生成ガスをトルエン溶媒に吸収させ、生成物をガスクロマトグラフにより分析としたところ、モノクロルベンゼン転化率11.8%、フェノール選択率92.5%、ベンゼン選択率5.6%であった。   After 1.5 hours, the product gas was absorbed in a toluene solvent, and the product was analyzed by gas chromatography. Monochlorobenzene conversion was 11.8%, phenol selectivity was 92.5%, and benzene selectivity was 5.6. %Met.

本発明を、塩素化炭化水素としてモノクロルベンゼンを用い、ヒドロキシ化合物としてフェノールを得る場合、たとえば図1のフローと表1の物質収支により好適に実施することができる。   In the case where monochlorobenzene is used as a chlorinated hydrocarbon and phenol is obtained as a hydroxy compound, the present invention can be preferably implemented, for example, by the flow shown in FIG. 1 and the material balance shown in Table 1.

モノクロルベンゼン(流体番号2)と塩酸(流体番号4)を加水分解工程(A)に供給し、加熱気化させた後、銅担持ゼオライト触媒を充填した反応器で加水分解反応を行わせ、フェノールと塩化水素を生成させる。この際、副反応によりベンゼンが生成する。   Monochlorobenzene (fluid number 2) and hydrochloric acid (fluid number 4) are supplied to the hydrolysis step (A), heated and vaporized, and then subjected to a hydrolysis reaction in a reactor filled with a copper-supported zeolite catalyst. Hydrogen chloride is produced. At this time, benzene is produced by a side reaction.

生成したフェノール、塩化水素、ベンゼンおよび未反応のモノクロルベンゼン、水を含む反応混合物(流体番号5)は塩酸分離工程(B)に供給し、主にフェノール、モノクロルベンゼン、ベンゼンからなる油層(流体番号6)と、主に塩化水素、水からなる塩酸層(流体番号7)に分離する。   The produced reaction mixture containing phenol, hydrogen chloride, benzene, unreacted monochlorobenzene, and water (fluid number 5) is supplied to the hydrochloric acid separation step (B), and an oil layer mainly composed of phenol, monochlorobenzene and benzene (fluid number) 6) and a hydrochloric acid layer (fluid number 7) mainly composed of hydrogen chloride and water.

塩酸分離工程で得られる塩酸層は塩化水素分離工程(C)に供給し、蒸留塔で塩化水素ガスを放散させることにより、頂部から塩化水素を主とするガス(流体番号9)を、塔底から、蒸留塔の供給原料より塩化水素の濃度が減少した塩酸(10)を得る。塔底から得られる塩酸の一部は加水分解工程にリサイクルし、外部から供給される水(流体番号3)とともに反応原料として利用する。   The hydrochloric acid layer obtained in the hydrochloric acid separation step is supplied to the hydrogen chloride separation step (C), and the hydrogen chloride gas is diffused in the distillation tower, so that a gas mainly composed of hydrogen chloride (fluid number 9) is obtained from the top. To obtain hydrochloric acid (10) having a reduced hydrogen chloride concentration from the feed of the distillation column. Part of the hydrochloric acid obtained from the bottom of the column is recycled to the hydrolysis step and used as a reaction raw material together with water (fluid number 3) supplied from the outside.

塩酸分離工程で得られる油層はヒドロキシ化合物精製工程(F)に供給し、蒸留によってベンゼンを主とする留分(流体番号13)、モノクロルベンゼンを主とする留分(流体番号14)、フェノールを主とする留分(流体番号15)、その他の不純物を主とする留分(流体番号16)に分離する。モノクロルベンゼンを主とする留分は加水分解工程にリサイクルし、外部から供給される新モノクロルベンゼン(流体番号1)とともに反応原料として利用する。   The oil layer obtained in the hydrochloric acid separation step is supplied to the hydroxy compound refining step (F), and a fraction mainly containing benzene (fluid number 13), a fraction mainly containing monochlorobenzene (fluid number 14), and phenol are obtained by distillation. The main fraction (fluid number 15) is separated into the main fraction (fluid number 16). A fraction mainly composed of monochlorobenzene is recycled to the hydrolysis step and used as a reaction raw material together with new monochlorobenzene (fluid number 1) supplied from the outside.

塩化水素分離工程で得られる塩化水素を主とするガスは水、ベンゼン、モノクロルベンゼンなどの不純物を微量含んでおり、これを塩化水素精製工程(G)で冷却した後、活性炭を充填した塔を通過させることにより不純物を分離する。精製された塩化水素ガス(流体番号17)は酸化工程(D)に供給し、分離、回収した不純物(流体番号18)は塩酸分離工程にリサイクルする。   The gas mainly composed of hydrogen chloride obtained in the hydrogen chloride separation step contains trace amounts of impurities such as water, benzene, and monochlorobenzene. After cooling this in the hydrogen chloride purification step (G), the column filled with activated carbon Impurities are separated by passing. Purified hydrogen chloride gas (fluid number 17) is supplied to the oxidation step (D), and the separated and recovered impurities (fluid number 18) are recycled to the hydrochloric acid separation step.

酸化工程では、精製塩化水素ガスを酸素(流体番号20)とルテニウム担持触媒を用いて気相で反応させ、塩素と水を生成させる。生成した塩素、水および未反応の塩化水素、酸素を含む反応ガス(流体番号21)は、塩素分離回収工程(E)に供給し、凝縮液化および蒸留により、酸素を主とするガス(流体番号22)、塩素を主とするガス(23)、塩化水素および水からなる塩酸(流体番号24)に分離する。ここで、塩化水素を水と共に液化して酸素、塩素と十分に分離し塩酸として分離ための吸収液として、塩化水素回収工程の蒸留塔の底部から得られる、塩化水素濃度が低下した塩酸の一部(流体番号12)を用いる。酸素を主とするガスは、その一部(流体番号25)を不純物蓄積防止のためにパージし、残部(流体番号26)は酸化工程にリサイクルし、新酸素(流体番号19)とともに酸化反応原料として利用する。   In the oxidation step, purified hydrogen chloride gas is reacted in the gas phase using oxygen (fluid number 20) and a ruthenium-supported catalyst to generate chlorine and water. The produced chlorine, water, unreacted hydrogen chloride, and a reaction gas containing oxygen (fluid number 21) are supplied to the chlorine separation and recovery step (E), and the gas mainly containing oxygen (fluid number) is obtained by condensation liquefaction and distillation. 22) Separation into hydrochloric acid (fluid number 24) consisting mainly of chlorine-containing gas (23), hydrogen chloride and water Here, hydrogen chloride is liquefied with water, separated sufficiently from oxygen and chlorine, and separated as hydrochloric acid. As an absorption liquid, one of hydrochloric acid with reduced hydrogen chloride concentration obtained from the bottom of the distillation column in the hydrogen chloride recovery process. Part (fluid number 12). Part of the gas mainly composed of oxygen (fluid number 25) is purged to prevent accumulation of impurities, and the remaining part (fluid number 26) is recycled to the oxidation process, together with new oxygen (fluid number 19). Use as

Figure 2007161665
Figure 2007161665

本発明を実施するフローの例である。It is an example of the flow which implements this invention.

符号の説明Explanation of symbols

A:加水分解工程
B:塩酸分離工程
C:塩化水素分離工程
D:酸化工程
E:塩素分離回収工程
F:ヒドロキシ化合物精製工程
G:塩化水素精製工程
A: Hydrolysis step B: Hydrochloric acid separation step C: Hydrogen chloride separation step D: Oxidation step E: Chlorine separation and recovery step F: Hydroxy compound purification step G: Hydrogen chloride purification step

Claims (7)

下記の工程を含むヒドロキシ化合物および塩素の製造方法。
加水分解工程:塩素化炭化水素化合物と塩酸を接触させることにより、ヒドロキシ化合物と塩化水素を含む混合物を得る工程
塩酸分離工程:加水分解工程で得た混合物を、塩酸を主とする部分と塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分に分離する工程
塩化水素分離工程:塩酸分離工程で得た塩酸を主とする部分より塩化水素を主とする部分を分離して回収し、残部を加水分解工程へリサイクルする工程
酸化工程:塩化水素分離工程で得た塩化水素を酸素と反応させて塩素と水を得る工程
塩素分離回収工程:酸化工程の反応混合物を、塩素を主とする部分、酸素を主とする部分および水と未反応塩化水素を主とする部分に分離し、酸素を主とする部分の少なくとも一部を酸化工程へリサイクルし、水と未反応塩化水素を主とする部分を加水分解工程および/または塩化水素分離工程にリサイクルする工程
The manufacturing method of the hydroxy compound and chlorine containing the following process.
Hydrolysis step: A step of obtaining a mixture containing a hydroxy compound and hydrogen chloride by bringing a chlorinated hydrocarbon compound into contact with hydrochloric acid. Hydrochloric acid separation step: Chlorination of the mixture obtained in the hydrolysis step with a portion mainly composed of hydrochloric acid. Step of separating hydrocarbon compound and hydroxy compound into main parts Hydrogen chloride separation process: Separating and recovering the main part of hydrogen chloride from the main part of hydrochloric acid obtained in the hydrochloric acid separation process, and hydrolyzing the remainder Process for recycling to decomposition process Oxidation process: Process for obtaining chlorine and water by reacting hydrogen chloride obtained in the hydrogen chloride separation process with chlorine Chlorine separation and recovery process: The reaction mixture of the oxidation process is composed mainly of chlorine, oxygen Are separated into a main part of water and a part mainly of water and unreacted hydrogen chloride, and at least a part of the main part of oxygen is recycled to the oxidation process, and water and unreacted hydrogen chloride are separated. The process of recycling the main part to hydrolysis process and / or hydrogen chloride separation process
下記の工程を含む請求項1記載の製造方法。
ヒドロキシ化合物精製工程:塩酸分離工程で得た塩素化炭化水素化合物およびヒドロキシ化合物を主とする部分を、塩素化炭化水素化合物を主とする部分とヒドロキシ化合物を主とする部分と不純物を主とする部分に分離し、塩素化炭化水素化合物を主とする部分の少なくとも一部を加水分解工程にリサイクルする工程
The manufacturing method of Claim 1 including the following process.
Hydroxy compound purification process: Chlorinated hydrocarbon compound and part mainly composed of hydroxy compound obtained in hydrochloric acid separation process, part composed mainly of chlorinated hydrocarbon compound, part mainly composed of hydroxy compound and impurities A process that separates the parts and recycles at least a part of the parts mainly composed of chlorinated hydrocarbon compounds to the hydrolysis process.
下記の塩化水素精製工程を含む請求項1記載の製造方法
塩化水素精製工程:塩化水素分離工程で得た塩化水素を主とする部分より塩素化芳香族化合物およびヒドロキシ化合物を主とする部分を分離して回収し、残りの塩化水素を酸化工程へ送る工程
The manufacturing method of Claim 1 including the following hydrogen chloride refinement | purification processes Hydrogen chloride refinement | purification process: The part mainly consisting of a chlorinated aromatic compound and a hydroxy compound is isolate | separated from the part mainly containing hydrogen chloride obtained by the hydrogen chloride separation process. And collect the remaining hydrogen chloride to the oxidation process
塩化水素分離工程における操作圧力が0.1〜1.0MPaである請求項1記載の製造方法。 The production method according to claim 1, wherein the operation pressure in the hydrogen chloride separation step is 0.1 to 1.0 MPa. 塩素化炭化水素化合物が塩素化芳香族化合物であり、ヒドロキシ化合物がヒドロキシ芳香族化合物である請求項1記載の製造方法。 The process according to claim 1, wherein the chlorinated hydrocarbon compound is a chlorinated aromatic compound, and the hydroxy compound is a hydroxy aromatic compound. 塩素化炭化水素化合物がモノクロルベンゼンであり、ヒドロキシ化合物がフェノールである請求項1記載の製造方法。 The process according to claim 1, wherein the chlorinated hydrocarbon compound is monochlorobenzene and the hydroxy compound is phenol. 加水分解工程において、結晶性メタロシリケート触媒および/または金属担持結晶性メタロシリケート触媒を用いる請求項1記載の製造方法。
The production method according to claim 1, wherein a crystalline metallosilicate catalyst and / or a metal-supported crystalline metallosilicate catalyst is used in the hydrolysis step.
JP2005361493A 2005-12-15 2005-12-15 Process for producing phenol and chlorine Expired - Fee Related JP5040109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361493A JP5040109B2 (en) 2005-12-15 2005-12-15 Process for producing phenol and chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361493A JP5040109B2 (en) 2005-12-15 2005-12-15 Process for producing phenol and chlorine

Publications (2)

Publication Number Publication Date
JP2007161665A true JP2007161665A (en) 2007-06-28
JP5040109B2 JP5040109B2 (en) 2012-10-03

Family

ID=38244970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361493A Expired - Fee Related JP5040109B2 (en) 2005-12-15 2005-12-15 Process for producing phenol and chlorine

Country Status (1)

Country Link
JP (1) JP5040109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156248A (en) * 2006-12-21 2008-07-10 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192330A (en) * 1986-02-20 1987-08-22 Asahi Chem Ind Co Ltd Production of aryl hydroxide
JP2001139305A (en) * 1999-11-10 2001-05-22 Sumitomo Chem Co Ltd Method of separating and recovering hydrogen chloride and water
JP2001247518A (en) * 1999-12-28 2001-09-11 Mitsubishi Chemicals Corp Method of producing diaryl carbonate
WO2004037718A2 (en) * 2002-10-28 2004-05-06 Basf Aktiengesellschaft Method for producing chlorine from hydrochloric acid and integrated method for producing isocyanates
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2006306833A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192330A (en) * 1986-02-20 1987-08-22 Asahi Chem Ind Co Ltd Production of aryl hydroxide
JP2001139305A (en) * 1999-11-10 2001-05-22 Sumitomo Chem Co Ltd Method of separating and recovering hydrogen chloride and water
JP2001247518A (en) * 1999-12-28 2001-09-11 Mitsubishi Chemicals Corp Method of producing diaryl carbonate
WO2004037718A2 (en) * 2002-10-28 2004-05-06 Basf Aktiengesellschaft Method for producing chlorine from hydrochloric acid and integrated method for producing isocyanates
JP2006131617A (en) * 2004-10-05 2006-05-25 Sumitomo Chemical Co Ltd Method for producing hydroxy compound
JP2006306833A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156248A (en) * 2006-12-21 2008-07-10 Sumitomo Chemical Co Ltd Method for producing hydroxy compound

Also Published As

Publication number Publication date
JP5040109B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
KR101045717B1 (en) Method for producing hexafluoro-1,3-butadiene
JP4904730B2 (en) Separation and recovery of aromatic compounds and hydrogen chloride
US8415516B2 (en) Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane
MXPA06012058A (en) Liquid phase oxidation of p-xylene to terephthalic acid in the presence of a catalyst system containing nickel, manganese, and bromine atoms.
JP4935052B2 (en) Method for producing phenol
US7807855B2 (en) Process for producing hydroxy compound
JP5040109B2 (en) Process for producing phenol and chlorine
EP3277625B1 (en) Method for recovering hcl from a hcl containing gas stream
JP2006131617A (en) Method for producing hydroxy compound
JP5196341B2 (en) Method for producing biphenyl derivative
JPH0782206A (en) Production of fluorenone
JP5212692B6 (en) Method for producing 2,2&#39;-bis (trifluoromethyl) -4,4&#39;-diaminobiphenyl
JP4967281B2 (en) Method for producing cyclohexanone
US20100222617A1 (en) Method of preparing iodinated aromatic compounds
JP2008156248A (en) Method for producing hydroxy compound
JP2001240568A (en) Preparation method of 1-chloroheptafluorocyclopentene
JP4400433B2 (en) Monochlorobenzene production method
JP4432186B2 (en) Method for purifying 1,2-dichloroethane
US20230183161A1 (en) Continuous process to make trifluoroacetyl iodide from trifluoroacetyl chloride and hydrogen iodide by reactive distillation
JP4432187B2 (en) Method for recovering 1,2-dichloroethane
JP5023618B2 (en) Method for dehydration of hydrolysis reaction mixture
JP3832837B2 (en) Method for producing 3,3 &#39;, 5,5&#39;-tetraalkyl-4,4&#39;-biphenol
JP4400385B2 (en) Method for producing chlorinated aromatic compound
JP2007238477A (en) Method for producing aromatic amine
JP2016074640A (en) Method for refining cyclohexene

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees