JPH0271168A - Method for earth detection - Google Patents

Method for earth detection

Info

Publication number
JPH0271168A
JPH0271168A JP63224028A JP22402888A JPH0271168A JP H0271168 A JPH0271168 A JP H0271168A JP 63224028 A JP63224028 A JP 63224028A JP 22402888 A JP22402888 A JP 22402888A JP H0271168 A JPH0271168 A JP H0271168A
Authority
JP
Japan
Prior art keywords
current
ground fault
signal
voltage
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63224028A
Other languages
Japanese (ja)
Other versions
JPH0619406B2 (en
Inventor
Masanori Tomita
冨田 正徳
Naoto Fujimura
直人 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP63224028A priority Critical patent/JPH0619406B2/en
Publication of JPH0271168A publication Critical patent/JPH0271168A/en
Publication of JPH0619406B2 publication Critical patent/JPH0619406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To detect earth irrespective of a grounded point of a d.c. circuit by a method wherein an a.c. current is detected by injecting a.c. signals between a supply line and the ground while a.c. voltage of said supply line with respect to the ground is detected. CONSTITUTION:At a signal injection port 15, a.c. signals I1 from an a.c. power supply 18 are injected into + and - supply lines 12, 13, respectively, which connect a d.c. power supply 11 and load 14 via capacitors 16, 17. Current flowing from the power supply 18 is combination of earth resistance Rx and current flowing in an electrostatic capacity to ground 25. During normal operation, most of the signal current I1 becomes current flowing in the capacity 25, and shows a value advancing approximately. 90 deg. in phase with respect to a.c. power supply voltage E. When grounding occurs in the load 14, current I2 flowing in the resistance Rx overlaps the current I1 flowing in the capacity 25. Since the current I2 and the voltage E are equal in phase, signal current I3=I1+I2 at the time of grounding occurrence is reduced in phase difference from the voltage E. An identification device 23 calculates phase difference between the signal voltage E and current I3 and identifies grounding when the preset value is reaches.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、直流電源と、負荷と、前記直流電源と負荷
を結ぶ供給線とから構成される直流回路の地絡を検出す
る地絡検出方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a ground fault detection method for detecting a ground fault in a DC circuit that includes a DC power source, a load, and a supply line connecting the DC power source and the load. It is about the method.

(従来の技術) 従来から、直流回路を使用している発電所・ 変電所、
プラントでは、設置されている例えば直流モータ等の負
荷の地絡を検出して、漏洩電流の防止を図っている。こ
の地絡の検出方法として第5図に示すブリッジ回路を用
いる方法が知られている0図において、1は直流電源、
2は地絡検出回路、3は直流電源1のプラス線、4は直
流電源1のマイナス線、5は負荷である。地絡検出回路
2は、抵抗R1,Rt+  R@、リレーRyによるブ
リッジ回路からなっており、抵抗R1,R2はプラス供
給線3とマイナス供給線4との間で直列回路を構成して
おり、抵抗R3の一側は抵抗Rt、R2の接続点に接続
され、リレーRJの他側は接地されている。  Rxは
地絡抵抗である。
(Conventional technology) Power plants and substations that have traditionally used DC circuits,
In plants, ground faults in installed loads such as DC motors are detected to prevent leakage current. As a method of detecting this ground fault, a method using a bridge circuit shown in Fig. 5 is known. In Fig. 0, 1 is a DC power supply;
2 is a ground fault detection circuit, 3 is a positive wire of the DC power source 1, 4 is a negative wire of the DC power source 1, and 5 is a load. The ground fault detection circuit 2 consists of a bridge circuit including resistors R1, Rt+R@, and a relay Ry, and the resistors R1 and R2 form a series circuit between the positive supply line 3 and the negative supply line 4, One side of the resistor R3 is connected to the connection point of the resistors Rt and R2, and the other side of the relay RJ is grounded. Rx is a ground fault resistance.

負荷5に地絡が生じていないときはRxは漏洩抵抗に相
当し、大きい値となるためリレーRyに流れる電流はほ
ぼゼロである。
When there is no ground fault in the load 5, Rx corresponds to leakage resistance and has a large value, so the current flowing through the relay Ry is almost zero.

負荷5の中性点近傍以外に地絡が生じると、ブリッジの
平衡がくずれてリレーRYに電流が流れる。
If a ground fault occurs outside the vicinity of the neutral point of the load 5, the balance of the bridge will be disrupted and current will flow through the relay RY.

これによりリレーRyが作動して地絡が検出される。This activates relay Ry and detects a ground fault.

これは、供給線で地絡が生じても同様に検出することが
できる。
This can be similarly detected even if a ground fault occurs in the supply line.

(発明が解決しようとする課題) しかしながら、上記の地絡検出方法にあっては、負荷5
の中性点近傍で地絡が発生した場合、ブリッジの平衡の
くずれは小さいので、リレーRyに流れる電流は微弱で
あり、第6図に示すように、負荷5の中性点近傍でリレ
ーR7の不動作域が生じ、中性点近傍の地絡を検出する
ことができないという問題があった。また、直流電源内
部で地絡が生じた場合も同様な問題があった。
(Problem to be solved by the invention) However, in the above ground fault detection method, the load 5
When a ground fault occurs near the neutral point, the imbalance of the bridge is small, so the current flowing through relay Ry is weak, and as shown in Figure 6, relay R7 near the neutral point of load 5 There was a problem in that a dead area occurred, making it impossible to detect ground faults near the neutral point. Further, a similar problem occurs when a ground fault occurs inside the DC power supply.

(発明の目的) そこで、この発明は、上記の事情に鑑みてなされたもの
で、その目的とするところは、直流回路の地絡点位置に
拘りなくその地絡を検出することのできる地絡検出方法
を提供することにある。
(Object of the Invention) Therefore, this invention was made in view of the above circumstances, and its purpose is to detect a ground fault that can detect a ground fault regardless of the position of the ground fault in a DC circuit. The object of the present invention is to provide a detection method.

(課題を解決するための手段) この発明は、上記目的を達成するために、直流電源と・
 負荷と、前記直流電源と負荷を結ぶ供給線とから構成
される直流回路の地絡を検出する地絡検出方法であって
、 前記供給線と大地間に交流信号を注入して、該供給線に
流れる交流電流を検出するとともに、大地に対する供給
線の交流電圧を検出し、これら検出した交流電流および
交流電圧から直流回路の地絡を検出するようにしたもの
である。
(Means for Solving the Problem) In order to achieve the above object, the present invention uses a DC power supply and
A ground fault detection method for detecting a ground fault in a DC circuit comprising a load and a supply line connecting the DC power source and the load, the method comprising: injecting an AC signal between the supply line and the ground; In addition to detecting the alternating current flowing through the ground, the alternating current voltage of the supply line to the ground is also detected, and a ground fault in the direct current circuit is detected from the detected alternating current and alternating voltage.

(作用) この発明に係る地絡検出方法によれば、直流回路の地絡
点位置に拘らず、供給線に流れる交流信号の信号電流お
よび信号電圧を検出することかでき、この信号電流およ
び信号電圧から地絡が検出される。
(Function) According to the ground fault detection method according to the present invention, the signal current and signal voltage of the AC signal flowing in the supply line can be detected regardless of the position of the ground fault point in the DC circuit, and the signal current and signal voltage can be detected. A ground fault is detected from the voltage.

(実施例) 以下に、この発明に係る地絡検出方法を直流モータに適
用した実施例について図面を参照しつつ説明する。
(Example) Hereinafter, an example in which the ground fault detection method according to the present invention is applied to a DC motor will be described with reference to the drawings.

第1図において、11は直流電源で、Pはその陽極、N
はその陰極である。12は直流電源11の陽極Pに接続
されたプラス供給線、13は直流型allの陰極Nに接
続されたマイナス供給線、14は供給線12.13に接
続された直流モータ(負荷)で、ここでは等価回路とし
て示しである。
In Figure 1, 11 is a DC power supply, P is its anode, and N
is its cathode. 12 is a positive supply line connected to the anode P of the DC power supply 11, 13 is a negative supply line connected to the cathode N of DC type all, 14 is a DC motor (load) connected to the supply line 12.13, It is shown here as an equivalent circuit.

15は信号注入部で、これは、コンデンサ16゜17と
交流信号を出力する交流電518とからなっており、コ
ンデンサ16.17はプラス供給線12とマイナス供給
線13との間で直列回路を構成しており、交流電源18
の一方の出力端子がコンデンサ16.17の接続点に接
続され、交流電源18の他方の出力端子が接地されて、
交流電源18による交流信号がプラス供給線12とマイ
ナス供給線13とに注入されるようになっている。
Reference numeral 15 denotes a signal injection section, which consists of capacitors 16 and 17 and an AC power source 518 that outputs an AC signal, and the capacitors 16 and 17 form a series circuit between the positive supply line 12 and the negative supply line 13. AC power supply 18
One output terminal of is connected to the connection point of capacitors 16 and 17, and the other output terminal of AC power supply 18 is grounded,
An AC signal from an AC power supply 18 is injected into the positive supply line 12 and the negative supply line 13.

20は信号検出部で、これは、変流器21とコンデンサ
22とからなっており、変流器21にはプラス供給線1
2とマイナス供給線13とを重ねて設置し、負荷14に
流れる直流成分を相殺して交流信号の信号電流だけが検
出されるようになっている。コンデンサ22はマイナス
供給線13に接続され、直流電圧をカットしてマイナス
供給線13に流れる交流信号の信号電圧を検出するため
のものである。なお、このコンデンサ22はプラス供給
線12に接続してプラス供給線12の信号電圧を検出す
るようにしてもよい。
20 is a signal detection section, which consists of a current transformer 21 and a capacitor 22, and the current transformer 21 is connected to a positive supply line 1.
2 and the negative supply line 13 are installed so that the DC component flowing to the load 14 is canceled out so that only the signal current of the AC signal is detected. The capacitor 22 is connected to the negative supply line 13 and is used to cut off the DC voltage and detect the signal voltage of the AC signal flowing through the negative supply line 13. Note that this capacitor 22 may be connected to the positive supply line 12 to detect the signal voltage of the positive supply line 12.

23はコンデンサ22を介して検出される信号電圧と、
変流器21が検出する信号電流との位相差を求め、この
位相差と信号電流の大きさから地絡を判定する判定装置
である。24は漏洩抵抗、25は対地静電容量である。
23 is a signal voltage detected via the capacitor 22;
This determination device determines the phase difference with the signal current detected by the current transformer 21 and determines a ground fault based on this phase difference and the magnitude of the signal current. 24 is a leakage resistance, and 25 is a ground capacitance.

いま、直流電源11から直流電流が負荷14に供給され
、交流電源18によって交流信号がプラス供給線12と
マイナス供給線13とに注入されると、変流器21がプ
ラス供給線12とマイナス供給線13とに流れる交流信
号の信号電流を検出し、コンデンサ22がマイナス供給
線13に流れる交流信号の信号電圧を検出する。
Now, when a DC current is supplied from the DC power supply 11 to the load 14 and an AC signal is injected into the positive supply line 12 and the negative supply line 13 by the AC power supply 18, the current transformer 21 connects the positive supply line 12 and the negative supply line. The capacitor 22 detects the signal current of the alternating current signal flowing through the line 13, and the capacitor 22 detects the signal voltage of the alternating current signal flowing through the negative supply line 13.

ところで、交流電源18から流れでる電流は、地絡抵抗
Rxと対地静電容fi25を流れる電流とを合わせたも
のでり、負荷14に地絡が生じていないときは、地絡抵
抗Rxは対地漏洩抵抗24だけとなり大きな値となる。
By the way, the current flowing from the AC power supply 18 is the sum of the ground fault resistance Rx and the current flowing through the ground capacitance fi25, and when there is no ground fault in the load 14, the ground fault resistance Rx is due to ground leakage. Only the resistor 24 is used, which has a large value.

このため、交流電源18から流れる信号電流工、は大部
分が対地静電容fi25に流れる電流となり、第2図に
示すように、交流電製電圧Eに対し901近く位相が進
んだ値となる。
Therefore, most of the signal current flowing from the AC power supply 18 becomes the current flowing to the ground capacitance fi25, and as shown in FIG.

一方、地絡が生じると、対地静電容量25に流れる電流
工1に地絡抵抗Rxに流れる電流工2が重畳することに
なる。この電流工2は交流電源電圧Eと同相なので、 
 地絡が生じた場合の信号電流l5(=Ix+工2)は
、第2図に示すように、交流電源電圧Eとの位相差が小
さくなる。
On the other hand, when a ground fault occurs, the current flow 1 flowing through the ground capacitance 25 is superimposed on the current flow 2 flowing through the ground fault resistance Rx. Since this current generator 2 is in phase with the AC power supply voltage E,
As shown in FIG. 2, the phase difference between the signal current l5 (=Ix+I2) and the AC power supply voltage E when a ground fault occurs becomes small.

判定装置23は、信号電圧Eと信号電流工3どの位相差
を求め、予め設定された値(位相差、信号電流の大きさ
)に達したか否かを判定し、達していれば地絡と判定す
る。
The determination device 23 determines the phase difference between the signal voltage E and the signal current 3, determines whether a preset value (phase difference, magnitude of the signal current) has been reached, and if so, a ground fault is detected. It is determined that

第3図は第1図の簡略化した等何回路を示したものであ
る。負荷14のインピーダンスは一般にRxに較べて十
分に小さいため、第3図に示すように、地絡抵抗Rxが
小さなものである限り、  負荷14の地絡点14pの
位置に拘らず、  交流電源18から見たインピーダン
スは小さく、交流電源18によって、供給線12.13
に大きな交流信号を流すことができる。したがって、負
荷14の中性地点近傍が地絡しても、各供給線12.1
3に大きな交流信号が流れるので、その地絡を確実に検
出するこができる。
FIG. 3 shows a simplified equivalent circuit of FIG. Since the impedance of the load 14 is generally sufficiently small compared to Rx, as shown in FIG. 3, as long as the ground fault resistance Rx is small, the AC power source 18 The impedance seen from the AC power supply 18 is small, and the supply line 12.13
A large alternating current signal can be passed through. Therefore, even if there is a ground fault near the neutral point of the load 14, each supply line 12.1
Since a large alternating current signal flows through 3, the ground fault can be detected reliably.

第4図は、負荷14の地絡地点14pと検出領域の関係
を示したものであり、この図から明らかなように、地絡
抵抗Rxが所定以下であれば、  負荷14の地絡地点
に拘りなく地絡を検出するこができることを示している
。なお、地絡抵抗Rxが所定以上のとき、地絡を検出す
ることはできないが、この場合の漏洩電流は微弱である
から差支えない。
FIG. 4 shows the relationship between the ground fault point 14p of the load 14 and the detection area. As is clear from this figure, if the ground fault resistance Rx is below a predetermined value, the ground fault point 14p of the load 14 is detected. This shows that ground faults can be detected regardless of the situation. Note that when the ground fault resistance Rx is greater than a predetermined value, a ground fault cannot be detected, but there is no problem because the leakage current in this case is weak.

なお、上記実施例は、負荷の地絡を検出する場合につい
て説明したが、信号電流を検出するための変流器21を
信号電圧を注入する注入点より直流電源側に設置すれば
、一般の直流電源や太陽電池などの直流発電設備の地絡
を検出することも可能である。
Although the above embodiment describes the case of detecting a ground fault in the load, if the current transformer 21 for detecting the signal current is installed on the DC power supply side from the injection point where the signal voltage is injected, it can be used in general. It is also possible to detect ground faults in DC power generation equipment such as DC power supplies and solar cells.

また、上記実施例では、一つの変流器21を使用してい
るが、複数個の変流器を何箇所かに設置すれば地絡点の
場所を判定することができる。
Further, in the above embodiment, one current transformer 21 is used, but if a plurality of current transformers are installed at several locations, the location of the ground fault point can be determined.

(発明の効果) この発明によれば、負荷の地絡点位置に拘りなくその地
絡を確実に検出することができ、負荷の漏洩電流の防止
を図ることができる。
(Effects of the Invention) According to the present invention, a ground fault can be reliably detected regardless of the position of the ground fault point of the load, and leakage current of the load can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る地絡検出方法を直流モータを駆
動させる直流回路に適用した実施例の回路図、 第2図は信号電流と信号電圧との位相関係を示した説明
図、 第3図は第1図に示す回路図の簡略化した等価回路図、 第4図は地路地点と検出領域の関係を示した説明図、 第5図は従来の地絡検出方法を示した説明図、第6図は
従来の地絡検出方法の問題点を示した説明図である。 18・・・交流電源 21・・・変流器 22・・・コンデンサ 23・・・判定装置 11・・・直流電源 12・・・プラス供給線 13・・・マイナス供給線
Fig. 1 is a circuit diagram of an embodiment in which the ground fault detection method according to the present invention is applied to a DC circuit that drives a DC motor, Fig. 2 is an explanatory diagram showing the phase relationship between signal current and signal voltage, and Fig. 3 The figure is a simplified equivalent circuit diagram of the circuit diagram shown in Figure 1. Figure 4 is an explanatory diagram showing the relationship between ground fault points and detection areas. Figure 5 is an explanatory diagram showing the conventional ground fault detection method. , FIG. 6 is an explanatory diagram showing the problems of the conventional ground fault detection method. 18...AC power supply 21...Current transformer 22...Capacitor 23...Determination device 11...DC power supply 12...Positive supply line 13...Minus supply line

Claims (1)

【特許請求の範囲】 直流電源と、負荷と、前記直流電源と負荷を結ぶ供給線
とから構成される直流回路の地絡を検出する地絡検出方
法であって、 前記供給線と大地間に交流信号を注入して、該供給線に
流れる交流電流を検出するとともに、大地に対する供給
線の交流電圧を検出し、これら検出した交流電流および
交流電圧から直流回路の地絡を検出することを特徴とす
る地絡検出方法。
[Scope of Claims] A ground fault detection method for detecting a ground fault in a DC circuit comprising a DC power supply, a load, and a supply line connecting the DC power supply and the load, the method comprising: a ground fault between the supply line and the ground; It is characterized by injecting an alternating current signal, detecting the alternating current flowing through the supply line, detecting the alternating current voltage of the supply line with respect to the ground, and detecting a ground fault in the direct current circuit from the detected alternating current and alternating voltage. Ground fault detection method.
JP63224028A 1988-09-07 1988-09-07 Ground fault detection method Expired - Lifetime JPH0619406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224028A JPH0619406B2 (en) 1988-09-07 1988-09-07 Ground fault detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224028A JPH0619406B2 (en) 1988-09-07 1988-09-07 Ground fault detection method

Publications (2)

Publication Number Publication Date
JPH0271168A true JPH0271168A (en) 1990-03-09
JPH0619406B2 JPH0619406B2 (en) 1994-03-16

Family

ID=16807458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224028A Expired - Lifetime JPH0619406B2 (en) 1988-09-07 1988-09-07 Ground fault detection method

Country Status (1)

Country Link
JP (1) JPH0619406B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326078A (en) * 1993-07-08 1994-07-05 Benkan Corporation Metal diaphragm valve
EP2737328A1 (en) * 2011-07-28 2014-06-04 Eaton Corporation Systems and apparatus for fault detection in dc power sources using ac residual current detection
JP2020083098A (en) * 2018-11-27 2020-06-04 株式会社京三製作所 Track circuit monitoring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326078A (en) * 1993-07-08 1994-07-05 Benkan Corporation Metal diaphragm valve
EP2737328A1 (en) * 2011-07-28 2014-06-04 Eaton Corporation Systems and apparatus for fault detection in dc power sources using ac residual current detection
EP2737328B1 (en) * 2011-07-28 2024-09-11 Eaton Intelligent Power Limited Systems and apparatus for fault detection in dc power sources using ac residual current detection
JP2020083098A (en) * 2018-11-27 2020-06-04 株式会社京三製作所 Track circuit monitoring device

Also Published As

Publication number Publication date
JPH0619406B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
KR101306397B1 (en) Method for measuring the insulation resistance in an IT network
JPH05336759A (en) Inverter
JP5015686B2 (en) Charge monitoring device
CN110098600B (en) Cable single-pole ground fault protection method based on line capacitance transferred charge
CN113872146B (en) Neutral point hybrid type ground fault regulation and control device and method
CN104541176A (en) Twelve-pulse autotransformer rectifier units
JPH05501045A (en) Earth fault circuit breaker
US4450497A (en) Ultra-high-speed relay
JP2009033790A (en) Charging monitor
JP2009033789A (en) Charging monitor
JPH0271168A (en) Method for earth detection
US7253633B2 (en) Threshold adjustment accuracy for ground fault condition determination
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
RU2309507C1 (en) Method for protecting a three-phased network from one-phased ground fault
CN108414932A (en) A kind of pilot exciter fault monitoring method and system
JP5221238B2 (en) Reactive power compensator ground fault detector
JPH07146321A (en) Circuit for detecting ground fault of battery of uninterruptible power unit
EP4435987A1 (en) Identifying location of and clearing of ground faults in midpoint grounded dc systems
US20240322554A1 (en) Identifying location of and clearing of ground faults in midpoint grounded dc systems
CN110261722B (en) Single-phase grounding judgment and phase judgment method of neutral point ungrounded system
JPH09229985A (en) Testing device for warning detection of insulation monitoring apparatus
RU2072604C1 (en) Method for suppression of arc short circuits to earth in load windings and supplying transformers of three- phase supply line with non-grounded neutral wire
JP2514548B2 (en) Electronic earth leakage breaker
KR20210037279A (en) Uninterruptible power supply
SU832644A2 (en) Device for deferential protection of dc network portions