JP2009033790A - Charging monitor - Google Patents

Charging monitor Download PDF

Info

Publication number
JP2009033790A
JP2009033790A JP2007192246A JP2007192246A JP2009033790A JP 2009033790 A JP2009033790 A JP 2009033790A JP 2007192246 A JP2007192246 A JP 2007192246A JP 2007192246 A JP2007192246 A JP 2007192246A JP 2009033790 A JP2009033790 A JP 2009033790A
Authority
JP
Japan
Prior art keywords
voltage
circuit
switch
lines
ground line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007192246A
Other languages
Japanese (ja)
Other versions
JP5015685B2 (en
Inventor
Kiyoshi Goto
潔 後藤
Hiroaki Koshin
博昭 小新
Hiroshi Oya
博史 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007192246A priority Critical patent/JP5015685B2/en
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to RU2010106114/07A priority patent/RU2444103C2/en
Priority to AU2008280932A priority patent/AU2008280932B8/en
Priority to BRPI0814639-0A priority patent/BRPI0814639A2/en
Priority to EP08791454.5A priority patent/EP2184827B1/en
Priority to US12/669,613 priority patent/US8278882B2/en
Priority to PCT/JP2008/063197 priority patent/WO2009014143A1/en
Priority to CA2693300A priority patent/CA2693300C/en
Priority to CN2008801001466A priority patent/CN101755371B/en
Publication of JP2009033790A publication Critical patent/JP2009033790A/en
Application granted granted Critical
Publication of JP5015685B2 publication Critical patent/JP5015685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To detect leakage even at very low level by preventing impact on the precision of leakage detection employing a zero-phase current transformer while having circuitry for detecting the existence of welding individually at each relay contact provided on each AC line by detecting a voltage between a ground line. <P>SOLUTION: The charging monitor is provided with a switch 11 interposed between an external power supply AC and a battery 53 and having relay contacts 111 and 112 for opening/closing two AC lines L1 and L2 individually is further provided with a voltage monitor 25 for detecting generation of a voltage between each AC line closer to the battery 53 side than the switch 11 and a sub-ground line S-GND branched from a ground line GND under a state where the switch 11 is designated to open state, and a leakage detection means 26 having a zero-phase current transformer 12 for detecting a level difference of currents flowing through the two AC lines L1, L2 and the sub-ground line S-GND on the side closer to the external power supply AC than the switch 11 and judging that leakage has occurred if there is a difference. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、外部交流電源と該外部交流電源からのグランドライン及び2本の交流ラインを経て充電される蓄電池との間に介設され、前記2本の交流ラインを個々に開閉する各リレー接点を有する開閉器を備えた充電監視装置に関する。   The present invention is provided between an external AC power source and a ground battery from the external AC power source and a storage battery charged via the two AC lines, and each relay contact for individually opening and closing the two AC lines. It is related with the charge monitoring apparatus provided with the switch which has.

従来、電池からの電力を利用して駆動される電気車両や電池に蓄積された電力を必要時に取り出すことが可能となる補助電源システムが知られている、これら装置がもつ電池への充電は、主に家庭用あるいは工業用の外部交流電源から行われるようになっている。この場合、充電ラインと装置との接続不良とか装置の電池まわりに生じ得る絶縁不備等によって、充電時に漏電が生じる可能性がある。このような漏電は感電、装置の故障、また充電効率を損なう等の理由により早期の検出が望まれる。また、装置がグランドに対して絶縁されている構造では、充電時の漏電電荷が人体を介してグランドに流れる際に不快感を生じることがある。   Conventionally, an electric vehicle driven by using electric power from the battery and an auxiliary power supply system that can take out the electric power stored in the battery when necessary are known. It is mainly carried out from an external AC power source for home use or industrial use. In this case, electric leakage may occur during charging due to poor connection between the charging line and the device or an insulation defect that may occur around the battery of the device. Such leakage is desired to be detected at an early stage for reasons such as electric shock, device failure, and loss of charging efficiency. In addition, in the structure in which the device is insulated from the ground, there may be a feeling of uncomfortable feeling when the leakage charge during charging flows to the ground through the human body.

そこで、特許文献1に示すように、外部交流電源とバッテリの間に、リレーを備えた充電装置を介設した状態で充電を行うようにしている。このリレーは、外部交流電源からの2本の交流ラインに対してそれぞれリレー接点を有する電磁リレーである。そして、特許文献1に示すように、漏電検出回路によって漏電が確認されると、電磁リレーの両リレー接点を同時に開状態に切り換えて、外部交流電源をバッテリ側から開放するようにしている。   Therefore, as shown in Patent Document 1, charging is performed in a state where a charging device including a relay is interposed between the external AC power source and the battery. This relay is an electromagnetic relay having a relay contact for each of two AC lines from an external AC power source. Then, as shown in Patent Document 1, when leakage is confirmed by the leakage detection circuit, both relay contacts of the electromagnetic relay are simultaneously switched to the open state to open the external AC power source from the battery side.

ところで、この種の装置のバッテリへの充電は十数アンペアという比較的大きな電流で行われることから、電磁リレーはオンオフの繰り返し時に生じる過渡的な突入電流によってリレー接点がわずかながら溶解を繰り返し、場合によっては固定端と溶着してしまう虞がある。そのため、従来、充電監視装置内に電磁リレーの溶着を検出する回路を備えたものが知られている。この溶着検出回路は、外部交流電源と接続し、かつ電磁リレーを開状態にする指示信号を与えた状態で、2本の交流ライン間の電圧の有無を検出するもので、電圧が検出されれば溶着有りとするものである。   By the way, since charging of the battery of this type of device is performed with a comparatively large current of several tens of amperes, the relay contact repeatedly melts slightly due to a transient inrush current that occurs during repeated on / off. Depending on the case, there is a risk of welding to the fixed end. For this reason, conventionally, a charge monitoring device having a circuit for detecting welding of an electromagnetic relay is known. This welding detection circuit detects the presence or absence of a voltage between two AC lines in a state in which an instruction signal for opening an electromagnetic relay is provided while being connected to an external AC power source. If there is welding.

さらに、リレー接点と固定点との溶着を検出する技術として、特許文献2に示すように、電気車両において、バッテリとインバータ間とを繋ぐ2本の電流供給ラインの途中に介設された溶着検出装置が知られている。この溶着検出装置は、2本の電流供給ラインのそれぞれに介設されたメインリレーR1,R2の個々について溶着の有無を検出し得るようにしたもので、片方ずつの溶着の有無を検出することで、両方のリレー接点が溶着してしまう前にできるだけ早期にリレーの異常を検出するようにしている。
特開平11−205909号公報 特開2006−310219号公報
Furthermore, as a technique for detecting welding between a relay contact and a fixed point, as shown in Patent Document 2, in an electric vehicle, welding detection provided in the middle of two current supply lines connecting a battery and an inverter. The device is known. This welding detection device is adapted to detect the presence or absence of welding for each of the main relays R1 and R2 interposed in each of the two current supply lines, and detects the presence or absence of welding for each one. Therefore, the abnormality of the relay is detected as soon as possible before both relay contacts are welded.
JP-A-11-205909 JP 2006-310219 A

しかしながら、特許文献2に記載の溶着検出装置は、メインリレーR1,R2が独自にオンオフ駆動可能な、いわば個別のリレーであり、従って各リレーに順次駆動信号を与えつつ、順番に検出動作を行うものであって、各リレー接点が同期してオンオフする1個の電磁リレーとは異なるものである。ところで、電磁リレーの各リレー接点の溶着の有無を個別に検出する回路構成として、電磁リレーを開状態に指示したとき、各交流ラインとグランドラインとの間の電圧の有無をそれぞれ検出する一対の回路を有するものが考えられる。   However, the welding detection device described in Patent Document 2 is a so-called individual relay in which the main relays R1 and R2 can be independently driven on and off. Therefore, the detection operation is performed in order while sequentially supplying a drive signal to each relay. It is different from one electromagnetic relay in which each relay contact is turned on and off in synchronization. By the way, as a circuit configuration for individually detecting the presence or absence of welding of each relay contact of the electromagnetic relay, when the electromagnetic relay is instructed to be in an open state, a pair of each detecting the presence or absence of a voltage between each AC line and the ground line. One having a circuit is conceivable.

一方、特許文献1とは異なり、微小な漏電を検出し得るものとして、従来、外部交流電源からの2本の交流ラインを一次側として挿通した零相変流器を設け、両交流ラインに流れる電流のレベルの差分を検出することで微小な漏電電流を検出可能にした漏電監視装置が一般的に採用されている。従って、溶着検出回路として一対の回路構成を採用すると、一方の交流ラインとグランドライン間に溶着検出回路を介して流れる電流により、両交流ライン間に流れる電流が不平衡となり、漏電検出回路が誤動作をしてしまう可能性がある。   On the other hand, unlike Patent Document 1, a zero-phase current transformer that has been conventionally inserted with two AC lines from an external AC power source as the primary side is provided to detect minute electric leakage, and flows through both AC lines. In general, a leakage monitoring apparatus that can detect a minute leakage current by detecting a difference in current level is generally employed. Therefore, when a pair of circuit configurations are used as the welding detection circuit, the current flowing between the AC lines becomes unbalanced due to the current flowing through the welding detection circuit between one AC line and the ground line, and the leakage detection circuit malfunctions. There is a possibility of doing.

本発明は、上記に鑑みてなされたもので、交流ラインのそれぞれに設けられた各リレー接点の溶着の有無をグランドラインとの間の電圧検出によって個々に検出する回路構成を備えながらも、零相変流器を用いた漏電検出の精度への影響を防止して微小レベルの漏電に対しても誤検出することのない漏電監視装置を提供するものである。   The present invention has been made in view of the above, and has a circuit configuration that individually detects the presence or absence of welding of each relay contact provided in each AC line by detecting the voltage between the relay line and the ground line. It is an object of the present invention to provide a leakage monitoring device that prevents an influence on the accuracy of leakage detection using a phase current transformer and prevents erroneous detection even for leakage at a minute level.

請求項1記載の発明は、外部交流電源と該外部交流電源からのグランドライン及び2本の交流ラインを経て充電される蓄電池との間に介設され、前記2本の交流ラインを個々に開閉する各リレー接点を有する開閉器を備えた充電監視装置において、前記開閉器を開状態に指示した状態において、前記開閉器よりも前記蓄電池側における前記各交流ラインと前記グランドラインから分岐したサブグランドラインとの間の電圧の発生をそれぞれ検出する接点状態検出手段と、前記開閉器よりも前記外部交流電源側において前記2本の交流ライン及び前記サブグランドラインに流れる電流のレベルの差分を検出する零相変流器を有し、差分が有る場合に漏電と判断する漏電検出手段とを備えたことを特徴とするものである。   The invention according to claim 1 is interposed between an external AC power source, a ground line from the external AC power source, and a storage battery charged via the two AC lines, and individually opens and closes the two AC lines. In the charge monitoring device including a switch having each relay contact, the sub-ground branched from the AC line and the ground line on the storage battery side with respect to the switch in a state where the switch is instructed to be opened Contact state detection means for detecting the generation of a voltage between the line and the difference between the levels of currents flowing through the two AC lines and the sub-ground line on the external AC power supply side of the switch. It has a zero-phase current transformer and includes a leakage detection means for determining a leakage when there is a difference.

この構成によれば、外部交流電源と該外部交流電源からのグランドライン及び2本の交流ラインを経て充電される蓄電池との間に介設された開閉器は、2本の交流ラインを個々に開閉する各リレー接点を有する。従って、開閉器は両方のリレー接点が溶着する場合の他、片方のリレー接点のみが溶着する場合もある。前記開閉器を開状態に指示された状態で、接点状態検出手段によって、前記開閉器よりも前記蓄電池側における各交流ラインとグランドラインから分岐したサブグランドラインとの間の電圧の発生がそれぞれ検出される。少なくとも一方で電圧の発生が検出されれば、対応する側のリレー接点が溶着していることとなり、いずれの側でも電圧の発生が検出できなければ、原則的に各リレー接点の溶着がないことになる。また、開閉器よりも外部交流電源側において2本の交流ライン及びサブグランドラインに流れる電流のレベルの差分が零相変流器を介して電圧として検出される。差分の電圧が検出されれば、漏電有りと判断され、そうでなければ漏電無しとされる。ここにおいて、充電動作中に、各交流ラインから接点状態検出手段を介してサブグランドラインのループで交流電流の一部が流れるが、このサブグランドラインを零相変流器の一次側とすることで、両交流ラインとサブグランドラインとの鎖交磁束数は相殺され、この結果、溶着状態検出手段の存在によっても、漏電検出手段が誤検出を行うことがなくなり、微小レベルの漏電に対しても検出できることとなる。   According to this configuration, the switch interposed between the external AC power source, the ground line from the external AC power source, and the storage battery charged via the two AC lines has two AC lines individually. Each relay contact opens and closes. Accordingly, in addition to the case where both relay contacts are welded, only one relay contact may be welded in the switch. With the switch instructed to be in the open state, the contact state detection means detects the occurrence of voltage between each AC line on the storage battery side relative to the switch and the sub-ground line branched from the ground line. Is done. If voltage generation is detected on at least one side, the corresponding relay contact is welded. If no voltage generation is detected on either side, in principle there is no welding of each relay contact. become. Further, the difference in the level of the current flowing through the two AC lines and the sub ground line on the external AC power supply side from the switch is detected as a voltage via the zero-phase current transformer. If a differential voltage is detected, it is determined that there is a leakage, and if not, it is determined that there is no leakage. Here, during the charging operation, a part of the AC current flows from each AC line through a loop of the sub ground line through the contact state detection means, and this sub ground line should be the primary side of the zero-phase current transformer. As a result, the number of flux linkages between the AC line and the sub-ground line is canceled, and as a result, the leakage detection means does not perform false detection even if the welding state detection means is present, and a small level of leakage is prevented. Can also be detected.

請求項2記載の発明は、請求項1記載の充電監視装置において、接点状態検出手段は、その入力段に直流分を遮断する直流成分遮断回路を有していることを特徴とする。この構成によれば、バッテリが接続された状態で溶着状態の検出が行われても、バッテリ側から流入する直流電流が全てカットされるので、溶着状態の検出に際して、バッテリ側の影響は排除される。なお、この構成では、交流ラインからサブグランドラインへの電流の環流があるものの、サブグランドラインが零相変流器の一次側とされているので、上述したように、その影響は排除される。   According to a second aspect of the present invention, in the charge monitoring apparatus according to the first aspect, the contact state detecting means has a direct current component cut-off circuit for cutting off a direct current component at an input stage thereof. According to this configuration, even if the welding state is detected while the battery is connected, all direct current flowing from the battery side is cut off, so that the influence on the battery side is eliminated when detecting the welding state. The In this configuration, although there is current circulation from the AC line to the sub-ground line, since the sub-ground line is the primary side of the zero-phase current transformer, the influence is eliminated as described above. .

請求項1記載の発明によれば、溶着状態検出手段の存在によっても漏電検出手段が誤検出を行うことがなくなり、微小レベルの漏電に対しても検出できることとなる。   According to the first aspect of the present invention, the leakage detection means does not perform erroneous detection even by the presence of the welding state detection means, and it is possible to detect even a minute level of leakage.

請求項2記載の発明によれば、バッテリが接続された状態で溶着状態の検出を行っても、バッテリ側から流入する直流電流を全てカットして(バッテリ側の影響を排除して)、溶着の有無の検出ができる。また、交流ラインからサブグランドラインへの電流の環流分に対しても、サブグランドラインを零相変流器の一次側としたので、上述したように、その影響が排除できる。   According to the second aspect of the present invention, even if the welding state is detected in a state where the battery is connected, all direct current flowing from the battery side is cut (excluding the influence on the battery side), and welding is performed. The presence or absence of can be detected. Moreover, since the sub ground line is the primary side of the zero-phase current transformer, the influence of the current circulation from the AC line to the sub ground line can be eliminated as described above.

図1は、本発明に係る充電監視装置を蓄電池(バッテリ)を備える充電装置に適用した場合の一実施形態を示すブロック図である。図1において、充電監視装置1は、外部交流電源AC側と接続するプラグP1と前記充電装置(負荷部)のバッテリと接続するプラグ(ソケット)P2とを備え、その間に充電監視のための回路ブロックを有して構成されている。プラグP1,P2間には交流ラインL1,L2(Hot、Cold)、グランドライン(GND)、及び負荷部との制御信号線が設けられている。   FIG. 1 is a block diagram showing an embodiment in which the charge monitoring device according to the present invention is applied to a charging device including a storage battery (battery). In FIG. 1, a charge monitoring device 1 includes a plug P1 connected to the external AC power supply AC side and a plug (socket) P2 connected to a battery of the charging device (load unit), and a circuit for monitoring the charge therebetween. It has a block. Between the plugs P1 and P2, AC signal lines L1 and L2 (Hot, Cold), a ground line (GND), and a control signal line to the load unit are provided.

充電監視のための回路ブロックは、交流ラインL1,L2にそれぞれ介設されるリレー接点111,112を備える開閉器である電磁リレー11、その外部交流電源AC側で交流ラインL1,L2に設けられる電流検出回路である零相変流器(ZCT)12、及び交流ラインL1,L2に跨って、かつZCT12を跨いで接続されるテスト用の電磁リレー13を備える。また、充電監視のための回路ブロックは、プラグP1の直ぐ入力側の交流ラインL1,L2に接続され、外部交流電源ACに接続されることで各回路部に必要なレベルの電源電圧を生成する電源回路21、負荷部50の、例えば充電制御回路51(図3参照)との間で、バッテリ53(図3参照)との接続確認、テスト動作の指示及び充電開始のための許可信号の交信を行うための制御回路22、ZCT12の出力側に接続された漏電検出回路23、グランドモニタ24、プラグP2の直ぐ入力側の交流ラインL1,L2に接続され、交流ラインL1,L2間の電圧を検出する電圧モニタ25及びテスト動作を行わせるためのテスト回路26とを備えている。電圧モニタ25には、さらにグランドラインGNDから分岐されたサブグランドラインS−GNDがZCT12を介して(一次側とされて)、入力されている。   A circuit block for monitoring charging is provided in the AC lines L1 and L2 on the external AC power supply AC side of the electromagnetic relay 11, which is a switch provided with relay contacts 111 and 112 interposed in the AC lines L1 and L2, respectively. A zero-phase current transformer (ZCT) 12 that is a current detection circuit, and a test electromagnetic relay 13 that is connected across the AC lines L1 and L2 and across the ZCT 12 are provided. Further, the circuit block for monitoring the charge is connected to the AC lines L1 and L2 on the input side of the plug P1 and connected to the external AC power supply AC, thereby generating a power supply voltage at a level required for each circuit unit. Confirmation of connection with the battery 53 (see FIG. 3) between the power supply circuit 21 and the load unit 50, for example, the charge control circuit 51 (see FIG. 3), an instruction for a test operation, and an exchange of a permission signal for starting charging Is connected to the control circuit 22, the leakage detection circuit 23 connected to the output side of the ZCT 12, the ground monitor 24, the AC lines L1 and L2 on the input side of the plug P2, and the voltage between the AC lines L1 and L2 is A voltage monitor 25 for detection and a test circuit 26 for performing a test operation are provided. Further, a sub-ground line S-GND branched from the ground line GND is input to the voltage monitor 25 through the ZCT 12 (primary side).

漏電検出回路23の出力側の励磁コイル230は漏電が検出された場合に電流供給が停止されて電磁リレー11のリレー接点111,112を一括で閉状態から開状態に戻すためのものであり、充電開始時は、リレー接点111,112を一括で開状態から閉状態に切り換えるためのものである。   The excitation coil 230 on the output side of the leakage detection circuit 23 is for stopping the current supply when the leakage is detected and returning the relay contacts 111 and 112 of the electromagnetic relay 11 from the closed state to the open state at once. At the start of charging, the relay contacts 111 and 112 are collectively switched from the open state to the closed state.

制御回路22は、電源回路21からの電力供給を受けると、起動して負荷部50の、例えば充電制御回路51と接続確認のための交信を行い、接続が確認されるとテスト回路26に対してテスト動作を指示するものである。そして、テスト動作によって正常と判断すると、充電開始の許可を行うものである。テスト回路26は、テスト用の電磁リレー13を閉状態に切り替えて、交流ラインL1,L2を抵抗R13を介して所定時間だけ短絡すると共に、この短絡によって、後述するように漏電検出回路23で異常(漏電)が発生したことが検出され、電磁リレー11が開状態に切り替わり、この切り換わりによって交流ラインL1,L2間に電圧が消失したことを電圧モニタ25が検知すると、漏電検知回路25、電磁リレー11が正常に動作したとして、この検知結果を制御回路22に出力するものである。逆に電圧モニタ25が電圧変化を検知しないなど異常を検知した場合には、テスト時点で異常があった旨の信号を制御回路22に出力するものである。なお、電圧モニタ25におけるチェックには電磁リレー11のリレー接点111,112の溶着の有無が含まれており、詳細は図2に示す。制御回路22は、正常であると充電開始指示を行い、異常であると充電を不許可とするものである。   When the control circuit 22 receives power supply from the power supply circuit 21, the control circuit 22 is activated to perform communication for confirming the connection of the load unit 50, for example, the charge control circuit 51, and to the test circuit 26 when the connection is confirmed. The test operation is instructed. When it is determined that the test operation is normal, the charging start is permitted. The test circuit 26 switches the test electromagnetic relay 13 to the closed state and shorts the AC lines L1 and L2 through the resistor R13 for a predetermined time. This short circuit causes an abnormality in the leakage detection circuit 23 as will be described later. When the occurrence of (leakage) is detected and the electromagnetic relay 11 is switched to the open state and the voltage monitor 25 detects that the voltage has disappeared between the AC lines L1 and L2 due to this switching, the leakage detection circuit 25, the electromagnetic This detection result is output to the control circuit 22 on the assumption that the relay 11 operates normally. Conversely, when the voltage monitor 25 detects an abnormality such as not detecting a voltage change, a signal indicating that there was an abnormality at the time of the test is output to the control circuit 22. The check in the voltage monitor 25 includes the presence or absence of welding of the relay contacts 111 and 112 of the electromagnetic relay 11, and details are shown in FIG. The control circuit 22 gives an instruction to start charging if it is normal, and rejects charging if it is abnormal.

図2は、電圧モニタ25の一例を示す詳細なブロック図である。図2において、ZCT12は、例えばパーマロイ等の強磁性体からなる環状のコアに複数回巻回された二次巻線(コイル)から構成され、この環状の内側に交流ラインL1,L2及びサブグランドラインS−GNDを一次側として挿通したものである。サブグランドラインS−GNDは、グランドラインGNDの途中であるプラグP1とZCT12の間で分岐させたもので、後述するように電圧モニタ25のコモンライン(グランド)として用いられるものである。   FIG. 2 is a detailed block diagram illustrating an example of the voltage monitor 25. In FIG. 2, the ZCT 12 is composed of a secondary winding (coil) wound around an annular core made of a ferromagnetic material such as permalloy, for example, and AC lines L1 and L2 and a sub-ground are arranged inside the annular. The line S-GND is inserted as the primary side. The sub ground line S-GND is branched between the plug P1 and the ZCT 12 in the middle of the ground line GND, and is used as a common line (ground) of the voltage monitor 25 as will be described later.

電圧モニタ25は、第1、第2の電圧モニタ回路251,252とから構成され、両者は基本的に同一の回路構成を有する。第1の電圧モニタ回路251は、入力される信号から直流成分を遮断する、例えばコンデンサなどからなるDCカット回路2511、入力される交流信号を直流信号に整流する整流回路2512、整流された電圧信号のレベルを検出する電圧検出回路2513、及び検出された電圧レベルが所定の設定値を超えているか否かを検出乃至は判定する判定回路2514の順で接続されて構成されている。同様に、第2の電圧モニタ回路252も、DCカット回路2521、整流回路2522、電圧検出回路2523及び判断回路2524の順で接続されて構成されている。   The voltage monitor 25 is composed of first and second voltage monitor circuits 251 and 252, both of which basically have the same circuit configuration. The first voltage monitor circuit 251 cuts a DC component from an input signal, for example, a DC cut circuit 2511 made of a capacitor, a rectifier circuit 2512 that rectifies an input AC signal into a DC signal, and a rectified voltage signal A voltage detection circuit 2513 for detecting the level of the signal and a determination circuit 2514 for detecting or determining whether or not the detected voltage level exceeds a predetermined set value are connected in this order. Similarly, the second voltage monitor circuit 252 is also configured by connecting a DC cut circuit 2521, a rectifier circuit 2522, a voltage detection circuit 2523, and a determination circuit 2524 in this order.

第1の電圧モニタ回路251において、DCカット回路2511にはZCT12及び開閉器11を経た位置で交流ラインL1に接続され、各回路部のコモン側はそれぞれサブグランドラインS−GNDに接続されている。第2の電圧モニタ回路252において、DCカット回路2521にはZCT12及び開閉器11を経た位置で交流ラインL2に接続され、各回路部のコモン側はそれぞれサブグランドラインS−GNDに接続されている。   In the first voltage monitor circuit 251, the DC cut circuit 2511 is connected to the AC line L1 through the ZCT 12 and the switch 11, and the common side of each circuit unit is connected to the sub-ground line S-GND. . In the second voltage monitor circuit 252, the DC cut circuit 2521 is connected to the AC line L2 at a position through the ZCT 12 and the switch 11, and the common side of each circuit unit is connected to the sub-ground line S-GND. .

次に、電圧モニタ25による開閉器11の溶着状態検出動作について説明する。まず、テスト回路26から開閉器11を開状態とする指示信号が出力される。具体的には、励磁コイル230への励磁電流の供給を停止する。各リレー接点111,112が正常に動作すれば(溶着していなければ)、いずれもオープン状態となり、そうでなければ、少なくとも一方の異常(溶着)なリレー接点111,112はクローズのままとなる。   Next, the welding state detection operation of the switch 11 by the voltage monitor 25 will be described. First, an instruction signal for opening the switch 11 is output from the test circuit 26. Specifically, the supply of the excitation current to the excitation coil 230 is stopped. If each relay contact 111, 112 operates normally (if it is not welded), both are open, and if not, at least one abnormal (welding) relay contact 111, 112 remains closed. .

次いで、テスト回路26から、第1、第2の電圧モニタ回路251,252に対してそれぞれ検出動作を行う指示が出力される。この指示を受けて第1、第2の電圧モニタ回路251,252は検出動作を開始し、検出電圧のレベルに従って判定結果をモニタ回路26に出力する。   Next, the test circuit 26 outputs instructions for performing detection operations to the first and second voltage monitor circuits 251 and 252, respectively. In response to this instruction, the first and second voltage monitor circuits 251 and 252 start a detection operation, and output a determination result to the monitor circuit 26 according to the level of the detection voltage.

今、開閉器11のリレー接点111,112がいずれも正常であるとすると、DCカット回路2511,2521には電圧が発生しない。しかし、プラグTLを有する負荷部50(図3参照)内の後述する電位差吸収用のコンデンサC50,C51,C52のいずれかから、蓄積電荷分の電流が流入してくると、その電流レベルに応じた直流電圧が発生することとなる。しかし、DCカット回路2511,2521で、この直流電圧分はカットされるため、整流回路2512,2522側には出力は出ない。従って、このような場合でも、開閉器11の溶着状態検出が正常に行われる。   If the relay contacts 111 and 112 of the switch 11 are both normal, no voltage is generated in the DC cut circuits 2511 and 2521. However, if a current corresponding to the stored charge flows in from any of potential difference absorbing capacitors C50, C51, and C52 described later in the load section 50 (see FIG. 3) having the plug TL, the current level depends on the current level. DC voltage will be generated. However, since the DC voltage is cut by the DC cut circuits 2511 and 2521, no output is output to the rectifier circuits 2512 and 2522. Therefore, even in such a case, the welding state detection of the switch 11 is normally performed.

次に、開閉器11のリレー接点111,112がいずれか一方、例えばリレー接点111が溶着しているとすると、交流ラインL1を経て入力される交流電流によってDCカット回路2511にのみ電圧が発生する。この発生電圧は整流回路2512で整流され、電圧検出回路2513で電圧レベルの検出が行われ、所定の設定レベルを超えているとして判定回路2514で異常と判定される。従って、リレー接点111に対して溶着が検出される。同様にして、両リレー接点111,112が溶着している場合には、判定回路2514,2524の双方から異常と判定される。従って、いずれの場合でも、開閉器11のリレー接点毎の溶着状態検出が正常に行われる。なお、各電圧モニタ回路251,252は、DCカット回路2511,2521に入力される直流分を遮断して交流成分のみを全て通過させ、サブグランドラインS−GNDに帰還させる構成を採用しているため、後述するように、グランドラインGNDに帰還させる構成の場合に比べると、ZCT12での一次側のラインでの鎖交磁束数を平衡にでき、その結果、電圧モニタ回路251,252の存在にも関わらず、漏電検出回路26の正常動作を確保することができる。なお、電圧検出回路2513,2523はデジタル処理で行われてもよく、従って、マイクロコンピュータを用いて判定回路2514,2524をソフトウエアで判定処理してもよい。   Next, if one of the relay contacts 111 and 112 of the switch 11 is welded, for example, the relay contact 111 is welded, a voltage is generated only in the DC cut circuit 2511 by the alternating current input through the alternating current line L1. . The generated voltage is rectified by the rectifier circuit 2512, the voltage level is detected by the voltage detection circuit 2513, and is determined to be abnormal by the determination circuit 2514 as exceeding a predetermined set level. Therefore, welding is detected with respect to the relay contact 111. Similarly, when both relay contacts 111 and 112 are welded, it is determined that both of the determination circuits 2514 and 2524 are abnormal. Therefore, in any case, the welding state detection for each relay contact of the switch 11 is normally performed. The voltage monitor circuits 251 and 252 adopt a configuration in which the DC component input to the DC cut circuits 2511 and 2521 is cut off, only the AC component is allowed to pass through, and fed back to the sub-ground line S-GND. Therefore, as will be described later, the number of flux linkages on the primary side line in the ZCT 12 can be balanced as compared with the case where the configuration is fed back to the ground line GND. As a result, the voltage monitor circuits 251 and 252 are present. Nevertheless, the normal operation of the leakage detection circuit 26 can be ensured. Note that the voltage detection circuits 2513 and 2523 may be digitally processed. Therefore, the determination circuits 2514 and 2524 may be determined by software using a microcomputer.

また、図1において、漏電検出回路23は充電動作中の異常の有無を検知するもので、詳細は図3に示す。   Further, in FIG. 1, a leakage detection circuit 23 detects the presence or absence of abnormality during the charging operation, and details are shown in FIG.

図3は、漏電検出回路23の一例を示す詳細なブロック図である。図3において、まず、負荷部50はプラグP2と接続されるプラグTLを有し、このプラグTLを介して、負荷部50に交流ラインL1,L2、グランドラインGND及び制御信号ラインが接続可能にされている。負荷部50は、インバータ方式の公知の充電制御回路51,リレー52及び充放電可能なバッテリ(蓄電池)53が備えられている。なお、バッテリ53からの出力側は図略している。また、充電制御回路51は種々の方式が採用可能であり、例えば交流ラインL1、L2の電圧を一旦チャージし、高周波でスイッチングして所定の直流電圧に変換し、リレー52を介してバッテリ53に、例えば十数アンペア程度の電流で充電するものである。リレー52は、満充電時の充電動作を停止させるためのものである。   FIG. 3 is a detailed block diagram illustrating an example of the leakage detection circuit 23. In FIG. 3, first, the load unit 50 has a plug TL connected to the plug P2, and the AC line L1, L2, the ground line GND, and the control signal line can be connected to the load unit 50 through the plug TL. Has been. The load unit 50 includes an inverter-type known charge control circuit 51, a relay 52, and a chargeable / dischargeable battery (storage battery) 53. The output side from the battery 53 is not shown. The charging control circuit 51 can adopt various methods. For example, the voltage of the AC lines L1 and L2 is temporarily charged, switched at a high frequency to be converted into a predetermined DC voltage, and then supplied to the battery 53 via the relay 52. For example, the battery is charged with a current of about a dozen amperes. The relay 52 is for stopping the charging operation when fully charged.

また、交流ラインL1,L2間にはコンデンサC50が、交流ラインL1とGND間にはコンデンサC51が、交流ラインL2とGND間にはコンデンサC53がそれぞれ接続されている。これらのコンデンサC50,C51,C52は、プラグP2とプラグTLとが接続されて充電動作が開始されると、充電制御回路51内の変換電圧レベルと交流ラインL1,L2の電圧レベルとの間の差を吸収するためのものである。また、充電制御回路51内で高周波でスイッチング動作を行うことで、高周波ノイズの電流が流れ、同様に電位差を生じて、コンデンサの少なくとも1つにそれぞれのレベルのノイズ電流が流れることになる。そして、上記のような電流によって、充電監視装置1の交流ラインL1,L2間に電流レベル差を生じることとなる。同様に、電力系ライン、各接続用のプラグ、バッテリ53まわりの絶縁性の低下乃至はグランドや他の電圧を有する部位との短絡などに起因して生じる漏電によっても交流ラインL1、L2間に電流レベル差が生じる。   A capacitor C50 is connected between the AC lines L1 and L2, a capacitor C51 is connected between the AC line L1 and GND, and a capacitor C53 is connected between the AC lines L2 and GND. These capacitors C50, C51, and C52 are connected between the conversion voltage level in the charge control circuit 51 and the voltage levels of the AC lines L1 and L2 when the plug P2 and the plug TL are connected and the charging operation is started. It is for absorbing the difference. Further, by performing a switching operation at a high frequency in the charge control circuit 51, a high-frequency noise current flows, similarly, a potential difference is generated, and a noise current of each level flows in at least one of the capacitors. A current level difference is generated between the AC lines L1 and L2 of the charge monitoring device 1 due to the current as described above. Similarly, leakage between the AC lines L1 and L2 due to a power system line, a plug for each connection, a decrease in insulation around the battery 53, or a short circuit with a ground or other part having a voltage, etc. A current level difference occurs.

ZCT12は、かかる電流レベルの差を検出するもので、コイルの両端に、交流ラインL1,L2、サブグランドラインS−GNDを流れる通常60Hzで互いに逆向きの電流のそれぞれによって生じる(逆向きの)各鎖交磁束数の差分に応じた電圧を誘起するものである。従って、交流ラインL1,L2、サブグランドラインS−GNDに正常な交流電流が流れている間は、互いに逆向きの各鎖交磁束数は等しく、差分は零となり、出力がないことになる一方、いずれかの交流ラインに漏電電流が流れたり、他部からの電流が重畳されたりすると、交流ラインL1,L2間の電流レベルが異なるため、コイルの両端に差分電圧が発生することになる。なお、図2で説明したように、交流ラインL1.L2から流入する交流電流は、電圧モニタ回路251,252の入力段にDCカット回路2511,2521を設けることで、サブグランドラインS−GNDを介して、その交流電流成分を確実に帰還させているので、充電中において漏電を誤検出することもない。   The ZCT 12 detects such a difference in current level, and is generated by currents that are opposite to each other at normal 60 Hz flowing through the AC lines L1 and L2 and the sub-ground line S-GND at both ends of the coil (reverse directions). A voltage corresponding to the difference in the number of flux linkages is induced. Accordingly, while normal AC currents are flowing through the AC lines L1, L2 and the sub-ground line S-GND, the numbers of flux linkages in opposite directions are equal, the difference is zero, and there is no output. When a leakage current flows through one of the AC lines or when a current from another part is superimposed, the current level between the AC lines L1 and L2 is different, so that a differential voltage is generated at both ends of the coil. As described in FIG. 2, the AC lines L1. The AC current flowing in from L2 is reliably fed back through the sub-ground line S-GND by providing DC cut circuits 2511 and 2521 at the input stage of the voltage monitor circuits 251 and 252. Therefore, there is no false detection of leakage during charging.

中点グランド回路231は、電圧抑圧回路として機能するもので、ZCT12のコイルの両端に抵抗値の等しい2個の抵抗R1,R2からなる直列回路と、容量値の等しい2個のコンデンサC1,C2からなる直列回路とを並列接続し、かつ抵抗R1,R2の中点及びコンデンサC1,C2の中点をグランドに接続したものである。コイルの検出電圧は、中点グランド回路231を経て差動増幅回路232に入力されるようになっている。   The mid-point ground circuit 231 functions as a voltage suppression circuit, and includes a series circuit composed of two resistors R1 and R2 having the same resistance value at both ends of the coil of the ZCT 12, and two capacitors C1 and C2 having the same capacitance value. Are connected in parallel, and the midpoints of the resistors R1 and R2 and the midpoints of the capacitors C1 and C2 are connected to the ground. The detected voltage of the coil is input to the differential amplifier circuit 232 via the midpoint ground circuit 231.

差動増幅回路232は、2個のオペアンプからなり、ZCT12のコイルの端末をそれぞれ入力端子に接続し、他方の入力端子のグランドとの差分を増幅して出力すると共に、両オペアンプの出力の差分を得るようにしたものである。1個のオペアンプで差分を増幅して出力する態様では、アンプのオフセット電圧が差分電圧に影響して、その分の誤差を含む可能性があるが、2個のオペアンプを並設して採用することで、両オフセット電圧が相殺され、零電位との間で入力電圧の差分を増幅することになって、高い精度が確保できることとなる。   The differential amplifier circuit 232 is composed of two operational amplifiers, each of which connects the terminal of the coil of the ZCT 12 to the input terminal, amplifies the difference from the ground of the other input terminal, and outputs the difference. It is something to get. In the mode in which the difference is amplified and output by one operational amplifier, the offset voltage of the amplifier affects the differential voltage and may contain an error, but two operational amplifiers are used in parallel. Thus, both offset voltages are canceled out, and the difference in input voltage with respect to zero potential is amplified, so that high accuracy can be ensured.

ローパスフィルタ233は、漏電電流の周波数特性を加味したフィルタである。漏電電流が多重周波数を含む場合に採用されるフィルタで、その周波数と信号減衰特性は知覚の閾値に合わせてあり、低い周波数側になるほど感度が高く、高い周波数側に移行するほど感度が低くなるように回路素子の値が設定されている。DCカットフィルタ234は、交流ラインL1,L2に重畳される、漏電以外の一時的な過渡電流に基づいて検出される差分電圧から直流成分を遮断するもので、代表的には直流分カット用のコンデンサで構成されている。整流平滑回路235は、DCカットフィルタ234の出力信号を整流し、さらに平滑して出力するものである。整流平滑回路235の整流動作を、DCカットフィルタ234で直流分をカットしていることから、全波整流方式の回路構成とすることができ、かつ全波整流とすることで、直流成分を抑圧した後に、感度及び応答性を上げることが可能となる。判定回路236は、入力信号のレベルと予め設定された基準レベルとを比較する比較回路として構成されたもので、入力信号レベルが基準レベルを超えた時、漏電発生とみなして、励磁コイル230への供給電流を停止し、電磁リレー11を充電中の閉状態から、異常時の開状態に切り換えるものである。なお、判定回路236は入力信号をデジタル信号に変換し、マイクロコンピュータを利用してソフトウエアによって比較判定処理する態様でもよい。     The low-pass filter 233 is a filter that takes into account the frequency characteristics of the leakage current. This filter is used when the leakage current includes multiple frequencies. Its frequency and signal attenuation characteristics are matched to the perception threshold, and the sensitivity is higher at lower frequencies, and the sensitivity is lower at higher frequencies. As described above, the values of the circuit elements are set. The DC cut filter 234 blocks a DC component from a differential voltage detected based on a temporary transient current other than leakage that is superimposed on the AC lines L1 and L2, and is typically used for cutting a DC component. Consists of capacitors. The rectifying / smoothing circuit 235 rectifies the output signal of the DC cut filter 234, further smoothes it, and outputs it. Since the DC component is cut by the DC cut filter 234 in the rectifying operation of the rectifying / smoothing circuit 235, a full-wave rectification circuit configuration can be obtained, and the DC component can be suppressed by using full-wave rectification. After that, sensitivity and responsiveness can be increased. The determination circuit 236 is configured as a comparison circuit that compares the level of the input signal with a preset reference level. When the input signal level exceeds the reference level, it is considered that leakage has occurred and is sent to the excitation coil 230. Is stopped, and the electromagnetic relay 11 is switched from the closed state during charging to the open state at the time of abnormality. Note that the determination circuit 236 may convert the input signal into a digital signal and perform comparison determination processing by software using a microcomputer.

また、本実施形態では、単相200V交流、60Hzの例で説明したが、本発明は、種々の外部交流電源(電圧、周波数)に適用可能である。また、本発明は、エンジンと電動機の2つの動力源を持つ自動車や電気自動車のバッテリへの充電システム、家庭用、電動機器のバッテリへの蓄電システム、太陽光発電や風力発電における蓄電システム等にも適用可能である。   Moreover, although this embodiment demonstrated the example of single phase 200V alternating current and 60 Hz, this invention is applicable to various external alternating current power supplies (voltage, frequency). In addition, the present invention is applied to a battery charging system for an automobile or an electric vehicle having two power sources of an engine and an electric motor, a battery storage system for household and electric equipment, a power storage system for solar power generation and wind power generation, and the like. Is also applicable.

本発明に係る充電監視装置を蓄電池(バッテリ)を備える充電装置に適用した場合の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment at the time of applying the charge monitoring apparatus which concerns on this invention to a charging device provided with a storage battery (battery). 電圧モニタの一例を示す詳細なブロック図である。It is a detailed block diagram showing an example of a voltage monitor. 漏電検出回路の一例を示す詳細なブロック図である。It is a detailed block diagram showing an example of a leakage detection circuit.

符号の説明Explanation of symbols

1 充電監視装置
11 電磁リレー(開閉器)
111,112 リレー接点
12 零相変流器(電流検出回路)
23 漏電検出回路
230 励磁コイル
231 中点グランド回路
232 差動増幅回路
233 ローパスフィルタ
234 DCカットフィルタ
235 整流平滑回路
236 判定回路
25 電圧モニタ(接点状態検出手段)
2511,2521 DCカット回路
2512,2522 整流回路
2513,2523 電圧検出回路
2514,2524 判定回路
26 テスト回路(接点状態検出手段の一部)
L1,L2 交流ライン
GVD グランドライン
S−GND サブグランドライン
P1,P2 プラグ
1 Charge monitoring device 11 Electromagnetic relay (switch)
111, 112 Relay contact 12 Zero-phase current transformer (current detection circuit)
DESCRIPTION OF SYMBOLS 23 Leakage detection circuit 230 Excitation coil 231 Mid-point ground circuit 232 Differential amplification circuit 233 Low-pass filter 234 DC cut filter 235 Rectification smoothing circuit 236 Determination circuit 25 Voltage monitor (contact state detection means)
2511, 2521 DC cut circuit 2512, 2522 Rectifier circuit 2513, 2523 Voltage detection circuit 2514, 2524 Determination circuit 26 Test circuit (part of contact state detection means)
L1, L2 AC line GVD Ground line S-GND Sub-ground line P1, P2 Plug

Claims (2)

外部交流電源と該外部交流電源からのグランドライン及び2本の交流ラインを経て充電される蓄電池との間に介設され、前記2本の交流ラインを個々に開閉する各リレー接点を有する開閉器を備えた充電監視装置において、
前記開閉器を開状態に指示した状態において、前記開閉器よりも前記蓄電池側における前記各交流ラインと前記グランドラインから分岐したサブグランドラインとの間の電圧の発生をそれぞれ検出する接点状態検出手段と、
前記開閉器よりも前記外部交流電源側において前記2本の交流ライン及び前記サブグランドラインに流れる電流のレベルの差分を検出する零相変流器を有し、差分が有る場合に漏電と判断する漏電検出手段とを備えたことを特徴とする充電監視装置。
A switch having a relay contact interposed between an external AC power source and a ground battery from the external AC power source and a storage battery charged via the two AC lines, and individually opens and closes the two AC lines. In the charge monitoring device with
Contact state detecting means for detecting the occurrence of voltage between each AC line and the sub-ground line branched from the ground line on the storage battery side of the switch in a state in which the switch is in the open state. When,
It has a zero-phase current transformer that detects the difference between the levels of the currents flowing through the two AC lines and the sub-ground line on the external AC power supply side of the switch, and determines that there is a leakage if there is a difference. A charge monitoring apparatus comprising: a leakage detection means.
接点状態検出手段は、その入力段に直流分を遮断する直流成分遮断回路を有していることを特徴とする請求項1記載の充電監視装置。   2. The charge monitoring apparatus according to claim 1, wherein the contact state detecting means has a DC component blocking circuit for blocking a DC component at an input stage thereof.
JP2007192246A 2007-07-24 2007-07-24 Charge monitoring device Active JP5015685B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2007192246A JP5015685B2 (en) 2007-07-24 2007-07-24 Charge monitoring device
AU2008280932A AU2008280932B8 (en) 2007-07-24 2008-07-23 Charging monitor
BRPI0814639-0A BRPI0814639A2 (en) 2007-07-24 2008-07-23 Charge monitor
EP08791454.5A EP2184827B1 (en) 2007-07-24 2008-07-23 Charge monitoring device
RU2010106114/07A RU2444103C2 (en) 2007-07-24 2008-07-23 Device to monitor charging
US12/669,613 US8278882B2 (en) 2007-07-24 2008-07-23 Charging monitor
PCT/JP2008/063197 WO2009014143A1 (en) 2007-07-24 2008-07-23 Charge monitoring device
CA2693300A CA2693300C (en) 2007-07-24 2008-07-23 Charging monitor
CN2008801001466A CN101755371B (en) 2007-07-24 2008-07-23 Charge monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192246A JP5015685B2 (en) 2007-07-24 2007-07-24 Charge monitoring device

Publications (2)

Publication Number Publication Date
JP2009033790A true JP2009033790A (en) 2009-02-12
JP5015685B2 JP5015685B2 (en) 2012-08-29

Family

ID=40403701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192246A Active JP5015685B2 (en) 2007-07-24 2007-07-24 Charge monitoring device

Country Status (1)

Country Link
JP (1) JP5015685B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109872A (en) * 2009-11-20 2011-06-02 Panasonic Electric Works Co Ltd Power supply control device
JP2013027144A (en) * 2011-07-21 2013-02-04 Hitachi Cable Ltd Vehicle charging device and vehicle charging system
AU2010257368B2 (en) * 2009-12-22 2013-08-01 Panasonic Corporation Power Feeding Control Apparatus
JP2015180182A (en) * 2014-03-19 2015-10-08 エルエス産電株式会社Lsis Co., Ltd. Cable installment type charging control device and method of operating the same
JP2016063616A (en) * 2014-09-18 2016-04-25 東京瓦斯株式会社 Electric power system, small-output power generation unit, and power storage unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147943A (en) * 1977-05-31 1978-12-23 Mitsubishi Electric Corp Ground fault detector
JPS54121175A (en) * 1978-03-10 1979-09-20 Matsushita Electric Works Ltd Leak detector
JPS5951431A (en) * 1982-08-17 1984-03-24 シ−メンス・アクチエンゲゼルシヤフト Leakage breaker
JPH07123517A (en) * 1993-10-18 1995-05-12 Toyota Motor Corp Charger for electric automobile
JP2004227809A (en) * 2003-01-20 2004-08-12 Fuji Electric Fa Components & Systems Co Ltd Leakage detection circuit of ground fault interrupter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147943A (en) * 1977-05-31 1978-12-23 Mitsubishi Electric Corp Ground fault detector
JPS54121175A (en) * 1978-03-10 1979-09-20 Matsushita Electric Works Ltd Leak detector
JPS5951431A (en) * 1982-08-17 1984-03-24 シ−メンス・アクチエンゲゼルシヤフト Leakage breaker
JPH07123517A (en) * 1993-10-18 1995-05-12 Toyota Motor Corp Charger for electric automobile
JP2004227809A (en) * 2003-01-20 2004-08-12 Fuji Electric Fa Components & Systems Co Ltd Leakage detection circuit of ground fault interrupter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109872A (en) * 2009-11-20 2011-06-02 Panasonic Electric Works Co Ltd Power supply control device
US8541978B2 (en) 2009-11-20 2013-09-24 Panasonic Corporation Feed control device
AU2010257368B2 (en) * 2009-12-22 2013-08-01 Panasonic Corporation Power Feeding Control Apparatus
US9096139B2 (en) 2009-12-22 2015-08-04 Panasonic Intellectual Property Management Co., Ltd. Power feeding control apparatus
JP2013027144A (en) * 2011-07-21 2013-02-04 Hitachi Cable Ltd Vehicle charging device and vehicle charging system
JP2015180182A (en) * 2014-03-19 2015-10-08 エルエス産電株式会社Lsis Co., Ltd. Cable installment type charging control device and method of operating the same
US9751412B2 (en) 2014-03-19 2017-09-05 Lsis Co., Ltd. Cable installment type charging control device and method of operating the same
JP2016063616A (en) * 2014-09-18 2016-04-25 東京瓦斯株式会社 Electric power system, small-output power generation unit, and power storage unit

Also Published As

Publication number Publication date
JP5015685B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
AU2008280932B2 (en) Charging monitor
JP5015686B2 (en) Charge monitoring device
JP5823057B2 (en) Power converter and fault diagnosis method thereof
JP4760428B2 (en) Earth leakage breaker
JPH0199445A (en) Backup protection switch for blocking reverse power flow to interruption-free power source
JP5015685B2 (en) Charge monitoring device
JPH07143669A (en) Circuit breaker at time of ground bad
KR20160081058A (en) Method of checking state of pra
JP2009033789A (en) Charging monitor
US5768077A (en) Earthing wire disconnection detection apparatus and leakage detection apparatus having an earthing wire disconnection detection function conductor
KR101033699B1 (en) Circuit for preventing a earth leakage circuit breaker from miss-operating by high frequency
AU2022209234A1 (en) Arc detection
US7307236B2 (en) Charge and weld gating system with safety circuit
JP3772038B2 (en) AC generator operation protection device
JP5535880B2 (en) Ungrounded AC circuit ground fault detector
RU2444103C2 (en) Device to monitor charging
JP2021004855A (en) Ground fault detection method and device
KR100460906B1 (en) Charging system controlling device of electric vehicle
JP2022065508A (en) Energization state diagnostic circuit and power supply device
JP2007252123A (en) Power converter
TW202129299A (en) Motor control device and insulation resistance detection method of same
KR20210119637A (en) Multi-tap Concent having leakage and/or electric shock protection
JPH0624413B2 (en) Capacitor failure detection device
JPH0630535B2 (en) Breakage detection device for ground type voltage transformer
JPH0756497B2 (en) Insulation resistance measuring device overcurrent protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5015685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150