JPH0270727A - Biaxially oriented thermoplastic resin film - Google Patents

Biaxially oriented thermoplastic resin film

Info

Publication number
JPH0270727A
JPH0270727A JP63223047A JP22304788A JPH0270727A JP H0270727 A JPH0270727 A JP H0270727A JP 63223047 A JP63223047 A JP 63223047A JP 22304788 A JP22304788 A JP 22304788A JP H0270727 A JPH0270727 A JP H0270727A
Authority
JP
Japan
Prior art keywords
film
thermoplastic resin
particle concentration
depth
biaxially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63223047A
Other languages
Japanese (ja)
Other versions
JPH0649780B2 (en
Inventor
Koichi Abe
晃一 阿部
Iwao Okazaki
巌 岡崎
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63223047A priority Critical patent/JPH0649780B2/en
Publication of JPH0270727A publication Critical patent/JPH0270727A/en
Publication of JPH0649780B2 publication Critical patent/JPH0649780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve scratch resistance by specifying the distribution of the concn. of inert particles in a film consisting mainly of a thermoplastic resin and the inert particles. CONSTITUTION:A pelletized thermoplastic resin contg. a specified amt. of inert particles with a degree of vacuum of not more than 1.6 is extruded into a sheet and set by cooling to give an unstretched film, which is stretched in the longitudinal direction at a temp. within the range of from 10 deg.C lower to 10 deg.C higher than the glass transition paint of the resin at a stretching rate of 1,000-10,000%/min, and then stretched in the transverse direction at a relative humidity of 50% and a temp. within the range of from 10 deg.C lower to 30 deg.C higher than the glass transition paint at the stretching rate of 1,000-20,000%/min to give a biaxially oriented thermoplastic resin film wherein a depth (a distance from the surface), A nm, at a point where the particle concn. is one tenth of that at the surface and a depth, B nm, at a point (B>A) where the particle concn. is the same as that at the surface satisfy relations I and II in a distribution curve of the particle concn. measured from at least one surface of the film to a point of 3,000nm deep.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二軸配向熱可塑性樹脂フィルム並びにこれを用
いた磁気記録媒体及び感熱転写材おlに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a biaxially oriented thermoplastic resin film, and a magnetic recording medium and a thermal transfer material using the same.

[従来の技術] 二軸配向熱可塑性樹脂フィルムとしては、ポリエステル
に不活性無機粒子を含有せしめたフィルムが知られてい
る(たとえば、特開昭59−171623@公報)。磁
気記録媒体、感熱転写材料としてはポリエステルフィル
ムの少なくとも片面に磁性層や感熱転写層を設けてなる
ものが知られている(たとえば特開昭59−20322
8M公報、特開昭62−95289号公報)。
[Prior Art] As a biaxially oriented thermoplastic resin film, a film made of polyester containing inert inorganic particles is known (for example, JP-A-59-171623@). As magnetic recording media and heat-sensitive transfer materials, there are known ones in which a magnetic layer or a heat-sensitive transfer layer is provided on at least one side of a polyester film (for example, Japanese Patent Laid-Open No. 59-20322
8M Publication, Japanese Unexamined Patent Publication No. 62-95289).

[発明が解決しようとする課題] しかし、上記従来の二軸配向熱可塑性樹脂フィルムは、
フィルムの加工工程、たとえば包装用途における印刷工
程、磁気媒体用途にお(プる磁性層塗布・カレンダー工
程などの工程速度の増大にともない、接触するロールな
どでフィルムの表面に傷がつくという欠点が最近、問題
となってきている。また、使用走行条件の苛酷化にとも
ない上記従来の磁気記録媒体や感熱転写材料でもその表
面や衷面に傷がつくという欠点が最近、問題となってき
ている。
[Problems to be Solved by the Invention] However, the above conventional biaxially oriented thermoplastic resin film has the following problems:
As process speeds increase in film processing processes, such as printing processes for packaging, magnetic layer coating, and calendaring processes, the disadvantage is that the surface of the film is scratched by contact rolls, etc. Recently, this has become a problem.In addition, as the operating conditions have become more severe, the disadvantage of scratches on the surface and underside of the conventional magnetic recording media and thermal transfer materials mentioned above has recently become a problem. .

本発明はかかる課題を解決し、高速走行した時も傷がつ
かない(以下耐スクラッチ性良好という)フィルム、磁
気記録媒体、感熱転写材料を提供することを目的とする
It is an object of the present invention to solve this problem and provide a film, a magnetic recording medium, and a heat-sensitive transfer material that do not get scratched even when running at high speed (hereinafter referred to as having good scratch resistance).

[課題を解決するための手段] 本発明は、 (1)熱可塑性樹脂と不活性粒子からなる組成物を主た
る成分とするフィルムでおって、該フィルムの少なくと
も片側の表面から深さ3000nmまで測定した不活性
粒子の濃度分布曲線において、粒子濃度が表層粒子濃度
値の10倍となる深さ(表面からの距離)Anmと表層
粒子濃度値と同じ粒子濃度となる深さBnm (B>A
>の関係が下式(i)および(11)を満足することを
特徴とする二軸配向熱可塑性樹脂フィルム並びにこれを
用いた磁気記録媒体及び感熱転写材料に関するものであ
る。
[Means for Solving the Problems] The present invention provides: (1) A film whose main component is a composition consisting of a thermoplastic resin and inert particles, which is measured to a depth of 3000 nm from the surface of at least one side of the film. In the concentration distribution curve of inert particles, the depth (distance from the surface) Anm where the particle concentration is 10 times the surface layer particle concentration value and the depth Bnm where the particle concentration is the same as the surface layer particle concentration value (B>A
The present invention relates to a biaxially oriented thermoplastic resin film, and a magnetic recording medium and a thermal transfer material using the biaxially oriented thermoplastic resin film, in which the relationship of > satisfies the following formulas (i) and (11).

10≦B−A≦1500 ・・・ (i)5≦A≦50
0     ・・・ (ii)本発明における熱可塑性
樹脂は特に限定されず、ポリエステル、ポリアミド、ポ
リオレフィン、ポリフェニレンスルフィドなどを用いる
ことができるが、ポリエステル、特に、エチレンテレフ
タレート、エチレンα、β−ビス(2−クロルフェノキ
シ)エタン−4,4−ジカルボキシレート、エチレン2
.6−ナフタレート単位から選ばれた少なくとも一種の
構造単位を主要構成成分とするポリニスデルの場合に本
発明の粒子濃度構成にした時の効果が一層顕著になるの
で望ましい。
10≦B-A≦1500... (i) 5≦A≦50
(ii) The thermoplastic resin in the present invention is not particularly limited, and polyester, polyamide, polyolefin, polyphenylene sulfide, etc. can be used, but polyester, especially ethylene terephthalate, ethylene α, β-bis(2 -chlorophenoxy)ethane-4,4-dicarboxylate, ethylene 2
.. It is preferable to use polynisder whose main constituent is at least one type of structural unit selected from 6-naphthalate units because the effect when the particle concentration structure of the present invention is adopted is even more remarkable.

本発明における不活性粒子は真球度が1.6以下、好ま
しくは1.5以下、ざ゛らに好ましくは1゜3以下であ
る場合に耐スクラッチ性がより一層良好となるので特に
望ましい。不活性粒子の種類は特に限定されないが、コ
ロイダルシリカに起因する実質的に球形のシリカ、酸化
タングステン、10%重呈重量減量度が350℃以上の
有機高分子粒子の場合に耐スクラッチ性がより一層良好
となるので特に望ましい。粒子の平均粒径は特に限定さ
れず好ましい範囲も種類によって異なるが、平均粒径を
c (nm)とした時、上記(i)式における(B−A
>との関係が、下式(a)、好ましくは(b)を満足す
る場合に耐スクラッチ性がより一層良好となり、ざらに
平均粒径が10〜500nm、特に30〜450nmの
場合に耐スクラッチ性がより一層良好となるので特に望
ましい。
It is particularly desirable that the inert particles used in the present invention have a sphericity of 1.6 or less, preferably 1.5 or less, and most preferably 1.3 or less, since the scratch resistance will be even better. The type of inert particles is not particularly limited, but substantially spherical silica caused by colloidal silica, tungsten oxide, and organic polymer particles with a 10% weight loss of 350°C or higher have better scratch resistance. This is particularly desirable since it provides even better results. The average particle size of the particles is not particularly limited and the preferable range varies depending on the type, but when the average particle size is c (nm), (B-A in the above formula (i)
The scratch resistance becomes even better when the relationship between This is particularly desirable because the properties are even better.

1.0≦c/ (B−A>≦3.5 −−(a)1.3
≦c/ (B−A)≦3.0 ・・(b)本発明フィル
ムは上記組成物を主要成分とするが、本発明の目的を阻
害しない範囲内で、他種ポリマをブレンドしてもよいし
、また酸化防止剤、熱安定剤、滑剤、紫外線吸収剤、核
生成剤などの無殿または有機添加剤が通常添加される程
度添加されていてもよい。また、不活性粒子の他に内部
析出粒子を含有していてもよい。本発明における内部析
出粒子とは、ポリエステル重合時に添加したカルシウム
化合物、マグネシウム化合物、リチウム化合物の少なく
とも一種の化合物とポリエステル構成成分とが結合して
生成する粒子である。
1.0≦c/ (B-A>≦3.5 --(a)1.3
≦c/ (B-A)≦3.0 (b) The film of the present invention contains the above composition as a main component, but other types of polymers may be blended within the range that does not impede the purpose of the present invention. Alternatively, non-precipitating or organic additives such as antioxidants, heat stabilizers, lubricants, ultraviolet absorbers, nucleating agents, etc. may be added to the extent that they are normally added. Further, in addition to inert particles, internally precipitated particles may be contained. The internally precipitated particles in the present invention are particles produced by the combination of a polyester component and at least one of a calcium compound, a magnesium compound, and a lithium compound added during polyester polymerization.

なお、本発明の内部析出粒子には、本発明の目的を阻害
しない範囲内で、リン元素および微量の他の金属成分、
たとえば、亜鉛、コバルト、アンチモン、ゲルマニウム
、チタンなどが含まれていてもよい。
The internally precipitated particles of the present invention may contain elemental phosphorus and trace amounts of other metal components, within a range that does not impede the purpose of the present invention.
For example, zinc, cobalt, antimony, germanium, titanium, etc. may be included.

本発明フィルムは上記組成物を二軸配向せしめたフィル
ムである。未延伸フィルムでは、滑り性、耐削れ性が不
良となるので好ましくない。二軸配向の程度は特に限定
されないが、分子配向の程度を表わすフィルムのヤング
率が長手方向、幅方向ともに、350kg/mm2、好
ましくは400kg/mm2以上の場合に耐スクラッチ
性が一層良好となるので特に望ましい。
The film of the present invention is a film in which the above composition is biaxially oriented. An unstretched film is not preferred because it has poor slip properties and abrasion resistance. Although the degree of biaxial orientation is not particularly limited, the scratch resistance is better when the Young's modulus of the film, which represents the degree of molecular orientation, is 350 kg/mm2, preferably 400 kg/mm2 or more in both the longitudinal direction and the width direction. Therefore, it is particularly desirable.

本発明フィルムは、フィルムの少なくとも片側の表面か
ら深さ3000nmまで測定した不活性粒子の濃度分布
曲線において、粒子濃度が表層粒子濃度値の10倍とな
る深さ(表面からの距離)Anmと表層粒子濃度値と同
じ粒子濃度となる深さBnm (B>A、すなわちBは
Aより深い点である)の関係が下式(i)、好ましくは
(io)、さらに好ましくは(i”)を満足することが
必要である。
In the film of the present invention, in the concentration distribution curve of inert particles measured from the surface of at least one side of the film to a depth of 3000 nm, the depth (distance from the surface) Anm at which the particle concentration is 10 times the surface layer particle concentration value and the surface layer The relationship between the particle concentration value and the depth Bnm at which the particle concentration is the same (B>A, that is, B is a point deeper than A) is expressed by the following formula (i), preferably (io), and more preferably (i''). It is necessary to be satisfied.

10≦B−A≦1500  ・・・ (1)30≦B−
A≦1300  ・・・ (io)50≦B−A≦10
00  ・・・ (i”)フィルムの両面とものB−A
が上記の範囲より小さくても、逆に大きくても耐スクラ
ッチ性が不良となるので好ましくない。なお、深さがA
より深い領域で3000nmまでの間に表層粒子濃度値
と同じ粒子濃度となる点が存在しない場合はB=300
0nmと76゜ 本発明フィルムは、フィルムの少なくとも片側の表面か
ら深さ3000nmまで測定した不活性粒子の濃度分布
曲線において、粒子濃度が表層粒子濃度値の10倍とな
る深さ(表面からの距離)Anmが下式(ii)、好ま
しくは(ii’)、ざらに好ましくは(ii”)を満足
することが必要である。
10≦B-A≦1500... (1) 30≦B-
A≦1300... (io)50≦B-A≦10
00 ... (i”) Both sides of the film and thing B-A
If it is smaller than the above range, or conversely if it is larger than the above range, the scratch resistance will be poor, so it is not preferable. In addition, the depth is A
If there is no point in the deeper region up to 3000 nm where the particle concentration is the same as the surface layer particle concentration value, B = 300.
0 nm and 76° In the inert particle concentration distribution curve measured from the surface of at least one side of the film to a depth of 3000 nm, the depth (distance from the surface) where the particle concentration is 10 times the surface particle concentration value ) Anm must satisfy the following formula (ii), preferably (ii'), more preferably (ii'').

5≦A≦500   ・・・ (ii)5≦A≦250
   ・・・ (iビ)10≦A≦100   ・・・
 (i ”)粒子濃度が表層粒子濃度値の10倍となる
深さ(表面からの距離)Anmが上記の範囲より小さく
ても逆に大きくても耐スクラッチ性が不良となるので好
ましくない。
5≦A≦500 ... (ii) 5≦A≦250
... (i-bi) 10≦A≦100 ...
(i'') If the depth (distance from the surface) Anm at which the particle concentration is 10 times the surface layer particle concentration value is smaller than the above range, or conversely if it is larger than the above range, the scratch resistance will be poor, which is not preferable.

本発明フィルムは上記粒子濃度分布構成を満足する面の
10点平均粗さRZと最大高ざRtの比、RZ/Rtが
0.85以上である場合に耐スクラッチ性がより一層良
好となるので特に望ましい。
The film of the present invention has better scratch resistance when the ratio of the 10-point average roughness RZ to the maximum height Rt of the surface satisfying the above particle concentration distribution structure, RZ/Rt, is 0.85 or more. Particularly desirable.

本発明フィルムは上記粒子濃度分布構成を満足する面の
中心線平均粗ざRaと最大高ざRtの比、Rt/Raが
9.0以下、特に8.0以下の場合に耐スクラッチ性が
より一層良好となるので特に望ましい。
The film of the present invention has better scratch resistance when the ratio of the center line average roughness Ra to the maximum height Rt of the surface satisfying the above particle concentration distribution structure, Rt/Ra, is 9.0 or less, particularly 8.0 or less. This is particularly desirable since it provides even better results.

また、上記粒子濃度分布構成を満足する面の中心線深さ
Rpと最大高ざRtの比、R1/Rpが1.4〜2.0
1特に、1.6〜2.0の場合に耐スクラッチ性がより
一層良好となるので特に望ましい。
In addition, the ratio of the center line depth Rp to the maximum height Rt of the surface satisfying the above particle concentration distribution configuration, R1/Rp, is 1.4 to 2.0.
1 is particularly desirable in the case of 1.6 to 2.0 because the scratch resistance becomes even better.

本発明フィルムは、上記粒子濃度分布構成を満足する面
の平均突起間隔smが6μm以下、好ましくは4.5μ
m以下の場合に耐スクラッチ性がより一層良好となるの
で特に望ましい。
The film of the present invention has an average protrusion spacing sm of 6 μm or less, preferably 4.5 μm on the surface that satisfies the above particle concentration distribution structure.
It is particularly desirable that the scratch resistance is less than m because the scratch resistance becomes even better.

本発明フィルムは、上記粒子濃度分布構成を満足する面
の平均突起高さが10〜200nmの範囲の場合に耐ス
クラッチ性がより一層良好となるので特に望ましい。
The film of the present invention is particularly desirable when the average protrusion height of the surface satisfying the above particle concentration distribution structure is in the range of 10 to 200 nm, since the scratch resistance becomes even better.

本発明フィルムは、上記粒子濃度分布構成を満足する面
の表面から2000nmの範囲の低分子成分含有聞(ポ
リエステルにおける環状3M体など)の含有率が0.6
重量%以下、好ましくは0゜5重量%以下である場合に
耐スクラッチ性がより一層良好となるので特に望ましい
The film of the present invention has a content of low molecular components (such as cyclic 3M in polyester) within a range of 2000 nm from the surface of the surface satisfying the above particle concentration distribution structure of 0.6.
It is particularly desirable that the amount is less than 0.5% by weight, preferably less than 0.5% by weight, since the scratch resistance will be even better.

本発明フィルムは、上記粒子濃度分布構成を満足する面
の表面における上記式(i)でのBの深さまでの範囲の
酸素透過係数が15μm厚さに換算した時、400C/
m2−24時間−atm以下、好ましくは30cc/m
2−24時間−atmの場合に耐スクラッチ性がより一
層良好となるので特に望ましい。
The film of the present invention has an oxygen permeability coefficient of 400 C/1 when converted to a thickness of 15 μm in the range up to the depth of B in the above formula (i) on the surface satisfying the above particle concentration distribution structure.
m2-24 hours-atm or less, preferably 30cc/m
The case of 2 to 24 hours atm is particularly desirable because the scratch resistance becomes even better.

本発明の磁気記録媒体の磁性層の種類は特に限定されず
公知の磁性体、すなわち、γ−酸化鉄、CO含含有−酸
化鉄、二酸化クロム、鉄、コバルト、あるいはそれらの
合金などを用いることができるが、特に鉄、コバルト、
あるいはそれらの合金と有機バインダーからなるいわゆ
るメタル塗布型、および、実質的に有機バインダーを用
いず、蒸着、スパッタリングなどの方法によって形成さ
れた金属薄膜型の磁性層の場合に本発明の効果が特に顕
著になるので特に望ましい。また、バインダーの種類も
特に限定されず、塩化ビニル/酢酸ビニル共重合体、ポ
リビニルブチラール、ポリウレタンなどを用いることが
できる。バックコート層はあってもなくてもよいが、バ
ックコート層を設ける場合は塩化ビニル、酢酸ビニル、
ビニルアルコールおよびそれらの共重合体、ポリウレタ
ン、セルロース誘導体など公知のバインダーを主体とす
るものが使用できる。
The type of magnetic layer of the magnetic recording medium of the present invention is not particularly limited, and known magnetic materials such as γ-iron oxide, CO-containing iron oxide, chromium dioxide, iron, cobalt, or alloys thereof may be used. However, especially iron, cobalt,
The effects of the present invention are particularly effective in the case of so-called metal coating type magnetic layers made of alloys thereof and organic binders, and metal thin film type magnetic layers formed by methods such as vapor deposition and sputtering without using substantially organic binders. This is especially desirable because it becomes noticeable. Further, the type of binder is not particularly limited, and vinyl chloride/vinyl acetate copolymer, polyvinyl butyral, polyurethane, etc. can be used. A back coat layer may or may not be present, but if a back coat layer is provided, vinyl chloride, vinyl acetate,
Those mainly based on known binders such as vinyl alcohol and copolymers thereof, polyurethane, and cellulose derivatives can be used.

磁性層の厚さは特に限定されないが、厚さが3μm以下
の場合に本発明の効果が特に顕著になるので特に望まし
い。
Although the thickness of the magnetic layer is not particularly limited, a thickness of 3 μm or less is particularly desirable because the effects of the present invention are particularly noticeable.

バックコート層を設ける場合の厚さは特に限定されない
が、0.05〜2.5μm、特に、0゜1〜1.5μm
の場合に耐スクラッチ性がより一層良好となるので特に
望ましい。
The thickness when providing a back coat layer is not particularly limited, but it is 0.05 to 2.5 μm, particularly 0.1 to 1.5 μm.
This is particularly desirable since the scratch resistance will be even better.

本発明の感熱転写材わ1の感熱転写層は特に限定されず
、公知のものを用いることができるが基本的には着色剤
、バインダーからなる組成物である。
The heat-sensitive transfer layer of the heat-sensitive transfer material 1 of the present invention is not particularly limited, and known ones can be used, but it is basically a composition consisting of a colorant and a binder.

着色剤としては染料、有機及びまたは無機顔料などを用
いることができる。またバインダーとしてはカルナウバ
ワックスなど公知のものを用いることができる。
As the coloring agent, dyes, organic and/or inorganic pigments, etc. can be used. Further, as the binder, known binders such as carnauba wax can be used.

次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.

まず、所定の熱可塑性樹脂に不活性粒子を含有せしめる
方法としては、重合前、重合中、重合後のいずれに添加
してもよいが、ポリエステルの場合はジオール成分にス
ラリーの形で混合、分散せしめて添加する方法が本発明
の粒子濃度分布構成を満足させるのに有効である。また
、粒子の含有量を調節する方法としては、高濃度のマス
ターポリマを製膜時に稀釈する方法を用い、かつこのマ
スターポリマの溶融粘度を稀釈する熱可塑性樹脂の溶融
粘度より高く、好ましくは500ポイズ以上高くし、か
つ、マスタポリマの成分を調節して希釈する熱可塑性樹
脂より凝集エネルギー密度を小さくしておくことが本発
明の粒子濃度分布構成を満足させるのに有効である。
First, inert particles can be incorporated into a given thermoplastic resin by adding them before, during, or after polymerization, but in the case of polyester, they are mixed and dispersed in the diol component in the form of a slurry. A method of adding at least one element is effective in satisfying the particle concentration distribution structure of the present invention. In addition, as a method for adjusting the particle content, a method is used in which a highly concentrated master polymer is diluted during film formation, and the melt viscosity of this master polymer is higher than that of the thermoplastic resin to be diluted, preferably 500 It is effective to make the cohesive energy density higher than poise and lower than that of the thermoplastic resin to be diluted by adjusting the components of the master polymer to satisfy the particle concentration distribution structure of the present invention.

かくして所定量の不活性粒子を含有する熱可塑性樹脂の
ベレットを必要に応じて乾燥したのち、公知の溶融押出
機に供給し、スリット状のグイからシート状に押出し、
キャスティングロール上で冷却固化せしめて未延伸フィ
ルムを作る。この場合、公知の積層シート用製膜装置(
たとえば、2または3台の押出し機、2または3層のマ
ニホールドなど)を用いて、同種または異種の熱可塑性
樹脂からなる2〜3層構造の未延伸フィルムとし、少な
くとも片面の二軸配向フィルムとしての膜厚d (nm
)とその層に含有する不活性粒子の平均粒径c (nm
>との関係を、0.1≦d/C≦1゜5とし、核層の膜
厚を0.03〜0.5μmとすることは本発明の粒子濃
度分布構成を満足させるのにきわめて有効である。また
、核層の粒子の含有量を3〜45重量%とすることは本
発明の粒子濃度分布構成を満足させるのにきわめて有効
である。また、核層(表面層)に用いる熱可塑性樹脂の
溶融粘度をそれと接触する他層の熱可塑性樹脂の溶融粘
度よりも500ポイズ、好ましくは1000ポイズ程度
高くしておくことが本発明の粒子濃度分布構成を満足さ
せるのにきわめて有効である。また、核層の熱可塑性樹
脂のポリマ流路に、スタティックミキサー、ギヤポンプ
を設置する方法は延伸破れなく、本発明の粒子濃度分布
構成を満足させるのにきわめて有効である。また核層の
熱可塑性樹脂の結晶化パラメータΔTCCIをそれと接
触する他層の熱可塑性樹脂の八TCqよりも小さく、好
ましくは10℃以上小さくしておくことは本発明の粒子
濃度分布構成を満足させるのにきわめて有効である。
After drying the thermoplastic resin pellet containing a predetermined amount of inert particles as necessary, it is fed to a known melt extruder and extruded into a sheet through a slit-like gouer.
It is cooled and solidified on a casting roll to form an unstretched film. In this case, a known film forming apparatus for laminated sheets (
For example, by using two or three extruders, two or three-layer manifolds, etc., an unstretched film with a two- to three-layer structure made of the same or different thermoplastic resins is produced, and at least one side of the film is biaxially oriented. Film thickness d (nm
) and the average particle diameter c (nm
> is 0.1≦d/C≦1゜5, and the thickness of the core layer is 0.03 to 0.5 μm, which is extremely effective in satisfying the particle concentration distribution configuration of the present invention. It is. Furthermore, setting the content of particles in the core layer to 3 to 45% by weight is extremely effective in satisfying the particle concentration distribution structure of the present invention. In addition, the particle concentration of the present invention is such that the melt viscosity of the thermoplastic resin used for the core layer (surface layer) is set higher by about 500 poise, preferably about 1000 poise, than the melt viscosity of the thermoplastic resin of other layers in contact with it. This is extremely effective in satisfying the distribution configuration. Further, the method of installing a static mixer and a gear pump in the polymer flow path of the thermoplastic resin of the core layer is extremely effective in satisfying the particle concentration distribution configuration of the present invention without causing stretching breakage. Furthermore, keeping the crystallization parameter ΔTCCI of the thermoplastic resin in the core layer smaller than 8TCq of the thermoplastic resin in other layers in contact with it, preferably smaller than 10°C, satisfies the particle concentration distribution structure of the present invention. It is extremely effective.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二軸
延伸法を用いることができる。ただし、最初に長手方向
、次に幅方向の延伸を行なう逐次二軸延伸法を用い、長
手方向の延伸を熱可塑性樹脂のガラス転移点から10℃
低い温度から10℃高い温度の範囲で1000〜100
00%/分という比較的小さな延伸速度で行なう方法は
本発明の粒子濃度分布構成を満足させるのにきわめて有
効である。幅方向の延伸方法としては50%RH以上の
高湿度下で芯層の熱可塑性樹脂のガラス転移点より10
℃低い温度からガラス転移点より30℃高い温度までの
範囲で延伸する方法が本発明の粒子濃度分布構成を満足
させるのにきわめて有効である。幅方向の延伸速度は、
i oo。
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, using a sequential biaxial stretching method in which stretching is performed first in the longitudinal direction and then in the width direction, the stretching in the longitudinal direction is carried out at 10°C below the glass transition point of the thermoplastic resin.
1000 to 100 in the range of low temperature to 10℃ higher temperature
A method carried out at a relatively low stretching speed of 0.00%/min is extremely effective in satisfying the particle concentration distribution structure of the present invention. The stretching method in the width direction is 10% lower than the glass transition point of the thermoplastic resin of the core layer under high humidity of 50% RH or higher.
A method of stretching in a temperature range from 10.degree. C. lower to 30.degree. C. higher than the glass transition point is extremely effective in satisfying the particle concentration distribution structure of the present invention. The stretching speed in the width direction is
ioo.

〜20000%/分で長手方向の延伸速度よりも大きく
するのが本発明の粒子濃度分布構成を満足さけるのに有
効である。延伸倍率は長手、幅方向ともに3〜5倍が好
適である。次にこの延伸フィルムを熱処理するが、公知
の方法を用いることができる。 なお、1層(苦情のフ
ィルムでも粒子マスタポリマの溶融粘度、凝集エネルギ
ー密度の調整、ポリマ流路へのギヤポンプ、スタデイツ
クミキサーの導入、延伸条件の厳密な調整あるいは溶液
製膜などの手法で本発明の粒子濃度分布構成を満足させ
ることは可能であるが、安定性、再現性などの問題があ
り、工業的には好ましくない。
It is effective to increase the stretching speed in the longitudinal direction to 20,000%/min to satisfy the particle concentration distribution structure of the present invention. The stretching ratio is preferably 3 to 5 times in both the longitudinal and width directions. Next, this stretched film is heat treated, and a known method can be used. It should be noted that even in the case of a single layer (complaint film), the present invention can be achieved by adjusting the melt viscosity and cohesive energy density of the particle master polymer, introducing a gear pump or a study mixer into the polymer flow path, strictly adjusting the stretching conditions, or using solution casting. Although it is possible to satisfy the particle concentration distribution structure, there are problems with stability, reproducibility, etc., and this is not preferred industrially.

磁気記録媒体は上記の二軸配向フィルムの少なくとも片
面に磁性層を形成して得られる。すなわら、磁性体を含
有する塗料を塗布、乾燥後、カレンダー処理することに
よって製造する方法、蒸着、スパッタ法で磁性全屈薄膜
を形成する方法などで製造できる。また、必要に応じて
、バックコート層の形成は所定の組成の溶液を塗布、乾
燥して行なわれる。バックコート層を形成する時期は磁
性層形成前、磁性層形成後カレンダー処理前、カレンダ
ー処理後あるいはキュア工程の俊などいずれでもよい。
A magnetic recording medium is obtained by forming a magnetic layer on at least one side of the above biaxially oriented film. That is, it can be manufactured by applying a paint containing a magnetic substance, drying, and then calendering it, or by forming a magnetic total refraction thin film by vapor deposition or sputtering. Further, if necessary, a back coat layer is formed by applying a solution having a predetermined composition and drying it. The back coat layer may be formed at any time, such as before the magnetic layer is formed, after the magnetic layer is formed and before calendering, after calendering, or during the curing process.

感熱転写月お1は上記二軸配向熱可塑性樹脂フィルムの
片面に所定の感熱転写剤をホットメルトコーディングす
るか、または溶媒に分散または溶解せしめ、この塗イ5
液を塗イ5することによって製造されるが特に製法に限
定はない。
The heat-sensitive transfer layer 1 is prepared by hot-melt coating a prescribed heat-sensitive transfer agent on one side of the biaxially oriented thermoplastic resin film, or by dispersing or dissolving it in a solvent.
Although it is manufactured by applying a liquid, there is no particular limitation on the manufacturing method.

[発明の効果] 本発明はフィルムの少なくとも片面の粒子濃度分15構
成を特殊な状態にしたため、高速走行しても、傷がつか
ないフィルムおよびそれからなる材お1が19られたも
のである。
[Effects of the Invention] The present invention provides a film and a material made from the same that do not get scratched even when running at high speeds because the particle concentration on at least one side of the film is in a special state.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1)  不活性粒子の濃度分イ5(デプスプロファイ
ル) 2次イオンMffi分析装置(SIMS)を用いて、表
層から深さ3000nmの範囲のフィルム中の粒子の内
もつと気高濃度の粒子に起因する元素と熱可塑性樹脂の
炭素元素の濃度比(M+/C” )を粒子濃度とし、表
面から深さ3000nmまで厚さ方向の分析を行なう。
(1) Concentration of inert particles 5 (depth profile) Using a secondary ion Mffi analyzer (SIMS), we measured the highest concentration of particles in the film from the surface layer to a depth of 3000 nm. The concentration ratio (M+/C'') of the contributing element and the carbon element of the thermoplastic resin is taken as the particle concentration, and analysis is performed in the thickness direction from the surface to a depth of 3000 nm.

表層では表面という界面のために粒子′a度は低く表面
から遠ざかるにつれて粒子濃度は高くなる。本発明フィ
ルムの場合はいったん極大値となった粒子濃度がまた減
少し始める。このy2度力分布線をもとに表層粒子濃度
の10倍の粒子濃度を示す点A(表面からの距離)、い
ったん高くなった粒子濃度が減少して表層粒子濃度と同
じ値となった点B(表面からの距離)を求める。当然、
Bは八よりも深い位置である。
In the surface layer, the particle density is low due to the interface called the surface, and the particle concentration increases as the distance from the surface increases. In the case of the film of the present invention, the particle concentration once reached a maximum value begins to decrease again. Based on this y2 degree force distribution line, point A (distance from the surface) shows a particle concentration 10 times that of the surface layer particle concentration, and a point where the particle concentration, which had once increased, decreased to the same value as the surface layer particle concentration. Find B (distance from the surface). Of course,
B is at a deeper position than 8.

条件は次の通り。The conditions are as follows.

(1)測定装置 2次イオン質量分析装置(SIMS) 西独、^TO旧にA?!1′tAA−DID八3へ00
(2)測定条件 1次イオン種 :02+ 1次イオン加速電圧=12にV 1次イオン電流:200nA ラスター領域:400μm口 分析領域二ゲート30% 測定真空度: 5. Ox 10’TorrE−GLI
N : 0.5KV−3,OAなお、表層から深さ30
00nmの範囲にもつとも多く含有する粒子が有機高分
子粒子の場合はSIMSでは測定が難しいので、表面か
らのエツヂレグ法、切片法で、XPS (X線光電子分
光法)IR(赤外分光法)などで上記同様のデプスプロ
ファイルを測定し、A、Bの深さを求める。
(1) Measuring device Secondary ion mass spectrometer (SIMS) West Germany, ^TO former A? ! 1'tAA-DID8300
(2) Measurement conditions Primary ion species: 02+ Primary ion acceleration voltage = 12V Primary ion current: 200nA Raster area: 400μm mouth analysis area 2 gates 30% Measurement vacuum: 5. Ox 10'TorrE-GLI
N: 0.5KV-3, OA, depth 30 from the surface layer
If the particles in the 00 nm range are organic polymer particles, it is difficult to measure them using SIMS, so the edge leg method from the surface, the sectioning method, XPS (X-ray photoelectron spectroscopy), IR (infrared spectroscopy), etc. The same depth profile as above is measured, and the depths of A and B are determined.

(2)  粒子の平均粒径 フィルムから熱可塑性樹脂をプラズマ低温灰化処理法(
たとえばヤマト科学製PR−503型)で除去し粒子を
露出させる。処理条件はポリエステルは灰化されるが粒
子はダメージを受【ノない条件を選択する。これをSE
X (走査型電子顕微鏡)で観察し、粒子の画像(粒子
によってできる光の濃淡)をイメージアナライザー(た
とえばケンブリッジインストルメント製QTM900)
に結び付け、I2寮箇所を変えて粒子数5000個以上
で次の数fU処理を行ない、それによって求めた数平均
径りを平均粒径とする。
(2) Plasma low-temperature ashing process (
For example, the particles are removed using a printer (Model PR-503 manufactured by Yamato Kagaku Co., Ltd.) to expose the particles. The processing conditions are selected so that the polyester is incinerated but the particles are not damaged. SE this
Observe with an X (scanning electron microscope) and use an image analyzer (for example, Cambridge Instruments QTM900) to capture the image of the particles (shade of light created by the particles).
The following several fU process is performed with the number of particles being 5000 or more by changing the I2 dormitory location, and the number average diameter obtained thereby is taken as the average particle diameter.

D−ΣD+ /N ここで、Diは粒子の円相当径、Nは個数である。D-ΣD+ /N Here, Di is the circle-equivalent diameter of the particles, and N is the number of particles.

(3)粒子の含有量 熱可塑性樹脂は溶解し粒子は溶解させない溶媒を選択し
、粒子をポリエステルから遠心分離し、粒子の全体重量
に対する比率(小量%)をもって粒子含有量とする。場
合によっては赤外分光法の併用も有効である。
(3) Particle content A solvent is selected that dissolves the thermoplastic resin but does not dissolve the particles.The particles are centrifuged from the polyester, and the particle content is defined as the ratio (small %) to the total weight of the particles. In some cases, infrared spectroscopy may also be effective.

<4)結晶化パラメータΔTCg パーキンエルマー社製のDSC(示差走査熱m、Tf)
III型を用いて測定した。DSCの測定条件は次の通
りである。すなわち、試料10m(1@Dsc装置にセ
ットし、300’Cの温度で5分間溶融した後、液体窒
素中に急冷する。この急冷試料を10 ’C/分で昇温
し、ガラス転移点TCIを検知する。
<4) Crystallization parameter ΔTCg PerkinElmer DSC (differential scanning thermal m, Tf)
It was measured using type III. The DSC measurement conditions are as follows. That is, a sample of 10 m (10 m) was set in a Dsc device, melted at a temperature of 300'C for 5 minutes, and then rapidly cooled in liquid nitrogen.The rapidly cooled sample was heated at a rate of 10'C/min until the glass transition point TCI Detect.

ざらに昇温を続け、ガラス状態からの結晶化発熱ピーク
温度をもって冷結晶化温度Tccとした。
The temperature was continued to be gradually raised, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc.

ざらに昇温を続け、融解ピークから融解熱を求めた。こ
こでTCCと丁りの差(丁c c −T g)を結晶化
パラメータ八TCgと定義する。
The temperature was continued to rise gradually, and the heat of fusion was determined from the melting peak. Here, the difference between TCC and the density (Cc - Tg) is defined as the crystallization parameter 8TCg.

(5)  表面突起の平均高さ 2検出器方式の走査型電子顕微鏡[ESM−3200、
エリオニクス(株)製]と断面測定装置[PMS−1、
エリオニクス(株)製jにおいてフィルム表面の平坦面
の高さをOとして走査した時の突起の高さ測定値を画像
処理装置[I BAS2000、カールツアイス(株)
製]に送り、画像処理装置上にフィルム表面突起画像を
再構築する。次に、この表面突起画像で突起部分を2値
化して得られた個々の突起の面積から円相当径を求めこ
れをその突起の平均径とする。また、この2値化された
個々の突起部分の中で最も高い値をその突起の高さとし
、これを個々の突起について求める。この測定を場所を
かえて500回繰返し、測定された突起についてその高
さ分布を正規分布とみなして最小2乗法で近似して求め
た。また走査型電子顕微鏡の倍率は、1000〜800
0倍の間の値を選択する。
(5) Average height of surface protrusions Two-detector scanning electron microscope [ESM-3200,
manufactured by Elionix Co., Ltd.] and a cross-sectional measuring device [PMS-1,
The height of the protrusions was measured using an image processing device [I BAS2000, Carl Zeiss K.K.
[Manufacturer] and reconstructs the image of the film surface protrusions on an image processing device. Next, a circular equivalent diameter is determined from the area of each protrusion obtained by binarizing the protrusion portion using this surface protrusion image, and this is taken as the average diameter of the protrusion. Furthermore, the highest value among the binarized individual protrusion portions is determined as the height of the protrusion, and this value is determined for each protrusion. This measurement was repeated 500 times at different locations, and the height distribution of the measured projections was assumed to be a normal distribution and approximated by the least squares method. Furthermore, the magnification of a scanning electron microscope is 1000 to 800.
Select a value between 0x.

(6)  中心線平均表面粗さRa、10点平均粗ざR
z、中心線深さRp、最大高ざRt、突起間隔m 小板研究所製の高精度薄膜段差測定器ET−10を用い
て測定した。条イ′[は下記のとおりであり、20回の
測定の平均値をもって値とした。
(6) Center line average surface roughness Ra, 10 point average roughness R
z, center line depth Rp, maximum height Rt, protrusion interval m Measured using a high precision thin film step measuring instrument ET-10 manufactured by Koita Research Institute. The values are as follows, and the average value of 20 measurements was taken as the value.

・触針先端半径:0.5μm ・触針部子  : 5mC1 ・測定長   =1mm ・カットオフ1直:o、oamm なお、Ra、RD、Rt、Smの定義は、たとえば、奈
良治部著「表面粗さの測定・評価法」 (総合技術セン
ター 1983>に示されているものである。
・Stylus tip radius: 0.5μm ・Stylus part: 5mC1 ・Measurement length = 1mm ・Cutoff 1 shift: o, oamm The definitions of Ra, RD, Rt, and Sm are, for example, ""Method for Measuring and Evaluating Surface Roughness" (General Technology Center, 1983).

(7)  ヤング率 J l5−Z−1702に規定された方法にしたがって
、インストロンタイプの引っ張り試験機を用いて、25
°C165%RHにて測定した。
(7) Young's modulus: 25% using an Instron type tensile tester according to the method specified in Jl5-Z-1702.
Measurement was performed at °C and 165% RH.

(6)  溶融粘度 高化式フローテスターを用いて290°C1ずり速度2
00sec−’で測定シタ。
(6) 290°C1 shear rate 2 using a melt viscosity enhancement type flow tester
Measured at 00sec-'.

(9)  真球度 上記(1)の測定において個々の粒子の長径の平均値/
短径の平均値の比である。
(9) Sphericity Average value of the major axis of each particle in the measurement of (1) above /
It is the ratio of the average value of the short axis.

すなわち、下式で求められる。That is, it can be obtained using the following formula.

長径=Σ[)li/N 短径=ΣD2i/N [)li、 [)2iはそれぞれ個々の粒子の長径(最
大径)、短径(最短径)、Nは総個数である。
Major axis=Σ[)li/N Minor axis=ΣD2i/N [)li, [)2i are the major axis (maximum diameter) and minor axis (shortest axis) of each individual particle, respectively, and N is the total number.

(+ω 粒径の相対標準偏差 上記(1)の方法で測定された個々の突起径Di、平均
径D、粒子総r&Nから計算される標準偏差σ(−f(
Σ(Di−D>2/N) )を平均径りで割った値(σ
/D>で表わした。
(+ω Relative standard deviation of particle size Standard deviation σ(-f(
The value obtained by dividing Σ (Di-D>2/N) ) by the average diameter (σ
/D>.

(11)低分子成分含有信 所定の深さ範囲の試料ポリマを粉砕しソックスレー抽出
器を用いて、クロロホルムを溶媒として、還流下で24
時間抽出を行なう。クロロホルムを蒸発させて得られた
抽出物の重量のもとの試おlの重量に対する比率(重量
%)をもって低分子成分含有量とした。
(11) Pulverize the sample polymer containing low molecular weight components in a predetermined depth range and use a Soxhlet extractor to extract the sample under reflux for 24 hours using chloroform as a solvent.
Perform time extraction. The ratio (wt%) of the weight of the extract obtained by evaporating chloroform to the weight of the original sample (1 liter) was taken as the low molecular component content.

(2)耐スクラッチ性 20’C相対湿度60%の雰囲気で、外形5mmφのガ
イドピンに1/2インチ幅のテープ状フィルム(または
磁気記録媒体)あるいは幅3mmのテープ状にスリット
した感熱転写リボンとしたものを角度θ=π/2(ra
d)、テンションT1=200C1,1000m/分の
速さで30回走行させた後のフィルム表面をアルミ蒸着
して、傷の本数、幅の大きさ、白粉の発生状態を微分干
渉顕微鏡で観察した。全く傷が見られずかつ白粉の発生
がほとんどないものを耐スクラッチ性:4、傷が3本未
満でかつ白粉の発生がほとんどないものを耐スクラッチ
性:3、傷が3〜10本で幅の大きいものもあり、かつ
白粉の発生が見られるものを耐スクラッチ性=2、傷が
10本以上でで幅の大きいものもあり、かつ白粉の発子
が激しく見られるものを耐スクラッチ性:1と判定した
。耐スクラッチ性が4または3であれば実用上問題なく
使用できる。
(2) Scratch resistance 1/2 inch wide tape film (or magnetic recording medium) or thermal transfer ribbon slit into a 3 mm wide tape shape on a guide pin with an external diameter of 5 mm in an atmosphere of 20'C relative humidity 60% The angle θ=π/2(ra
d) After running 30 times at a speed of 1000 m/min with tension T1=200C1, the film surface was aluminum-deposited, and the number of scratches, width, and state of white powder generation were observed using a differential interference microscope. . Scratch resistance: 4, with no scratches and almost no white powder generation; scratch resistance: 3, with less than 3 scratches and almost no white powder generation; width: 3 to 10 scratches Scratch resistance = 2 for those with large scratches and white powder generation; scratch resistance = 2 for those with 10 or more scratches and large width, and scratch resistance: It was determined to be 1. If the scratch resistance is 4 or 3, it can be used practically without any problem.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1〜5、比較例1〜4 平均粒径の異なるコロイダルシリカに起因するシリカ粒
子、ジビニルベンゼン/スチレン共重合架橋粒子を含有
するポリエチレンテレフタレート、ポリエチレン−2,
6−ナフタレートを調整した(溶融粘度変更)。これら
のマスタポリマと実質的に不活性粒子を含有しないポリ
エチレンテレフタレート(溶融粘度二1500ボイズ)
またはポリエチレン−2,6−ナフタレート(溶融粘痕
:4000ボイズを混合し所定の粒子濃度とした(熱可
塑性樹脂A)。この熱可塑性樹脂へと種々の熱可塑性樹
脂(B)をそれぞれ押出機1、押出R2に供給、290
’Cで溶融し、これらのポリマを合流積層し、静電印加
キャスト法を用いて表面温度30’Cのキャスティング
・ドラムに巻きつけて冷却固化し、3層@造の未延伸フ
ィルムを作った。また、それぞれの押出機の吐出1を調
節し総厚さ、熱可塑性樹脂A層の厚さを調節した。この
未延伸フィルムを温度をかえて長手方向に4.0倍延伸
した。この延伸は2組のロールの周速差で行ない延伸速
度は2000%/分であった。この−軸延伸フィルムを
ステンタを用いて延伸速度、湿度雰囲気を変更して幅方
向に4.5倍延伸し、定長下で、200 ’Cにて5秒
間熱処理し、総厚さ15μmの二軸配向積層フィルムを
19だ。これらのフィルムの本発明のパラメータは第1
表に示したとありであり、本発明のパラメータが範囲内
の場合は耐スクラッチ性は第1表に示したとおり良好で
あったが、そうでない場合は耐スクラッチ性を満足する
フィルムは得られなかった。
Examples 1 to 5, Comparative Examples 1 to 4 Silica particles derived from colloidal silica with different average particle sizes, polyethylene terephthalate containing divinylbenzene/styrene copolymer crosslinked particles, polyethylene-2,
6-Naphthalate was adjusted (melt viscosity changed). These master polymers and polyethylene terephthalate (melt viscosity 21500 voids) containing substantially no inert particles
Or polyethylene-2,6-naphthalate (molten viscosity: 4000 voids) was mixed to obtain a predetermined particle concentration (thermoplastic resin A). Various thermoplastic resins (B) were added to this thermoplastic resin using an extruder 1. , fed to extrusion R2, 290
These polymers were melted at 100°C and laminated in confluence, then wound around a casting drum with a surface temperature of 30°C using electrostatic casting, and cooled and solidified to produce a 3-layer unstretched film. . Further, the discharge 1 of each extruder was adjusted to adjust the total thickness and the thickness of the thermoplastic resin A layer. This unstretched film was stretched 4.0 times in the longitudinal direction at different temperatures. This stretching was carried out using a difference in peripheral speed between two sets of rolls, and the stretching speed was 2000%/min. This axially stretched film was stretched 4.5 times in the width direction using a stenter while changing the stretching speed and humidity atmosphere, and then heat-treated at 200'C for 5 seconds under a constant length. 19 for axially oriented laminated film. The parameters of the invention for these films are the first
As shown in the table, if the parameters of the present invention were within the range, the scratch resistance was good as shown in Table 1, but if not, a film satisfying the scratch resistance could not be obtained. Ta.

実施例4〜5、比較例5〜8 平均粒径の異なるコロイダルシリカに起因する球形シリ
カを含有するポリエチレンテレフタレート、ポリエチレ
ン−2,6−ナフタレートを調整した(溶融粘度変更)
。これらのマスタポリマと実質的に不活性粒子を含有し
ないポリエチレンテレフタレート(溶融粘度: 150
0ポイズ)またはポリエチレン−2,6−ナフタレート
(溶融粘度:4000ボイズを混合し所定の粒子濃度と
した(熱可塑↑1樹脂へ)。この熱可塑性樹脂Aを球形
シリカ粒子を0.1重量%含有する種々の熱可塑性樹脂
(B)に積層厚さを変更して積層した2層構造の未延伸
フィルムを作った。この未延伸フィルムを温度をかえて
長手方向に4.0倍延伸した。この延伸は2組のロール
の周速差で行ない延伸速度は2000%/分であった。
Examples 4-5, Comparative Examples 5-8 Polyethylene terephthalate and polyethylene-2,6-naphthalate containing spherical silica caused by colloidal silica with different average particle sizes were adjusted (melt viscosity changed)
. These master polymers and polyethylene terephthalate (melt viscosity: 150
0 poise) or polyethylene-2,6-naphthalate (melt viscosity: 4000 poise) was mixed to obtain a predetermined particle concentration (to thermoplastic↑1 resin).This thermoplastic resin A was mixed with 0.1% by weight of spherical silica particles. An unstretched film with a two-layer structure was prepared by laminating various thermoplastic resins (B) with different lamination thicknesses.This unstretched film was stretched 4.0 times in the longitudinal direction at different temperatures. This stretching was carried out using a difference in peripheral speed between two sets of rolls, and the stretching speed was 2000%/min.

この−軸延伸フィルムをステンタを用いて延伸速度、湿
度雰囲°気を変更して幅方向に4.5倍延伸し、定長下
で、200’Cにて5秒間熱処理し、総厚さ12μmの
二軸配向積層フィルムを)qた。これらのフィルムの熱
可塑性樹脂入面に電子ビーム蒸着法で、CO/Ni合金
(Co/N 1=75/25重屯比)を厚さ180nm
に斜方蒸着しく最小入射角:500)、磁性薄膜を形成
した。その反対面に下記組成物を塗布し、厚さ0.5μ
mのバンクコート層を形成した。
This axially stretched film was stretched 4.5 times in the width direction using a stenter while changing the stretching speed, humidity, and atmosphere, and was then heat-treated at 200'C for 5 seconds under a constant length to reduce the total thickness. A 12 μm biaxially oriented laminated film was prepared. A CO/Ni alloy (Co/N 1=75/25 weight ratio) was deposited to a thickness of 180 nm on the thermoplastic resin entry surface of these films by electron beam evaporation.
A magnetic thin film was formed by oblique vapor deposition (minimum incident angle: 500). Apply the following composition on the opposite side to a thickness of 0.5 μm.
A bank coat layer of m was formed.

(バックコート組成) ・ポリエステル(東洋紡バイロン200>80重量部 ニトロセルロース       20重量部・カーボン
ブラック       80重量部・シリカ粒子(平均
粒径0.01μm)(有機バインダーに対し50重重量
) ・メヂルエヂルケトン     200重量部・トルエ
ン          200手量部・シクロへキサノ
ン      200重量部この磁気テープの本発明の
パラメータは第2表に示したとおりであり、本発明のパ
ラメータが範囲内の場合は磁性面の耐スクラッチ性は第
2表に示したとおり良好であったが、そうでない場合は
耐スクラッチ性を満足するフィルムは19られなかった
(Back coat composition) - Polyester (Toyobo Vylon 200 > 80 parts by weight Nitrocellulose 20 parts by weight - Carbon black 80 parts by weight - Silica particles (average particle size 0.01 μm) (50 parts by weight relative to organic binder) - Mejiru Edge The parameters of the present invention for this magnetic tape are shown in Table 2, and if the parameters of the present invention are within the range, the magnetic surface The scratch resistance was good as shown in Table 2, but otherwise no film was found to satisfy the scratch resistance.

実施例6 、比較例9〜12 実施例1のフィルム、比較例1〜4のフィルムの片面に
コロナ処理を施した後、カルナウバワックス30部、パ
ラフィンワックス35部、オイルブラックトIBB (
オリエント化学工業製の油溶性染料)5部、カーボンブ
ラック25部、ラノリン5部を混合し厚さ4μmでホッ
トメルトコーティングし、感熱転写用フィルムを冑た。
Example 6, Comparative Examples 9 to 12 After corona treatment was applied to one side of the film of Example 1 and the films of Comparative Examples 1 to 4, 30 parts of carnauba wax, 35 parts of paraffin wax, and oil blackened IBB (
A mixture of 5 parts of oil-soluble dye manufactured by Orient Kagaku Kogyo Co., Ltd., 25 parts of carbon black, and 5 parts of lanolin was hot-melt coated to a thickness of 4 μm, and a heat-sensitive transfer film was coated.

このフィルムを8mm幅にスリットし、感熱転写リボン
とした。この感熱転写リボンの本発明のパラメータは第
3表に示したとおりであり、本発明のパラメータが範囲
内の場合はフィルム面の耐スクラッチ性は第3表に示し
たとおり良好であったが、そうでない場合は耐スクラッ
チ性を満足するフィルムは得られなかった。
This film was slit to a width of 8 mm to obtain a thermal transfer ribbon. The parameters of the present invention for this thermal transfer ribbon are as shown in Table 3, and when the parameters of the present invention were within the range, the scratch resistance of the film surface was good as shown in Table 3. Otherwise, a film with satisfactory scratch resistance could not be obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂と不活性粒子からなる組成物を主た
る成分とするフィルムであって、該フィルムの少なくと
も片側の表面から深さ3000nmまで測定した不活性
粒子の濃度分布曲線において、粒子濃度が表層粒子濃度
値の10倍となる深さ(表面からの距離)Anmと表層
粒子濃度値と同じ粒子濃度となる深さBnm(B>A)
の関係が下式(i)および(ii)を満足することを特
徴とする二軸配向熱可塑性樹脂フィルム。 10≦B−A≦1500・・・(i) 5≦A≦500・・・(ii)
(1) A film whose main component is a composition consisting of a thermoplastic resin and inert particles, and in the concentration distribution curve of inert particles measured from the surface of at least one side of the film to a depth of 3000 nm, the particle concentration is Depth (distance from the surface) where the surface layer particle concentration value is 10 times Anm and depth Bnm where the particle concentration is the same as the surface layer particle concentration value (B>A)
A biaxially oriented thermoplastic resin film, characterized in that the relationships satisfy the following formulas (i) and (ii). 10≦B-A≦1500...(i) 5≦A≦500...(ii)
(2)不活性粒子の真球度が1.6以下であることを特
徴とする請求項(1)記載の二軸配向熱可塑性樹脂フィ
ルム。
(2) The biaxially oriented thermoplastic resin film according to claim (1), wherein the inert particles have a sphericity of 1.6 or less.
(3)請求項(1)又は(2)記載の二軸配向熱可塑性
樹脂フィルムの少なくとも片面に磁性層を設けてなるこ
とを特徴とする磁気記録媒体。
(3) A magnetic recording medium characterized in that a magnetic layer is provided on at least one side of the biaxially oriented thermoplastic resin film according to claim (1) or (2).
(4)請求項(1)又は(2)記載の二軸配向熱可塑性
樹脂フィルムの片面に感熱転写層を設けてなることを特
徴とする感熱転写材料。
(4) A heat-sensitive transfer material, characterized in that a heat-sensitive transfer layer is provided on one side of the biaxially oriented thermoplastic resin film according to claim (1) or (2).
JP63223047A 1988-09-06 1988-09-06 Biaxially oriented thermoplastic resin film Expired - Lifetime JPH0649780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223047A JPH0649780B2 (en) 1988-09-06 1988-09-06 Biaxially oriented thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223047A JPH0649780B2 (en) 1988-09-06 1988-09-06 Biaxially oriented thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH0270727A true JPH0270727A (en) 1990-03-09
JPH0649780B2 JPH0649780B2 (en) 1994-06-29

Family

ID=16792007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223047A Expired - Lifetime JPH0649780B2 (en) 1988-09-06 1988-09-06 Biaxially oriented thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPH0649780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032769A1 (en) * 2006-09-14 2008-03-20 Fujifilm Corporation Method of longitudinally stretching thermoplastic resin film and longitudinally stretched film produced by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032769A1 (en) * 2006-09-14 2008-03-20 Fujifilm Corporation Method of longitudinally stretching thermoplastic resin film and longitudinally stretched film produced by the method

Also Published As

Publication number Publication date
JPH0649780B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US4675233A (en) Ink transfer material for printer
JPH0277431A (en) Biaxially oriented thermoplastic resin film
JPH0270727A (en) Biaxially oriented thermoplastic resin film
JP2817302B2 (en) Biaxially oriented polyester film
JPH0446752B2 (en)
JP2569853B2 (en) Biaxially oriented thermoplastic resin film and film roll
JP2706338B2 (en) Biaxially oriented polyester film and its processed product
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JPH0373409A (en) Metal thin film type magnetic recording medium
JPH0390329A (en) Biaxially oriented thermoplastic resin film
JP2687621B2 (en) Biaxially oriented thermoplastic resin film for magnetic tape base
JPH0278545A (en) Biaxially oriented thermoplastic resin film
JP4576721B2 (en) Biaxially oriented laminated thermoplastic film
JP3134416B2 (en) Polyester film
JP2803274B2 (en) Oxide coated magnetic recording media
JPH02158628A (en) Biaxially orientated thermoplastic resin film
JP3752360B2 (en) Biaxially oriented polyester film
JPH03208639A (en) Biaxially oriented thermoplastic resin film
JP2860061B2 (en) Biaxially oriented thermoplastic resin film
JPS62263024A (en) Biaxially oriented polyethylene terephthalate film for magnetic disc
KR100313684B1 (en) Magnetic recording media
JPH03207725A (en) Biaxially oriented thermoplastic resin film
JP2932555B2 (en) Biaxially oriented thermoplastic resin film
JP3277681B2 (en) Biaxially oriented polyester film
JPH09323394A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 15