JPH0390329A - Biaxially oriented thermoplastic resin film - Google Patents

Biaxially oriented thermoplastic resin film

Info

Publication number
JPH0390329A
JPH0390329A JP1224359A JP22435989A JPH0390329A JP H0390329 A JPH0390329 A JP H0390329A JP 1224359 A JP1224359 A JP 1224359A JP 22435989 A JP22435989 A JP 22435989A JP H0390329 A JPH0390329 A JP H0390329A
Authority
JP
Japan
Prior art keywords
particles
film
thermoplastic resin
inert particles
biaxially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1224359A
Other languages
Japanese (ja)
Other versions
JPH0659679B2 (en
Inventor
Koichi Abe
晃一 阿部
Satoshi Nishino
聡 西野
Hidehito Minamizawa
南沢 秀仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1224359A priority Critical patent/JPH0659679B2/en
Publication of JPH0390329A publication Critical patent/JPH0390329A/en
Publication of JPH0659679B2 publication Critical patent/JPH0659679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To make the density of particle protrusions high and the height of said protrusions uniform by forming inert particles having a predetermined diameter and inert particles being cohering particles in which many primary particles whose diameter is smaller than the average diameter of said inert particles having a predetermined diameter are linked without having directional properties. CONSTITUTION:A thermoplastic resin A and a film mainly composed of inert particles A, B are co-extruded and laminated on at least one surface of a film mainly composed of a thermoplastic resin B in a thickness of not less than 0.01mum to form a biaxially oriented thermoplastic resin film. The average diameter of the inert particles A is 0.1 to 10 times the thickness of the film layer of said thermoplastic resin A, and the inert particles B are constituted of cohering particles in which many primary particles whose average diameter is smaller than that of the inert particles A are linked without having directional properties. The shape of the inert particles A is not restricted especially; however, particles whose diametral ratio in the film is 1.0 to 1.3, and especially, spherical particles are preferable because such particles allow the surface of the film to be hardly flawed and make abrasion resistance better.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸配向熱可塑性樹脂フィルムに関し、とく
に表面特性の改良をはかった、積層フィルム構成の二軸
配向熱可塑性樹脂フィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a biaxially oriented thermoplastic resin film, and particularly to a biaxially oriented thermoplastic resin film having a laminated film structure and having improved surface properties.

[従来の技術] 表面特性の改良をはかった二軸配向熱可塑・[4@脂フ
イルムとして、熱可塑性樹脂であるポリエステルにコロ
イド状シリカに起因する実質的に球形のシリカ粒子を含
有させたフィルムが知られているくたとえば特開昭59
−171623号公報〉。
[Prior art] Biaxially oriented thermoplastic/[4@fat film with improved surface properties] A film in which substantially spherical silica particles derived from colloidal silica are contained in polyester, which is a thermoplastic resin. For example, it is known that
-171623 Publication>.

このような二軸配向熱可塑性樹脂フィルムにおいては、
含有されたシリカ粒子により、フィルム表面に突起を形
成し、表面の摩擦係数を下げてハンドリング性、走行性
を向上したりすることが可能である。
In such a biaxially oriented thermoplastic resin film,
The contained silica particles can form protrusions on the film surface, lowering the coefficient of friction on the surface and improving handling and running properties.

[発明が解決しようとする課題] しかしながら、J−記従来の二軸配向熱可塑性樹脂フィ
ルムでは、含′PJされたシリカ粒子が、フィルムの厚
さ方向全域にわたって略ランダムに分布するため、フィ
ルム表面における含有粒子による突起の密度増大には限
界があり、しかもその突起高さもランダムに相当ばらつ
くことになる。この、Lうな突起をHするフィルム表面
においては、相手物(たとえば加工工程におけるロール
)に対し主として突起の先端面が接触するが、突起密度
が低いと、この先端面による接触面積が小さくなつ−C
接触面圧が高くなるので、フィルム表面の耐摩耗性に問
題が生じ、フィルム表面が削れやすくなるおそれがある
。また、フィルム表面の突起高さが不均一であると、高
さの高い突起部分が削れやずくなり、フィルムの加工]
工程、たとえば包装用途における印刷]:程、磁気記録
媒体用途における磁性層塗布・カレンダーエ稈あるいは
感熱転写用途における感熱転写用途イ[iなどの工程速
度の増大にともない、接触するロールによってフィルム
表向にすり傷がつくおそれがある。
[Problems to be Solved by the Invention] However, in the conventional biaxially oriented thermoplastic resin film described in J-1, the PJ-containing silica particles are distributed approximately randomly throughout the thickness direction of the film. There is a limit to the increase in the density of protrusions due to the particles contained therein, and the height of the protrusions also varies considerably at random. On the film surface where the L-shaped protrusions are H, the tip surfaces of the protrusions mainly come into contact with the other object (for example, a roll in the processing process), but if the protrusion density is low, the contact area by the tip surfaces becomes small. C
Since the contact surface pressure becomes high, a problem arises in the abrasion resistance of the film surface, and there is a possibility that the film surface becomes easily scraped. In addition, if the height of the protrusions on the film surface is uneven, the high protrusions may be scraped or damaged, resulting in film processing]
Processes, such as printing in packaging applications]: magnetic layer coating/calendering in magnetic recording media applications, or thermal transfer applications in thermal transfer applications. There is a risk of scratches.

本発明は、上記のような問題点に看目し、二軸配向熱可
塑性樹脂フィルムの表面に含有粒子により突起を形成す
るに当たり、突起の高密度化と突起高さの均一化を達成
するとともに、さらに該突起の形成されたフィルム表面
を一層削れにくくかつ傷つきにくいものにすることを目
的とする。
In view of the above-mentioned problems, the present invention aims to achieve high density of protrusions and uniform protrusion height when forming protrusions on the surface of a biaxially oriented thermoplastic resin film using contained particles. A further object of the present invention is to make the surface of the film on which the protrusions are formed even more resistant to scraping and damage.

[課題を解決づるための手段] この目的に沿う本発明の二軸配向熱可塑性樹脂フィルム
は、熱可塑性樹脂Aと不活性粒子A、 Bとを主成分と
するフィルムを共押出により熱可塑性樹脂Bを主成分と
するフィルムの少なくとも片面に0.01μ流以上の厚
さで稍層した二幀配向熱町塑性樹脂フィルムであって、
前記不活性粒子Aの平均粒径が前記熱可塑性樹脂Aのフ
ィルム層厚さの0.1〜10倍であり、前記不活性粒子
Bが、平均粒径が不活性粒子Aの平均粒径よりも小さい
一次粒子が方向性をもたずに多数連なった凝集粒子であ
るものから成る。
[Means for Solving the Problems] The biaxially oriented thermoplastic resin film of the present invention that meets this objective is produced by coextruding a film containing thermoplastic resin A and inert particles A and B as main components. A two-fold oriented thermoplastic resin film comprising a thin layer of 0.01 μm or more thick on at least one side of a film containing B as a main component,
The average particle size of the inert particles A is 0.1 to 10 times the film layer thickness of the thermoplastic resin A, and the inert particles B have an average particle size larger than the average particle size of the inert particles A. It consists of agglomerated particles in which many small primary particles are connected without directionality.

本発明を構成する熱可塑性樹脂Aはポリエステル、ポリ
オレフィン、ポリアミド、ポリフェニレンスルフィドな
ど特に限定されることはないが、特に、ポリエステル、
中でも、エチレンテレフタレート、1チレンα、β−ビ
ス(2−クロルフェノキシ〉エタン−4,4′−ジカル
ボキシレート、エチレン2,6−ナフタレート単位から
選ばれた少なくとも一層の構迄単位を主要構成成分とす
る場合に耐削れ性、耐傷つき性(耐スクラッチ性ともい
う〉がより一同良好となるので望ましい。また、本発明
を構成する熱可塑性樹脂は結晶性である場合に耐削れ性
、耐傷つき性がより一滴良好となるのできわめて望まし
い。ここでいう結晶性とはいわゆる非晶質ではないこと
を示すものであり、定量的には結晶化パラメータにおけ
る冷結晶化温11tTccが検出され、かつ結晶化パラ
メータΔTCgが150℃以下のものである。さらに、
示差走査熱量耐て測定された融解熱(融解エンタルピー
変化〉が7.5cal/ g以上の結晶性を示す場合に
耐削れ性、耐スクラッチ性がより一層良好となるのでき
わめて望ましい。また、エチレンテレフタレートを主要
構成成分とするポリエステルの場合に耐削れ性と耐スク
ラッチ性がより一層良好となるので特に望ましい。なお
、本発明を阻害しない範囲内で、2種以上の熱可塑性樹
脂を混合しても良いし、共重合ポリマを用いても良い。
The thermoplastic resin A constituting the present invention is not particularly limited to polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but in particular, polyester, polyphenylene sulfide, etc.
Among them, the main constituent is at least one structural unit selected from ethylene terephthalate, 1-tylene α, β-bis(2-chlorophenoxy>ethane-4,4′-dicarboxylate), and ethylene 2,6-naphthalate units. It is desirable that the thermoplastic resin constituting the present invention has better abrasion resistance and scratch resistance (also referred to as scratch resistance) when it is crystalline. Crystallinity here means that it is not so-called amorphous, and quantitatively, a cold crystallization temperature of 11tTcc is detected in the crystallization parameter, and crystallinity is extremely desirable. The temperature change parameter ΔTCg is 150°C or less.Furthermore,
It is extremely desirable that the heat of fusion (enthalpy of fusion change) measured by differential scanning calorimetry exhibits crystallinity of 7.5 cal/g or more, as this will further improve the abrasion resistance and scratch resistance. It is particularly preferable to use polyester as a main component because it has even better abrasion resistance and scratch resistance.It should be noted that two or more thermoplastic resins may be mixed as long as the present invention is not impaired. Alternatively, a copolymer may be used.

本発明の熱可塑性樹脂A中の不活性粒子Aの形状は、特
に限定されないが、フィルム中での粒径比〈粒子の長径
/短径〉が1.0〜1.3の粒子、特に、球形状の粒子
の場合にフィルム表面が傷つきにくくなり、耐削れ性も
一層良好となるので望ましい。
The shape of the inert particles A in the thermoplastic resin A of the present invention is not particularly limited, but particles having a particle size ratio (longer diameter/breadth diameter of particles) in the film of 1.0 to 1.3, particularly, Spherical particles are desirable because the film surface is less likely to be damaged and the abrasion resistance is even better.

また、不活性粒子へはフィルム中での単一粒子指数が0
.7以上、好ましくは0.9以上である場合に耐スクラ
ッチ性、耐削れ性がより一周良好となるので特に望まし
い。
In addition, for inert particles, the single particle index in the film is 0.
.. A value of 7 or more, preferably 0.9 or more is particularly desirable because scratch resistance and abrasion resistance become better all around.

本発明におCノる不活性粒子Aの種類は特に限定されな
いが、上記の好ましい粒子特性を満足させるにはアルミ
ナ珪酸塩、1次粒子が凝集した状態のシリカ、内部析出
粒子などは好ましくない。好ましい粒子として、コロイ
ダルシリカに起因する実質的に球形のシリカ粒子、架橋
高分子による粒子(たとえば架橋ポリスチレン)などが
あるが、特に10重填%減漬時温度(窒素中で熱重母分
析装置島津T G −30Mを用いて測定。昇温速度2
0℃/分)が380℃以上になるまで架橋度を高くした
架橋高分子粒子の場合に耐スクラッチ性、耐削れ性がよ
り一層良好となるので特に望ましい。なお、コロイダル
シリカに起因する球形シリカの場合にはアルコキシド法
で製造された、ナトリウム含有量が少ない、実質的に球
形のシリカの場合に耐スクラッチ性、耐削れ性がより一
層良好となるので特に望ましい。しかしながら、その他
の粒子、例えば炭酸カルシウム、二酸化チタン、アルミ
ナ等の粒子でもフィルム厚さと平均粒径の適切なコント
ロールにより十分使いこなせるものである。
The type of inert particles A used in the present invention is not particularly limited, but in order to satisfy the above preferable particle characteristics, alumina silicate, silica in a state where primary particles are aggregated, internally precipitated particles, etc. are not preferable. . Preferred particles include substantially spherical silica particles derived from colloidal silica, particles made of crosslinked polymers (for example, crosslinked polystyrene), and in particular, at a temperature at 10 wt. Measured using Shimadzu TG-30M. Heating rate 2
It is particularly desirable to use crosslinked polymer particles whose degree of crosslinking is increased to a temperature of 380°C or higher (0°C/min) because the scratch resistance and abrasion resistance will be even better. In addition, in the case of spherical silica derived from colloidal silica, scratch resistance and abrasion resistance are particularly good in the case of substantially spherical silica with low sodium content manufactured by an alkoxide method. desirable. However, other particles, such as particles of calcium carbonate, titanium dioxide, alumina, etc., can also be used satisfactorily with proper control of film thickness and average particle size.

不活性粒子への大きさは、該不活性粒子を含有する積層
フィルム中での平均粒径が該積層フィルム厚さの0.1
〜10倍、好ましくは0.5〜5倍、さらに好ましくは
1.1〜3倍の範囲とされる。積層フィルム層の厚さは
、0.01μ机以上とされる。これよりも薄いと、該フ
ィルム層が壁間しやすくなり、耐スクラッチ性が悪くな
る。また、上記不活性粒子Aの平均粒径と積層フィルム
厚さとの比において、上記範囲よりも小さいと、不活性
粒子Aによる表面突起形成効果が小さくなると同時に突
起の高さが不均一となって、耐スクラッチ性、耐削れ性
が不良となり、逆に大きくても、形!戊される突起が破
壊されやすくなって耐スクラッチ性、耐削れ性が不良と
なるので好ましくない。
The size of the inert particles is such that the average particle diameter in the laminated film containing the inert particles is 0.1 of the thickness of the laminated film.
The range is 10 times to 10 times, preferably 0.5 to 5 times, more preferably 1.1 to 3 times. The thickness of the laminated film layer is 0.01 μm or more. When it is thinner than this, the film layer tends to be easily inter-walled, resulting in poor scratch resistance. Furthermore, if the ratio between the average particle diameter of the inert particles A and the thickness of the laminated film is smaller than the above range, the effect of forming surface protrusions by the inert particles A will be reduced, and at the same time the height of the protrusions will become non-uniform. , scratch resistance and abrasion resistance are poor, and on the other hand, even if it is large, the shape! This is not preferable because the protrusions that are cut out are likely to be destroyed, resulting in poor scratch resistance and abrasion resistance.

また、熱可塑性樹脂A中の不活性粒子Aのフィルム中で
の平均粒径(直径〉は、基本的には、後述の小活性粒子
Bの一次粒子の平均粒径よりも大きい。ざらに好ましく
は、0.007〜0.5μ汎、好ましくは0.02〜0
.45μ机の範囲である場合に、耐スクラッチ性、耐削
れ性がより一層良好となるので望ましい。
In addition, the average particle size (diameter) of the inert particles A in the thermoplastic resin A in the film is basically larger than the average particle size of the primary particles of the small active particles B described later. is 0.007 to 0.5μ, preferably 0.02 to 0
.. A thickness in the range of 45 μm is desirable because scratch resistance and abrasion resistance become even better.

つまり、本発明におt)る積層フィルム層には、該フィ
ルム厚さ近傍あるいはそれよりも大きな平均粒径の不活
性粒子Aが含有される。換言すれば、極薄積層フィルム
に、そのフィルム厚さ近傍あるいはそれよりも大きな平
均粒径の微小不活性粒子Aが含有される。したがって、
二軸配向熱可塑性樹脂フィルム仝体に対し、その厚さ方
向に、実質的に積層フィルム圏のみに集中して不活性粒
子Aを分布させることができる。その結果、積層フィル
ム中における粒子密度を容易に高くすることができ、該
粒子により形成されるフィルム表面の突起の密度も容易
に高めることができる。また、不活性粒子Aは、上記積
層フィルム中に含有されることで、二軸配向熱可塑性樹
脂フィルム仝体に対し、その厚さ方向に位@規制される
ことになり、しかも積層フィルムの厚さと平均粒径とは
前述の如き関係にあるから、該粒子により形成される表
面突起の高さは、極めて均一になる。
That is, the laminated film layer t) according to the present invention contains inert particles A having an average particle diameter near or larger than the thickness of the film. In other words, the ultrathin laminated film contains minute inert particles A having an average particle diameter near or larger than the thickness of the film. therefore,
The inert particles A can be distributed in the thickness direction of the biaxially oriented thermoplastic resin film body, concentrating substantially only in the area of the laminated film. As a result, the particle density in the laminated film can be easily increased, and the density of the protrusions on the film surface formed by the particles can also be easily increased. Furthermore, by being contained in the laminated film, the inert particles A are regulated in the thickness direction of the biaxially oriented thermoplastic resin film body, and the thickness of the laminated film is Since the above-mentioned relationship exists between the particle diameter and the average particle diameter, the height of the surface protrusions formed by the particles becomes extremely uniform.

この熱可塑性樹脂Aのフィルム図中に、さらに不活性粒
子Bが含有される。
In the film diagram of this thermoplastic resin A, inert particles B are further contained.

不活性粒子Bは、基本的には、その−次粒子の平均粒径
が前記不活性粒子Aの平均粒径よりもはるかに小さいも
のであり、−次粒子が多数、方向性をもたずに連なって
、数珠状あるいは網目状の凝集粒子状態でフィルム中に
含有されるものである。不活性粒子Bの一次粒子の平均
粒径としては、5〜1100nの範囲が上記のようなa
林状あるいは網目状の凝集粒子状態を形成する上で好ま
しい。
The inert particles B basically have an average particle size of the secondary particles that is much smaller than the average particle size of the inert particles A, and have a large number of secondary particles without directionality. It is contained in the film in the form of bead-like or network-like agglomerated particles. The average particle size of the primary particles of the inert particles B is in the range of 5 to 1100n as described above.
This is preferable for forming forest-like or network-like agglomerated particles.

このような凝集粒子からなる不活性粒子Bは、小活性粒
子Aの周囲で多数連続的に連なって延びることにより不
活性粒子への積層フィルム内での保持強度を増すととも
に、該積層フィルム地自身を補強する。つまり、不活性
粒子Aは主としてフィルム表面突起形成を担い、不活性
粒子Bは不活性粒子への保持強度および積層フィルム地
の補強を担う。その結果、前述の如く不活性粒子Aの極
薄積層フィルム中に含有させることにより均−高さでか
つ高密度に形成された表面突起が、不活性粒子Bの存在
により一層削れにくいものとなり、該フィルム表面の耐
削れ性、耐スクラッチ性が一腟向上されることになる。
The inert particles B made of such aggregated particles extend continuously in large numbers around the small active particles A, thereby increasing the retention strength of the inert particles within the laminated film, and also increasing the strength of the laminated film itself. Reinforce. That is, the inert particles A are mainly responsible for forming protrusions on the film surface, and the inert particles B are responsible for the retention strength of the inert particles and for reinforcing the laminated film base. As a result, the surface protrusions formed with uniform height and high density by incorporating the inert particles A into the ultra-thin laminated film as described above become more difficult to scrape due to the presence of the inert particles B. The abrasion resistance and scratch resistance of the film surface are improved.

不活性粒子Bの種類としては上記の如く数珠状、網目状
の凝集粒子を形成するものであればとくに限定されない
が、好ましいものとして、δ−アルミナ、γ−アルミナ
、数珠状シリカ、網目状二酸化チタンを挙げることがで
きる。
The type of inert particles B is not particularly limited as long as it forms beaded or network-like aggregated particles as described above, but preferable examples include δ-alumina, γ-alumina, beaded silica, and network dioxide. One example is titanium.

不活性粒子Bの積層フィルム中における含有量は、0.
05〜1重圓%と少な目でよい。これより少ないと、上
記補強効果が期待できなくなり、多いと、微小粒子が多
量に含有されるため却って積層フィルム層が脆くなり、
削れやすくなるおそれがある。
The content of inert particles B in the laminated film is 0.
A small amount of 0.05 to 1% is sufficient. If the amount is less than this, the above-mentioned reinforcing effect cannot be expected, and if it is more than this, the laminated film layer will become brittle due to the large amount of fine particles contained.
There is a risk that it will be easily scratched.

このような熱可塑性樹脂へと不活性粒子A、Bとを主成
分とするフィルムが熱可塑性樹脂Bを主成分とするフィ
ルムの少なくとも片面に積層される。
A film containing inert particles A and B as main components is laminated onto such a thermoplastic resin on at least one side of the film containing thermoplastic resin B as a main component.

熱可塑性樹脂Bは、前)本の熱可塑性樹脂Aと同様のも
のからなり、熱可塑性樹脂Bと熱aT塑性樹脂Aとは同
じ種類のものでも異なるものでもよい。
Thermoplastic resin B is made of the same material as thermoplastic resin A in the previous book, and thermoplastic resin B and thermo-aT plastic resin A may be of the same type or different.

熱可塑性樹脂へのフィルム層は、熱可塑性樹脂Bからな
るフィルム層の両面、又は片面に積層される。つまり、
積層構成がA/B/A1A/Bの場合であるが、もちろ
ん、Aと異なる表面状態を有する0層をAと反対面に設
けたA/B/Cでも、あるいはそれ以上の多層構造でも
よい、(ここで、A、B、Cそれぞれの熱可塑性樹脂の
種類は同種でも、異種でもよい。また、少なくとも片方
の表面はA層であることが必要である。〉 熱可塑性樹脂Bとしても、結晶性ポリマが望ましい。具
体例として、ポリエステル、ポリアミド、ポリフェニレ
ンスルフィド、ポリオレフィンが挙げられるが、ポリエ
ステルの場合に耐スクラッチ性、耐削れ性がより一隔良
好となるので特に望ましい。また、ポリエステルとして
は、エチレンテレフタレート、エチレンα、β−ビス(
2−クロルフェノキシ)エタン−4,4−ジカルボキシ
レート、エチレン2,6−ナフタレート単位から選ばれ
た少なくとも一種の構造単位を主要構成成分とする場合
に耐スクラッチ性が特に良好となるので望ましい。
The film layer made of thermoplastic resin is laminated on both sides or one side of the film layer made of thermoplastic resin B. In other words,
This is a case where the laminated structure is A/B/A1A/B, but of course it may be A/B/C in which a 0 layer with a different surface state from A is provided on the opposite side of A, or it may be a multilayer structure with more than that. , (Here, the types of thermoplastic resins A, B, and C may be the same or different types. Also, at least one surface needs to be the A layer.) As the thermoplastic resin B, Crystalline polymers are desirable. Specific examples include polyester, polyamide, polyphenylene sulfide, and polyolefin, but polyester is particularly desirable because it has better scratch resistance and abrasion resistance. , ethylene terephthalate, ethylene α, β-bis(
It is desirable to have at least one type of structural unit selected from 2-chlorophenoxy)ethane-4,4-dicarboxylate and ethylene 2,6-naphthalate units as the main constituent because the scratch resistance is particularly good.

ただし、本発明を阻害しない範囲内、望ましい結晶性を
損なわない範囲内で、好ましくは5モル%以内であれば
他成分が共重合されていてもよい。
However, other components may be copolymerized within a range that does not impede the present invention, within a range that does not impair desirable crystallinity, and preferably within 5 mol%.

本発明の熱可塑性樹脂Bにも、本発明の目的を阻害しな
い範囲内で、他種ポリマをブレンドしてもよいし、また
酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有機
添加剤が通常添加される程度添加されていてもよい。
The thermoplastic resin B of the present invention may also be blended with other types of polymers within the range that does not impede the purpose of the present invention, and organic additives such as antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers may be added. The agent may be added to the extent that it is normally added.

熱可塑性樹脂Bを主成分とするフィルム中には不活性粒
子を含有している必要は特にないが、このフィルムがフ
ィルム表面の一面を形成づる場合、平均粒径が0.00
7〜2 t17n、特に0.02〜0.45 u rr
tの不活↑1粒子が0.001〜0.2重量%、特に0
.005〜0.15重量%、ざらには0.005〜0.
12重量%含有されていると、摩擦係数、耐スクラッチ
性がより−I?J良好となるのみならず、フィルムの巻
姿が良好となるのできわめて望ましい。含有する不活性
粒子の種類は熱可塑性樹脂Aに含有される不活性粒子へ
として望ましく用いられるものを使用することが望まし
い。熱可塑性樹脂AとBに含有される粒子の種類、大き
さは同じでも異なっていても良い。
There is no particular need to contain inert particles in the film mainly composed of thermoplastic resin B, but if this film forms one surface of the film, the average particle size is 0.000.
7-2 t17n, especially 0.02-0.45 u rr
t inert↑1 particle is 0.001 to 0.2% by weight, especially 0
.. 005 to 0.15% by weight, and 0.005 to 0.00% by weight.
When the content is 12% by weight, the friction coefficient and scratch resistance are improved. This is extremely desirable because it not only provides a good J but also a good film winding appearance. As for the type of inert particles contained, it is desirable to use those preferably used as inert particles contained in the thermoplastic resin A. The types and sizes of particles contained in thermoplastic resins A and B may be the same or different.

上述の如き不活性粒子A、Bを含有する熱可塑性樹脂A
と、熱可塑性樹脂Bとが共押出により積層され、シート
状に成形された後二輪に延伸され、−軸配向熱可塑性樹
脂フィルムとされる。本発明における共押出による積層
とは、不活性粒子A、Bを含有する熱可塑性樹脂Aと、
熱可塑性樹脂Bとをそれぞれ異なる押出装置で押出し、
口金から栖囮シートを吐出する前にこれらを積@するこ
とをいう。この積層は、シート状に成形、吐出するため
の口金内(たとえばマニホルド)で行ってもよいが、前
述の如く積層フィルム層が極薄であることから、口金に
導入する前のポリマ管内で行うことが好ましい。とくに
、ポリマ管内の積層部を、矩形に形成しておくと、幅方
向に均一に積層できるのでその後の二軸延伸が容易に行
なえるため特に好ましい。ポリマ管内矩形積層部で積層
された溶融ポリマは、口金内マニホルドでシート幅方向
に所定幅まで拡幅され、口金からシート状に吐出された
後、二輪に延伸される。したがって、たとえ二輪配向後
の積層フィルム層が極薄であっても、ポリマ管内矩形積
層部では、不活性粒子含有熱可塑性樹脂ポリマを、かな
りの厚さで積層することになるので、容易にかつ精度よ
く積層できる。
Thermoplastic resin A containing inert particles A and B as described above
and thermoplastic resin B are laminated by coextrusion, formed into a sheet, and then stretched into two wheels to form a -axis oriented thermoplastic resin film. Lamination by coextrusion in the present invention refers to thermoplastic resin A containing inert particles A and B,
Thermoplastic resin B is extruded using different extrusion devices,
This refers to stacking the decoy sheets before discharging them from the nozzle. This lamination may be carried out in the nozzle (for example, a manifold) for forming and discharging into a sheet, but as mentioned above, since the laminated film layer is extremely thin, it is carried out within the polymer tube before introducing it into the nozzle. It is preferable. In particular, it is particularly preferable to form the laminated portion within the polymer tube into a rectangular shape, since this allows uniform lamination in the width direction and facilitates subsequent biaxial stretching. The molten polymer laminated in the rectangular lamination section in the polymer tube is expanded to a predetermined width in the sheet width direction in the manifold in the die, discharged from the die in the form of a sheet, and then stretched into two wheels. Therefore, even if the laminated film layer after two-wheel orientation is extremely thin, the inert particle-containing thermoplastic resin polymer will be laminated to a considerable thickness in the rectangular laminated section inside the polymer tube, making it easy to Can be laminated with high precision.

二輪に配向された本発明の熱可塑性樹脂フィルムは、幅
方向のヤング率が4008g/mrrt”以上であるこ
とが好ましく、ビデオテープ用途等では、さらに好まし
くは幅方向、長手方向ともにヤング率が400/(!i
F/a2以上であることが好ましい。前述の矩形積騎部
をJ#iするポリマ管内で積層することにより、均一な
積層が可能になり、積層フィルム層が極a層であっても
、幅方向延伸倍率として少なくとも3倍がとれるように
なり、上記400Ky/M2以上の幅方向ヤング率が容
易に達成できる。
The thermoplastic resin film of the present invention oriented in two wheels preferably has a Young's modulus of 4008 g/mrrt" or more in the width direction, and more preferably has a Young's modulus of 400 in both the width and length directions for videotape applications. /(!i
It is preferable that F/a2 or more. By laminating the above-mentioned rectangular stacked portions in a J #i polymer tube, uniform lamination is possible, and even if the laminated film layer is an a-layer, at least 3 times the width direction stretching ratio can be obtained. Therefore, the Young's modulus in the width direction of 400 Ky/M2 or more can be easily achieved.

ヤング率が上記値よりも低いと、広幅フィルムを使用用
途に合わせて狭幅にスリットする際、スリットされたフ
ィルム端面からの粉落ち特性が悪く、発生したフィルム
粉が各種障害を惹き起こすおそれがあるので、好ましく
ない。また、幅方向および長手方向ヤング率が上記fl
iよりも低いと、ビデオテープとしての耐ダビング性、
ドロップアウト特性が低下するおそれがあるので好まし
くない。
If the Young's modulus is lower than the above value, when a wide film is slit into a narrow width according to the intended use, the properties of powder falling from the edge of the slit film will be poor, and the generated film powder may cause various problems. Because of this, I don't like it. In addition, the Young's modulus in the width direction and longitudinal direction is above fl
If it is lower than i, the dubbing resistance as a videotape is
This is not preferable because there is a risk that the dropout characteristics will deteriorate.

また、本発明の二軸配向熱可塑性樹脂フィルムにおいて
は、不活性粒子A、Bを含む積層フィルム側の表層の不
活性粒子Aによる粒子濃度比が0゜1以下であることが
好ましい。この表層粒子濃度比は、後述の測定法に示1
如く、フィルム表面突起を形成する不活性粒子がフィル
ム表面において如何に熱可塑性樹脂への薄膜で覆われて
いるかを示すものであり、粒子がフィルム表面に実質的
に直接露出している度合が高い稈表層粒子濃度比が高く
、表面突起は形成するが熱pJ塑性樹脂への薄膜に覆わ
れている度合が高い程表層粒子濃麿比は低い。本発明に
おいては、主として不活性粒子Aがフィルム表面の突起
を形成するが、矩形積層の効果により該不活性粒子Aが
熱可塑性樹脂Aの薄膜で覆われていることにより、不活
性粒子Aが高密度に極薄積層フィルム層に分布している
状態にあっても、該粒子が該積層フィルム層、ひいては
熱可塑性樹脂Bのベースフィルム層にしっかりと保持さ
れることになる。したがって、表層粒子濃度比を上記値
以トとすることにより、粒子の脱落等が防止されて、フ
ィルム表面の耐スクラッチ性、耐削れ性が高く維持され
る。このような表層粒子flU比は、共押出による積層
を行うことによって達成可能となる。ちなみに、コーテ
ィング方法によっても、本発明と類似のフィルム、すな
わち、ベースフィルム層に対し極薄厚さで樹脂層をコー
ティングし、該樹脂局内に不活性粒子を含有させること
は可能であるが、表□□□粒子11度比が著しく高くな
り(つまり粒子が実質的に表面に直接露出する度合が著
しく高くなり)、本発明フィルムに比べ表面の極めて脆
いものしか得られない。
Further, in the biaxially oriented thermoplastic resin film of the present invention, it is preferable that the particle concentration ratio of the inert particles A in the surface layer on the side of the laminated film containing the inert particles A and B is 0°1 or less. This surface layer particle concentration ratio is shown in the measurement method described below.
This shows how the inert particles forming the film surface protrusions are covered with a thin film of thermoplastic resin on the film surface, and the degree to which the particles are substantially directly exposed to the film surface is high. Although the culm surface layer particle concentration ratio is high and surface protrusions are formed, the higher the degree to which the culm is covered with a thin film of thermopJ plastic resin, the lower the surface layer particle concentration ratio is. In the present invention, inert particles A mainly form protrusions on the film surface, but because the inert particles A are covered with a thin film of thermoplastic resin A due to the effect of rectangular lamination, the inert particles A are Even if the particles are distributed at high density in the ultra-thin laminated film layer, the particles are firmly held in the laminated film layer and, ultimately, in the base film layer of thermoplastic resin B. Therefore, by setting the surface layer particle concentration ratio to the above value or more, drop-off of particles, etc. is prevented, and the scratch resistance and abrasion resistance of the film surface are maintained high. Such a surface particle flU ratio can be achieved by laminating by coextrusion. Incidentally, it is possible to use a coating method to create a film similar to the present invention, that is, to coat a base film layer with an extremely thin resin layer and to contain inert particles within the resin layer. □□ The particle 11 degree ratio is significantly higher (that is, the degree to which the particles are substantially directly exposed to the surface is significantly higher), resulting in an extremely brittle surface compared to the film of the present invention.

なお、本発明のフィルムにおいては、不活性粒子Aによ
り形成される表面突起の高さは特に限定されないが、狙
った滑り性改良(摩擦係数の低減)等の効果を得るため
には、突起平均高さが不活性粒子への平均粒径の0.3
倍以上となるように、不活性粒子への平均粒径、熱可塑
性樹脂Aの積層フィルム廟の厚さを設定することが好ま
しい。また、均一なかつ高密度の突起を得るために、不
活性粒子A自身の粒径分布の標準偏差が0.5以下であ
ることが好ましい。
In the film of the present invention, the height of the surface protrusions formed by the inert particles A is not particularly limited, but in order to obtain the desired effect of improving slipperiness (reducing the coefficient of friction), the average height of the protrusions must be The height is 0.3 of the average particle size to inert particles
It is preferable to set the average particle diameter of the inert particles and the thickness of the laminated film of the thermoplastic resin A so that the average particle size of the inert particles is at least twice as large. Further, in order to obtain uniform and high-density protrusions, it is preferable that the standard deviation of the particle size distribution of the inert particles A themselves is 0.5 or less.

次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.

まず、熱可塑性樹脂Aに不活性粒子A、Bを含有せしめ
る方法としては、重合後、重合中、重合前のいずれでも
良いが、ポリマにベント方式の2軸押出機を用いて不活
性粒子A、Bを同時に練り込む方法が本発明範囲の表面
形態のフィルムを得るのに有効である。また、粒子の含
有量を調節する方法としては、上記方法で高濃度マスタ
ーを作っておき、それを製膜時に不活性粒子を実質的に
含有しない熱可塑性樹脂で希釈して粒子の含Mlを調節
する方法が本発明範囲の表面形態のフィルムを得るのに
有効である。さらにこの粒子高濃度マスターポリマの溶
融粘度、共重合成分などを調節して、その結晶化パラメ
ータΔTCgを30〜80℃の範囲にしておく方法は延
伸破れなく、本発明範囲の表面形態のフィルムを得るの
に有効である。
First, the inert particles A and B can be incorporated into the thermoplastic resin A after, during, or before polymerization. , B are mixed in at the same time, which is effective for obtaining a film having a surface morphology within the range of the present invention. In addition, as a method for adjusting the particle content, a high concentration master is prepared by the above method, and then diluted with a thermoplastic resin that does not substantially contain inert particles during film formation to reduce the Ml content of the particles. Control methods are effective for obtaining films with surface morphologies within the range of the present invention. Furthermore, a method in which the melt viscosity, copolymerization components, etc. of this particle-high concentration master polymer are adjusted to keep its crystallization parameter ΔTCg in the range of 30 to 80°C will not cause tearing during stretching and will produce a film with a surface morphology within the range of the present invention. It is effective for obtaining

かくして、不活性粒子A、Bを含有するペレット八を→
−分乾燥したのち、公知の溶融押出機に供給し、熱可塑
性樹脂の融点以上分解点以下の温度で溶融し、もう一方
の実質的に不活性粒子を含有しない熱可塑性樹脂B(種
類は不活性粒子を含有する熱可塑性樹脂と同一であって
も異なっていてもよい)を前述の如き積喘用装置に供給
し、スリット状のダイからシート状の押出し、キャステ
ィングロール上で冷却固化せしめて未延伸フィルムを作
る。ずなわら、2または3台の押出機、2または3層用
の合流ブロックあるいは口金を用いて、これらの熱可塑
性樹脂を積層する。合流ブロック方式を用いる場合は積
層部分を前述の如く矩形のものとし、両者の熱可塑性樹
脂の溶融粘度の差(絶対値〉をO〜2000ボイズ、好
ましくはO〜1000ボイズの範囲にしておくことが本
発明範囲の表面形態のフィルムを安定して、幅方向の斑
なく、工業的に製造づるのに有効である。
Thus, pellet 8 containing inert particles A and B →
- After drying for 2 minutes, it is supplied to a known melt extruder and melted at a temperature above the melting point of the thermoplastic resin and below the decomposition point, and the other thermoplastic resin B (the type is non-containing) containing substantially no inert particles. The thermoplastic resin (which may be the same as or different from the thermoplastic resin containing the active particles) is fed to the above-mentioned loading device, extruded into a sheet from a slit die, and cooled and solidified on a casting roll. Make an unstretched film. These thermoplastic resins are then laminated using two or three extruders, two or three layer merging blocks, or ferrules. When using the confluence block method, the laminated portion should be rectangular as described above, and the difference in melt viscosity (absolute value) between the two thermoplastic resins should be in the range of O to 2000 voids, preferably O to 1000 voids. is effective for industrially producing a film having a surface morphology within the scope of the present invention stably and without unevenness in the width direction.

次にこの多層の未延伸フィルムを二軸延伸し、二軸配向
せしめる。二軸延伸の方法は同時二軸延伸、逐次二輪延
伸法のいずれでもよいが、長手方向、幅方向の順に延伸
する逐次二軸延伸法の場合に本発明範囲の表面形態のフ
ィルムを安定して、幅方向の斑なく、工業的に製造する
のに有効である。逐次二軸延伸の場合、長手方向の延伸
を、3段階、特に4段階以上に分けて、40〜150℃
の範囲で、かつ、1000〜50000%/分の延伸速
度で、3〜6倍行なう方法は本発明範囲の表面形態を有
づるフィルムを得るのに有効である。幅方向の延伸温度
、速度は、80〜170℃、1000〜20000%/
分の範囲が好適である。延伸倍率は3〜10倍が好適で
ある。また必要に応じてさらに長手方向、幅方向の少な
くとも一方向に延伸することもできる。
Next, this multilayer unstretched film is biaxially stretched and biaxially oriented. The biaxial stretching method may be either simultaneous biaxial stretching or sequential two-wheel stretching, but in the case of sequential biaxial stretching in which the film is stretched in the longitudinal direction and then in the width direction, the film having the surface morphology within the range of the present invention can be stabilized. , there is no unevenness in the width direction, and it is effective for industrial manufacturing. In the case of sequential biaxial stretching, the stretching in the longitudinal direction is divided into three stages, especially four or more stages, and the stretching is carried out at 40 to 150°C.
A method of stretching 3 to 6 times at a stretching speed of 1,000 to 50,000%/min is effective for obtaining a film having a surface morphology within the range of the present invention. The stretching temperature and speed in the width direction are 80 to 170°C, 1000 to 20000%/
A range of minutes is preferred. The stretching ratio is preferably 3 to 10 times. Further, if necessary, it can be further stretched in at least one of the longitudinal direction and the width direction.

いずれにしても不活性粒子A、Bを含有するきわめて薄
い層を設けてから、面積延伸倍率(長手方向倍率×幅方
向倍率〉として9倍以上の延伸を行なうことが本発明の
ポイントである。次にこの延伸フィルムを熱処理する。
In any case, the key point of the present invention is to provide an extremely thin layer containing inert particles A and B, and then stretch the layer to an areal stretching ratio (longitudinal magnification x width magnification) of 9 times or more. Next, this stretched film is heat treated.

この場合の熱処理条件としては、幅方向に弛緩、微延伸
、定長下のいずれかの状態で140〜280℃、好まし
くは160〜220°Cの範囲で0.5〜60秒間が好
適であるが、熱処理にマイクロ波カロ熱を併用すること
によって本発明範囲の表面形態を有するフィルムが得ら
れやすくなるので望ましい。
In this case, the heat treatment conditions are preferably 140 to 280°C, preferably 160 to 220°C for 0.5 to 60 seconds in any state of relaxation, slight stretching, or constant length in the width direction. However, it is desirable to use microwave Calothermy in combination with the heat treatment because it becomes easier to obtain a film having a surface morphology within the range of the present invention.

本発明フィルムの製法の特徴は、特殊な方法で調製した
特定範囲の熱特性を有する高濃度粒子ポリマを用いて、
不活性粒子を含有づるきわめて薄い層を設けた後にフィ
ルムを二輪延伸することであり、製膜工程内で、フィル
ムを一軸延伸した後、コーティングなどを施しざらに延
伸する方法、あるいは二軸延伸フィルムにコーティング
して作られる積層フィルムでは本発明フィルムの性能に
は遠く及ばず、また、コスト面でも本発明フィルムが優
れている。
The manufacturing method of the film of the present invention is characterized by using a highly concentrated particle polymer having a specific range of thermal properties prepared by a special method.
This method involves two-wheel stretching of the film after forming an extremely thin layer containing inert particles.In the film-forming process, the film is uniaxially stretched, then coated, etc. and roughly stretched, or biaxially stretched film. The performance of the laminated film produced by coating the film is not even close to the performance of the film of the present invention, and the film of the present invention is also superior in terms of cost.

[物性の測定方法ならびに効果の評価方法]本発明の特
性偵の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the properties and evaluating the effects of the present invention are as follows.

(1)粒子の平均粒径 フィルムからポリエステルをプラズマ低温灰化処理法(
たとえばヤマト科学製P R−503型)で除去し粒子
を露出させる。処理条件はポリエステルは灰化されるが
粒子はダメージを受けない条件を選択する。これをSE
M (走査型電子顕微鏡〉で観察し、粒子の画像(粒子
によってできる光の濃淡)をイメージアナライザー(た
とえばケンブリッジインストルメントMQTM900 
)に結び付け、観察箇所を変えて粒子数5000fli
i1以上で次の数116処理を行ない、それによって求
めた数平均径I)を平均粒径とする。
(1) Polyester is removed from a film of average particle size by plasma low-temperature ashing process (
For example, the particles are removed using a model PR-503 manufactured by Yamato Kagaku Co., Ltd.) to expose the particles. The processing conditions are selected so that the polyester is incinerated but the particles are not damaged. SE this
Observe with a scanning electron microscope (Scanning Electron Microscope) and use an image analyzer (for example, Cambridge Instrument MQTM900
), change the observation point and increase the number of particles to 5000fli.
The following equation 116 is performed for i1 or more, and the number average diameter I) obtained thereby is taken as the average particle diameter.

D=ΣDi /N ここで、Diは粒子の円相当径、Nは個数である。D=ΣDi /N Here, Di is the circle-equivalent diameter of the particles, and N is the number of particles.

なお不活性粒子Bについては一次粒子の平均粒径を81
1定する。
For inert particles B, the average particle diameter of the primary particles is 81
1 set.

(2〉粒子の含有量 ポリ1ステルは溶解し粒子は溶解させない溶媒を選択し
、粒子をポリエステルから遠心分離し、粒子の全体重接
に対する比率(重量%〉をもって粒子含有量とする。場
合によっては赤外分光法の併用も有効である。
(2> Particle content Select a solvent that dissolves polyester but not particles, centrifuges the particles from the polyester, and defines the particle content as the ratio (weight %) to the total weight of the particles. Depending on the case, It is also effective to use infrared spectroscopy.

(3〉結晶化パラメータ△TC9 バーキシエルマー社製のDSC(示差走査熱量計〉■型
を用いて測定した。DSCの測定条件は次の通りである
。すなわち、試料10qをDSC装置にセットし、30
0℃の温度で5分間溶融した後、液体窒素中に急冷する
。この急冷試料を10℃/分で昇温し、ガラス転移点T
 9を検知する。ざらに昇温を続け、ガラス状態からの
結晶化発熱ピーク温度をもって冷結晶化温度TCCとし
た。このTCCとTgの差(TCC−Tg>を結晶化パ
ラメータΔTCgと定義する。
(3) Crystallization parameter △TC9 Measured using DSC (differential scanning calorimeter) type ■ manufactured by Birx Elmer Co., Ltd. The measurement conditions of DSC are as follows. That is, sample 10q was set in the DSC device. , 30
After melting for 5 minutes at a temperature of 0° C., it is quenched in liquid nitrogen. This rapidly cooled sample was heated at a rate of 10°C/min, and the glass transition point T
9 is detected. The temperature was continued to rise gradually, and the peak temperature of crystallization exotherm from the glass state was defined as the cold crystallization temperature TCC. The difference between TCC and Tg (TCC-Tg>) is defined as a crystallization parameter ΔTCg.

(4)表面突起の平均高さ 2検出器方式の走査型電子顕微鏡[ESM−3200、
エリオニクス(Il製]と断面測定装置[PMS−1、
エリオニクス■製]においてフィルム表面の平坦面の高
さをOとして走査したときの突起の高さ測定値を画像処
理装置[I BAS2000.力−ルツァイス■製]に
送り、画像処理装置上にフィルム表面突起画像を再構築
する。次に、この表面突起画像で突起部分を2値化して
得られた個々の突起の面積から円相当径を求めこれをそ
の突起の平均径とする。また、この2値化された個々の
突起部分の中で最も高い値をその突起の高さとし、これ
を個々の突起について求める。この測定を場所をかえて
500回繰返し、突起個数を求め、測定された全突起に
ついてその高さの平均値を平均高さとした。また走査型
電子顕微鏡の倍率は、1000〜8000倍の間の値を
選択する。なお、場合によっては、高精度光干渉式3次
元表面解析装着(WYKO社製TOPO−3D、対物レ
ンズ:40〜200倍、高解像度カメラ使用が有効)を
用いて得られる高さ情報を上記SEMの値に読み替えて
用いてもよい。
(4) Average height of surface projections Two-detector scanning electron microscope [ESM-3200,
Elionix (manufactured by Il) and cross section measuring device [PMS-1,
The height measurement value of the protrusion was measured using an image processing device [I BAS2000. The image of the protrusions on the film surface is reconstructed on an image processing device. Next, a circular equivalent diameter is determined from the area of each protrusion obtained by binarizing the protrusion portion using this surface protrusion image, and this is taken as the average diameter of the protrusion. Furthermore, the highest value among the binarized individual protrusion portions is determined as the height of the protrusion, and this value is determined for each protrusion. This measurement was repeated 500 times at different locations to determine the number of protrusions, and the average value of the heights of all the measured protrusions was taken as the average height. Further, the magnification of the scanning electron microscope is selected to be between 1000 and 8000 times. In some cases, height information obtained using a high-precision optical interference type three-dimensional surface analysis device (TOPO-3D manufactured by WYKO, objective lens: 40 to 200 times, effective to use a high-resolution camera) may be used in the above-mentioned SEM. It may be used instead of the value of .

(5〉表層粒子m度比 2次イオンマススペクトル(SIMS:)を用いて、フ
ィルム中の粒子に起因する元素の内のもつとも高濃度の
元素とポリエステルの炭素元素の濃度比を粒子11度と
し、厚さ方向の分析を行なう。
(5> Surface layer particle m degree ratio Using secondary ion mass spectrometry (SIMS:), the concentration ratio of the element with the highest concentration among the elements caused by particles in the film and the carbon element of the polyester is set to 11 degrees of the particle. , conduct an analysis in the thickness direction.

SIMSによって測定される最表層粒子m度(深さOの
点)における粒子m度Aとさらに深さ方向の分析を続け
て得られる最高濃度Bの比、A/Bを表層粒子濃度比と
定義した。測定装置、条件は下記のとおりである。
The ratio of the particle m degree A at the outermost particle m degree measured by SIMS (point at depth O) and the maximum concentration B obtained by further analysis in the depth direction, A/B is defined as the surface layer particle concentration ratio did. The measuring device and conditions are as follows.

■ 測定装置 2次イオン質量分析装置(SIMS> 西独、^TOHIK八社製 AへDIDA3000■ 
測定条件 1次イオン種 :02” 1次イオン加速電圧: 12KV 1次イオン電流: 200nへ ラスター領域 :400117nロ 分析領域二ゲート30% 測定真空度: 6.OxlO’ TorrE−GLJ 
N : 0.5KV−3,OA〈6〉単一粒子指数 フィルムの断面を透過型電子顕微鏡(丁EM)で写真観
察し、粒子を検知する。観察倍率を100000倍程度
にすれば、それ以上分けることかできない1個の粒子が
観察できる。粒子の占める全面積をA、その内2m以上
のネ9子が凝集している凝集体の占める面積をBとした
時、(A−8>/Aをもって、単一粒子指数とする。T
 E M条件は下記のとおりであり1視野面積:2μm
”の811定を場所を変えて、500視野測定する。
■ Measuring device Secondary ion mass spectrometer (SIMS) DIDA3000 made by TOHIK 8, West Germany ■
Measurement conditions Primary ion species: 02" Primary ion acceleration voltage: 12KV Primary ion current: 200n raster area: 400117n analysis area 2 gates 30% Measurement vacuum degree: 6.OxlO' TorrE-GLJ
N: 0.5 KV-3, OA <6> Single particle index A cross section of the film is photographed and observed using a transmission electron microscope (Die EM) to detect particles. If the observation magnification is set to about 100,000 times, a single particle that cannot be separated any further can be observed. When the total area occupied by particles is A, and the area occupied by aggregates of 2 m or more of aggregates is B, (A-8>/A is defined as a single particle index.T
The EM conditions are as follows: 1 field of view area: 2 μm
Change the location of 811 constants and measure 500 visual fields.

・装置;日本電子製JEM−1200EX・観察倍率:
 100000倍 ・切片厚さ:約1000オングストローム(7〉粒径比 上記(1)の測定において個々の粒子の長径の平均11
/短径の平均値の比である。
・Equipment: JEOL JEM-1200EX ・Observation magnification:
100,000 times Section thickness: Approximately 1,000 angstroms (7> Particle size ratio In the measurement of (1) above, the average length of each particle is 11
/ is the ratio of the average value of the short axis.

すなわち、下式で求められる。That is, it can be obtained using the following formula.

長径=ΣDlt/N 短径−ΣD2i/N Dl i 、D2+はそれぞれ(固々の粒子の長径(最
大径〉、短径(最短径〉、Nは総個数である。
Long axis = ΣDlt/N Short axis - ΣD2i/N Dli, D2+ are respectively (long axis (maximum diameter), short axis (shortest diameter), N is the total number of solid particles.

(8)ヤング率 JIS−Z−1702に規定された方法にしたがって、
インストロンタイプの引っ張り試験機を用いて、25℃
、65℃R目にて測定した。
(8) Young's modulus according to the method specified in JIS-Z-1702,
25°C using an Instron type tensile tester.
, measured at 65°C.

(9)積層されたフィルム中の熱可明性樹脂A層の厚さ 2次イオン貿摂分析装置(SIMS>を用いて、フィル
ム中の粒子の内最も高濃喰の粒子に起因する元素とポリ
エステルの炭素元素の11度比(M”/C+)を粒子濃
度とし、熱可塑性樹脂A層の表面から深さ(厚さ〉方向
の分析を行なう。表層では表面という界面のために粒子
濃度は低く表面から遠ざかるにつれて粒子m度は高くな
る。本発明フィルムの場合は深さEl]でいったん極大
値となった粒子S度がまた減少し始める。この濃度分布
曲線をもとに極大値の粒子m度の1/2になる深さ[■
] (ここでn>i>をv1層厚さとした。
(9) Thickness of thermoplastic resin layer A in the laminated film. Using a secondary ion transport spectrometer (SIMS), we determined the thickness of the thermoplastic resin A layer in the laminated film. The particle concentration is defined as the 11 degree ratio (M''/C+) of the carbon element in polyester, and analysis is performed in the depth (thickness) direction from the surface of the thermoplastic resin A layer.In the surface layer, the particle concentration is The particle S degree increases as it moves away from the surface.In the case of the film of the present invention, the particle S degree once reached a maximum value at the depth El] begins to decrease again. Depth to 1/2 of m degree [■
] (Here, n>i> is the v1 layer thickness.

条件は測定法(5〉と同様である。The conditions are the same as in the measurement method (5>).

なお、フィルム中にもつとも多く含有する粒子が@機高
分子粒子の場合はSIMSでは測定が雑しいので、表面
からエツチングしながらXPS(X線光電子分光法〉、
IR(赤外分光法)a5るいはコンフォーカル顕微@な
どで、その粒子濃度のデプスプロファイルを測定し、上
記同様の手法から積層厚さを求めても良い。
Note that if the particles that are present in large quantities in the film are polymeric particles, measurement using SIMS is complicated, so XPS (X-ray photoelectron spectroscopy) is performed while etching from the surface.
The depth profile of the particle concentration may be measured using an IR (infrared spectroscopy) a5 or a confocal microscope @, and the lamination thickness may be determined by the same method as described above.

ざらに、上述した粒子濃度のデプスプロファイルからで
はなく、フィルムの断面観察あるいは薄膜段差測定機等
によって熱可塑性樹脂Aの積層厚さを求めても良い。
In general, the laminated thickness of the thermoplastic resin A may be determined not from the depth profile of the particle concentration described above, but by observing the cross section of the film, using a thin film step measuring device, or the like.

(10)耐スクラツヂ性 フィルムを幅1/2インチのテープ状にスリットしたも
のをテープ走行試験機を使用して、ガイドビン(表面粗
It : Raで10100n上を走行させる(走行速
111000m/分、走行回数10パス、巻き付は角:
60°、走行張カニ 20g>。この時、フィルムに入
った傷を顕微鏡で観察し、幅2,5μ仇以上の爆がテー
プ幅あたり2本未満は優、2木繊110本未満は良、1
0本以上は不良と判定した。優が望ましいが、良でも実
用的には使用可能である。
(10) Using a tape running tester, the scratch-resistant film was slit into a 1/2 inch wide tape and run over a guide bin (surface roughness It: Ra at 10,100 nm (running speed: 111,000 m/min). , 10 passes, wrapped around corners:
60°, running crab 20g>. At this time, the scratches in the film were observed under a microscope, and if there were less than 2 grains per tape width of 2.5 μm or more, it was considered good, and if there were less than 110 grains per tape width, it was good.
0 or more were determined to be defective. Excellent is desirable, but good is still usable for practical purposes.

(11)耐削れ性 フィルムを幅1/2インチにテープ状にスリットしたも
のに片刃を垂直に押しあて、さらに0.5M押し込んだ
状態で201J走行させる〈走行張カニ500g、走行
速度:6.7CIR/秒〉。この時片刃の先に付着した
フィルム表面の削れ物の高さを顕微鏡で読みとり、削れ
量としたく単位はμrrt >。少なくとも片面につい
て、粉の削れ量が10μ静以下の場合は耐削れ性:良好
、10μ仇を越える場合は耐削れ性:不良と判定した。
(11) Press one blade perpendicularly against a tape-like slit of abrasion-resistant film 1/2 inch wide, push it further 0.5M, and run it for 201J (travel tension 500g, running speed: 6. 7CIR/sec>. At this time, the height of the scraped material on the film surface attached to the tip of the single blade is read with a microscope, and the amount of scraped material is measured in units of μrrt>. When the amount of powder abrasion was 10 μm or less on at least one side, the abrasion resistance was determined to be good, and when it exceeded 10 μm, the abrasion resistance was determined to be poor.

この削れ量: ioμ仇という116は、印刷工程やカ
レンダー工程などの加工工程で、フィルム表面が削れる
ことによって、工程上、製品性能上のトラブルがおこる
か否かを判定するための臨界点である。
This amount of abrasion: 116, called ioμ, is the critical point for determining whether or not problems with the process and product performance will occur due to abrasion of the film surface during processing steps such as printing and calendering. .

[実施例] 本発明を実施例に基づいて説明づる。[Example] The present invention will be explained based on examples.

実施例1〜6、比較例1〜5 不活性粒子Aとしての平均粒径の異なる架橋ポリスチレ
ン粒子、コロイダルシリ力に起因するシリカ粒子、およ
び不活性粒子Bとしての数珠状シリカ、網目状二酸化チ
タンをそれぞれ含有するエチレングリコールスラリーを
調製し、このエチレングリコールスラリーを190″G
で1.5時間熱処理した後、プレフタル酸ジメチルとエ
ステル交換反応後、重縮合し、該粒子を0.3〜551
6量%含有するポリエチレンテレフタレート(以下PE
Tと略記する〉のベレットを作った。つまり、重合段階
で不活性粒子A、Bを同時に添hロシた。このペレット
を用いて熱可塑性樹脂Aを調製し、また、常法によって
、実質的に不活性粒子を含有しないPEIIJnし、熱
可塑性樹脂Bとした。これらのポリマをそれぞれ180
℃で3時間域yt乾燥(3T。
Examples 1 to 6, Comparative Examples 1 to 5 Crosslinked polystyrene particles with different average particle sizes as inert particles A, silica particles resulting from colloidal silica force, and beaded silica and reticulated titanium dioxide as inert particles B Prepare an ethylene glycol slurry containing each of
After heat treatment for 1.5 hours at
Polyethylene terephthalate (hereinafter referred to as PE) containing 6% by weight
I made a beret (abbreviated as T). That is, inert particles A and B were added at the same time during the polymerization stage. Thermoplastic resin A was prepared using the pellets, and PEIIJn containing substantially no inert particles was prepared by a conventional method to obtain thermoplastic resin B. 180% of each of these polymers
Dry for 3 hours at 30°C (3T).

r「〉シた。熱可塑性樹脂Aを押出機1に供給し310
℃で溶融し、さらに、熱可塑性樹脂E3を押出機2に供
給、280℃で溶融し、これらのポリマを矩形MH部を
備えた合流ブロックで合流積層し、静電印加キャスト法
を用いて表面温度30°Cのキャスティング・ドラムに
巻きつけて冷却固化し、2]藏構造の未延伸フィルムを
作った。この時、それぞれの押出機の吐出量を調節し総
厚さ、熱可塑性樹脂A層の厚さを調節した。この未延伸
フィルムを温i[80℃にて長手方向に4,5倍延伸し
た。この延伸は2組ずつのロールの周速差で、4段階で
行なった。この−軸延伸フィルムをステンタを用いて延
伸速喚20()0%7分で100℃で幅方向に4.0倍
延伸し、定長下で、200 ’Cにて5秒間熱処理し、
総厚さ15μ扉、熱可塑性樹脂A層厚さ0.008〜3
μmlの二軸配向積層フィルムを得た。これらのフィル
ムの本発明のパラメータは第1表に示したとおりであり
、本発明のパラメータが範囲内の場合は耐スクラッヂ性
、耐削れ性は第1表に示したとおり良好な値を示したが
、そうでない場合は両特性を兼備するフィルムは得られ
なかった。
r "〉Shita. Thermoplastic resin A is fed to extruder 1 and 310
Further, the thermoplastic resin E3 is supplied to the extruder 2, melted at 280°C, these polymers are merged and laminated in a confluence block equipped with a rectangular MH part, and the surface is coated using an electrostatic casting method. It was wound around a casting drum at a temperature of 30°C and cooled and solidified to produce an unstretched film with a 2] cross-section structure. At this time, the total thickness and the thickness of the thermoplastic resin A layer were adjusted by adjusting the discharge amount of each extruder. This unstretched film was stretched 4.5 times in the longitudinal direction at a temperature of 80°C. This stretching was carried out in four stages with a difference in peripheral speed between two sets of rolls. This -axially stretched film was stretched 4.0 times in the width direction at 100°C using a stenter at a stretching speed of 20% (20%) for 7 minutes, and then heat-treated at 200'C for 5 seconds under a constant length.
Total thickness 15μ door, thermoplastic resin A layer thickness 0.008~3
A μml biaxially oriented laminated film was obtained. The parameters of the present invention for these films are as shown in Table 1, and when the parameters of the present invention were within the range, the scratch resistance and abrasion resistance showed good values as shown in Table 1. However, in other cases, a film having both properties could not be obtained.

[発明の効果] 以上説明したように、本発明の二軸配向熱可塑性樹脂フ
ィルムによるときは、積層フィルム層内含有の不活性粒
子へによりフィルム表面に均一な高さでかつ高密直の所
望の突起を形成でき、かつ凝集粒子状態の不活性粒子B
により上記突起およびフィルム表面地自身を補強できる
ようにしたので、該フィルム表面の耐スクフツチ性、耐
削れ性を著しく高めることができる。
[Effects of the Invention] As explained above, when the biaxially oriented thermoplastic resin film of the present invention is used, the inert particles contained in the laminated film layer form a desired shape on the film surface with a uniform height and high density. Inert particles B capable of forming protrusions and in agglomerated particle state
Since the projections and the film surface itself can be reinforced, the scuff resistance and abrasion resistance of the film surface can be significantly improved.

また、本発明フィルムは、製膜工程内で、コーティング
などの操作なしで共押出により直接複合@補することに
よって作ったフィルムであり、製膜工程中あるいはその
後のコーティングによって作られる積層フィルムに比べ
て、最表層の分子も二軸配向であるため、フィルム全体
とともにその表底部も極めて強度が高いものとなり、し
かもコスト面、品質の安定性などにおいて有利になる。
In addition, the film of the present invention is a film made by direct composite@completion by coextrusion without any operations such as coating during the film forming process, and compared to laminated films made during the film forming process or by coating afterward. Since the molecules in the outermost layer are also biaxially oriented, the strength of both the top and bottom of the film as a whole is extremely high, which is advantageous in terms of cost and quality stability.

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂Aと不活性粒子A、Bとを主成分とす
るフィルムを共押出により熱可塑性樹脂Bを主成分とす
るフィルムの少なくとも片面に0.01μm以上の厚さ
で積層した二軸配向熱可塑性樹脂フィルムであって、前
記不活性粒子Aの平均粒径が前記熱可塑性樹脂Aのフィ
ルム層厚さの0.1〜10倍であり、前記不活性粒子B
が、平均粒径が不活性粒子Aの平均粒径よりも小さい一
次粒子が方向性をもたずに多数連なった凝集粒子である
ことを特徴とする二軸配向熱可塑性樹脂フィルム。 2、前記不活性粒子Bの一次粒子の平均粒径が5〜10
0nmである請求項1記載の二軸配向熱可塑性樹脂フィ
ルム。 3、前記不活性粒子Bの前記熱可塑性樹脂Aのフィルム
層中の含有量が0.05〜1重量%である請求項1記載
の二軸配向熱可塑性樹脂フィルム。 4、幅方向ヤング率が400Kg/mm^2以上である
請求項1記載の二軸配向熱可塑性樹脂フィルム。 5、前記不活性粒子A、Bを含む積層フィルム側の表層
の不活性粒子の粒子濃度比が0.1以下である請求項1
記載の二軸配向熱可塑性樹脂フィルム。 6、前記熱可塑性樹脂Aが結晶性の樹脂である請求項1
記載の二軸配向熱可塑性樹脂フィルム。
[Claims] 1. Co-extrusion of a film containing thermoplastic resin A and inert particles A and B as main components to produce a film containing thermoplastic resin B as a main component with a thickness of 0.01 μm or more on at least one side. A biaxially oriented thermoplastic resin film laminated with a laminate, wherein the average particle diameter of the inert particles A is 0.1 to 10 times the film layer thickness of the thermoplastic resin A, and the inert particles B
is a biaxially oriented thermoplastic resin film characterized in that it is agglomerated particles in which a large number of primary particles having an average particle size smaller than that of the inert particles A are connected without directionality. 2. The average particle size of the primary particles of the inert particles B is 5 to 10
The biaxially oriented thermoplastic resin film according to claim 1, which has a thickness of 0 nm. 3. The biaxially oriented thermoplastic resin film according to claim 1, wherein the content of the inert particles B in the film layer of the thermoplastic resin A is 0.05 to 1% by weight. 4. The biaxially oriented thermoplastic resin film according to claim 1, which has a Young's modulus in the width direction of 400 Kg/mm^2 or more. 5. The particle concentration ratio of the inert particles in the surface layer on the side of the laminated film containing the inert particles A and B is 0.1 or less.
The biaxially oriented thermoplastic resin film described. 6. Claim 1, wherein the thermoplastic resin A is a crystalline resin.
The biaxially oriented thermoplastic resin film described.
JP1224359A 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film Expired - Fee Related JPH0659679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224359A JPH0659679B2 (en) 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224359A JPH0659679B2 (en) 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH0390329A true JPH0390329A (en) 1991-04-16
JPH0659679B2 JPH0659679B2 (en) 1994-08-10

Family

ID=16812527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224359A Expired - Fee Related JPH0659679B2 (en) 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPH0659679B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313051A (en) * 1993-04-30 1994-11-08 Toray Ind Inc Biaxially oriented film
US5532047A (en) * 1993-08-30 1996-07-02 Toray Industries, Inc. Biaxially oriented, laminated polyester film
US5919550A (en) * 1996-01-26 1999-07-06 Teijin Limited Biaxially oriented laminate polyester film
US6338890B1 (en) 1998-05-06 2002-01-15 Teijin Limited Biaxially oriented laminated polyester film
EP0502745B2 (en) 1991-03-06 2010-12-15 Toray Industries, Inc. Biaxially oriented laminated film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166065A (en) * 1980-03-12 1981-12-19 Ici Ltd Polyester composite film and its manufacture
JPS5734088A (en) * 1980-06-18 1982-02-24 Saint Gobain Isover Removal of excess water in mixture of gypsum and water, device therefor and product thereof
JPS583289A (en) * 1981-06-30 1983-01-10 Fujitsu Ltd Manufacture of thin film transistor
JPS6038124A (en) * 1983-07-13 1985-02-27 ローヌ‐プーラン フイルムズ Biaxial oriented multilayer polyester film and manufacture thereof
JPS6063150A (en) * 1983-09-16 1985-04-11 東レ株式会社 Polyester film for evaporating metallic thin-film
JPH02214657A (en) * 1989-02-16 1990-08-27 Teijin Ltd Laminate biaxially oriented film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166065A (en) * 1980-03-12 1981-12-19 Ici Ltd Polyester composite film and its manufacture
JPS5734088A (en) * 1980-06-18 1982-02-24 Saint Gobain Isover Removal of excess water in mixture of gypsum and water, device therefor and product thereof
JPS583289A (en) * 1981-06-30 1983-01-10 Fujitsu Ltd Manufacture of thin film transistor
JPS6038124A (en) * 1983-07-13 1985-02-27 ローヌ‐プーラン フイルムズ Biaxial oriented multilayer polyester film and manufacture thereof
JPS6063150A (en) * 1983-09-16 1985-04-11 東レ株式会社 Polyester film for evaporating metallic thin-film
JPH02214657A (en) * 1989-02-16 1990-08-27 Teijin Ltd Laminate biaxially oriented film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502745B2 (en) 1991-03-06 2010-12-15 Toray Industries, Inc. Biaxially oriented laminated film
JPH06313051A (en) * 1993-04-30 1994-11-08 Toray Ind Inc Biaxially oriented film
US5532047A (en) * 1993-08-30 1996-07-02 Toray Industries, Inc. Biaxially oriented, laminated polyester film
US5677034A (en) * 1993-08-30 1997-10-14 Toray Industries, Inc. Biaxially oriented, laminated polyester film
US5919550A (en) * 1996-01-26 1999-07-06 Teijin Limited Biaxially oriented laminate polyester film
US6338890B1 (en) 1998-05-06 2002-01-15 Teijin Limited Biaxially oriented laminated polyester film

Also Published As

Publication number Publication date
JPH0659679B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
KR100681362B1 (en) Biaxially-Oriented Polyester Film
JPH0390329A (en) Biaxially oriented thermoplastic resin film
JP2817302B2 (en) Biaxially oriented polyester film
JPH03207650A (en) Biaxially oriented polyester film
JPH03175034A (en) Biaxially oriented polyester film and worked matter thereof
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JPH03207727A (en) Biaxially oriented thermoplastic resin film and film roll
JPH0399847A (en) Biaxially oriented thermoplastic resin film
JP2687621B2 (en) Biaxially oriented thermoplastic resin film for magnetic tape base
JP2567964B2 (en) Biaxially oriented thermoplastic resin film
JP3072717B2 (en) Biaxially oriented polyester film
JP2605417B2 (en) Magnetic recording media
JP2932555B2 (en) Biaxially oriented thermoplastic resin film
JP3134416B2 (en) Polyester film
JP3092743B2 (en) Biaxially oriented thermoplastic resin film
JP2860061B2 (en) Biaxially oriented thermoplastic resin film
JP2932553B2 (en) Biaxially oriented thermoplastic resin film
JP2687643B2 (en) Biaxially oriented thermoplastic resin film
JP3083081B2 (en) Base film for magnetic recording media
JPH08169090A (en) Laminated film
JP2985340B2 (en) Biaxially oriented thermoplastic resin film
JP2570449B2 (en) Method for producing biaxially oriented thermoplastic resin film
JP2800303B2 (en) Perpendicular magnetic recording media
JP2973957B2 (en) Biaxially oriented thermoplastic resin film
JPH03120041A (en) Nonmagnetically metallized polyester film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees