JPH0659679B2 - Biaxially oriented thermoplastic resin film - Google Patents

Biaxially oriented thermoplastic resin film

Info

Publication number
JPH0659679B2
JPH0659679B2 JP1224359A JP22435989A JPH0659679B2 JP H0659679 B2 JPH0659679 B2 JP H0659679B2 JP 1224359 A JP1224359 A JP 1224359A JP 22435989 A JP22435989 A JP 22435989A JP H0659679 B2 JPH0659679 B2 JP H0659679B2
Authority
JP
Japan
Prior art keywords
film
particles
thermoplastic resin
biaxially oriented
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1224359A
Other languages
Japanese (ja)
Other versions
JPH0390329A (en
Inventor
晃一 阿部
聡 西野
秀仁 南沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1224359A priority Critical patent/JPH0659679B2/en
Publication of JPH0390329A publication Critical patent/JPH0390329A/en
Publication of JPH0659679B2 publication Critical patent/JPH0659679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸配向熱可塑性樹脂フイルムに関し、とく
に表面特性の改良をはかった、積層フイルム構成の二軸
配向熱可塑性樹脂フイルムに関する。
Description: TECHNICAL FIELD The present invention relates to a biaxially oriented thermoplastic resin film, and more particularly to a biaxially oriented thermoplastic resin film having a laminated film structure with improved surface characteristics.

[従来の技術] 表面特性の改良をはかった二軸配向熱可塑性樹脂フイル
ムとして、熱可塑性樹脂であるポリエステルにコロイド
状シリカに起因する実質的に球形のシリカ粒子を含有さ
せたフイルムが知られている(たとえば特開昭59−1
71623号公報)。
[Prior Art] As a biaxially oriented thermoplastic resin film having improved surface properties, a film in which polyester, which is a thermoplastic resin, contains substantially spherical silica particles derived from colloidal silica is known. (For example, JP-A-59-1
71623 publication).

このような二軸配向熱可塑性樹脂フイルムにおいては、
含有されたシリカ粒子により、フイルム表面に突起を形
成し、表面の摩擦係数を下げてハンドリング性、走行性
を向上したりすることが可能である。
In such a biaxially oriented thermoplastic resin film,
With the silica particles contained, it is possible to form protrusions on the film surface and reduce the friction coefficient of the surface to improve handling and running properties.

[発明が解決しようとする課題] しかしながら、上記従来の二軸配向熱可塑性樹脂フイル
ムでは、含有されたシリカ粒子が、フイルムの厚さ方向
全域にわたって略ランダムに分布するため、フイルム表
面における含有粒子による突起の密度増大には限界があ
り、しかもその突起高さもランダムに相当ばらつくこと
になる。このような突起を有するフイルム表面において
は、相手物(たとえば加工工程におけるロール)に対し
主として突起の先端面が接触するが、突起密度が低い
と、この先端面による接触面積が小さくなって接触面圧
が高くなるので、フイルム表面の耐摩耗性に問題が生
じ、フイルム表面が削れやすくなるおそれがある。ま
た、フイルム表面の突起高さが不均一であると、高さの
高い突起部分が削れやすくなり、フイルムの加工工程、
たとえば包装用途における印刷工程、磁気記録媒体用途
における磁性層塗布・カレンダー工程あるいは感熱転写
用途における感熱転写層塗布などの工程速度の増大にと
もない、接触するロールによってフイルム表面にすり傷
がつくおそれがある。
[Problems to be Solved by the Invention] However, in the conventional biaxially oriented thermoplastic resin film described above, the contained silica particles are distributed substantially randomly throughout the thickness direction of the film. There is a limit to the increase in the density of the protrusions, and the heights of the protrusions also vary considerably at random. On the surface of a film having such projections, the tip surface of the projections mainly comes into contact with an object (for example, a roll in the processing step). However, if the density of the projections is low, the contact area by the tip surface becomes small and the contact surface Since the pressure becomes high, a problem may occur in the abrasion resistance of the film surface, and the film surface may be easily scraped. In addition, if the height of the protrusions on the film surface is uneven, it is easy to scrape high-height protrusions.
For example, as the process speed increases, such as a printing process in packaging applications, a magnetic layer coating / calendering process in magnetic recording media applications, or a heat-sensitive transfer layer coating in heat-sensitive transfer applications, there is a possibility that the film surface may be scratched by the contacting rolls. .

本発明は、上記のような問題点に着目し、二軸配向熱可
塑性樹脂フイルムの表面に含有粒子により突起を形成す
るに当たり、突起の高密度化と突起高さの均一化を達成
するとともに、さらに該突起の形成されたフイルム表面
を一層削れにくくかつ傷つきにくいものにすることを目
的とする。
The present invention focuses on the above problems, in forming the protrusions by the particles contained on the surface of the biaxially oriented thermoplastic resin film, while achieving a high density of the protrusions and a uniform protrusion height, It is another object of the present invention to make the surface of the film on which the protrusions are formed more difficult to scrape and scratch.

[課題を解決するための手段] この目的に沿う本発明の二軸配向熱可塑性樹脂フイルム
は、熱可塑性樹脂Aと不活性粒子A、Bとを主成分とす
るフイルムを共押出により熱可塑性樹脂Bを主成分とす
るフイルムの少なくとも片面に0.01〜5μmの厚さで積
層した二軸配向熱可塑性樹脂フイルムであって、前記不
活性粒子Aの平均粒径が前記熱可塑性樹脂Aのフイルム
層厚さの0.1 〜10倍であり、前記不活性粒子Bが、平均
粒径が不活性粒子Aの平均粒径よりも小さい一次粒子が
方向性をもたずに多数連なった凝集粒子であるものから
成る。
[Means for Solving the Problems] A biaxially oriented thermoplastic resin film of the present invention which meets this object is a thermoplastic resin obtained by co-extruding a film containing a thermoplastic resin A and inert particles A and B as main components. A biaxially oriented thermoplastic resin film having a thickness of 0.01 to 5 μm laminated on at least one surface of a film containing B as a main component, wherein the average particle diameter of the inactive particles A is a film layer thickness of the thermoplastic resin A. 0.1 to 10 times the average particle size, and the inactive particles B are agglomerated particles in which primary particles having an average particle size smaller than the average particle size of the inactive particles A are arranged in a large number without any directionality. Become.

本発明を構成する熱可塑性樹脂Aはポリエステル、ポリ
オレフィン、ポリアミド、ポリフェニレンスルフィドな
ど特に限定されることはないが、特に、ポリエステル、
中でも、エチレンテレフタレート、エチレンα、β−ビ
ス(2-クロルフェノキシ)エタン-4,4′-ジカルボキシ
レート、エチレン2,6-ナフタレート単位から選ばれた少
なくとも一種の構造単位を主要構成成分とする場合に耐
削れ性、耐傷つき性(耐スクラッチ性ともいう)がより
一層良好となるので望ましい。また、本発明を構成する
熱可塑性樹脂は結晶性である場合に耐削れ性、耐傷つき
性がより一層良好となるのできわめて望ましい。ここで
いう結晶性とはいわゆる非晶質ではないことを示すもの
であり、定量的には結晶化パラメータにおける冷結晶化
温度Tccが検出され、かつ結晶化パラメータ△Tcgが15
0 ℃以下のものである。さらに、示差走査熱量計で測定
された融解熱(融解エンタルピー変化)が7.5cal/g以
上の結晶性を示す場合に耐削れ性、耐スクラッチ性がよ
り一層良好となるのできわめて望ましい。また、エチレ
ンテレフタレートを主要構成成分とするポリエステルの
場合に耐削れ性と耐スクラッチ性がより一層良好となる
ので特に望ましい。なお、本発明を阻害しない範囲内
で、2種以上の熱可塑性樹脂を混合しても良いし、共重
合ポリマを用いても良い。
The thermoplastic resin A constituting the present invention is not particularly limited to polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but especially polyester,
Among them, at least one structural unit selected from ethylene terephthalate, ethylene α, β-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylate and ethylene 2,6-naphthalate units is the main constituent component. In this case, abrasion resistance and scratch resistance (also referred to as scratch resistance) are further improved, which is desirable. Further, when the thermoplastic resin constituting the present invention is crystalline, the abrasion resistance and the scratch resistance are further improved, which is extremely desirable. The crystallinity referred to here means that it is not so-called amorphous, and quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter ΔTcg is 15
It is below 0 ° C. Furthermore, when the heat of fusion (change in enthalpy of fusion) measured by a differential scanning calorimeter shows a crystallinity of 7.5 cal / g or more, abrasion resistance and scratch resistance are further improved, which is extremely desirable. Further, in the case of polyester containing ethylene terephthalate as a main constituent component, abrasion resistance and scratch resistance are further improved, which is particularly desirable. Two or more kinds of thermoplastic resins may be mixed, or a copolymerized polymer may be used, as long as the present invention is not impaired.

本発明の熱可塑性樹脂A中の不活性粒子Aの形状は、特
に限定されないが、フイルム中での粒径比(粒子の長径
/短径)が1.0 〜1.3 の粒子、特に、球形状の粒子の場
合にフイルム表面が傷つきにくくなり、耐削れ性も一層
良好となるので望ましい。
The shape of the inert particles A in the thermoplastic resin A of the present invention is not particularly limited, but particles having a particle size ratio (major axis / minor axis of particles) of 1.0 to 1.3 in the film, particularly spherical particles. In this case, the film surface is less likely to be scratched and abrasion resistance is further improved, which is desirable.

また、不活性粒子Aはフイルム中での単一粒子指数が0.
7 以上、好ましくは0.9 以上である場合に耐スクラッチ
性、耐削れ性がより一層良好となるので特に望ましい。
Further, the inert particle A has a single particle index of 0 in the film.
When it is 7 or more, preferably 0.9 or more, scratch resistance and abrasion resistance are further improved, which is particularly desirable.

本発明における不活性粒子Aの種類は特に限定されない
が、上記の好ましい粒子特性を満足させるにはアルミナ
珪酸塩、1次粒子が凝集した状態のシリカ、内部析出粒
子などは好ましくない。好ましい粒子として、コロイダ
ルシリカに起因する実質的に球形のシリカ粒子、架橋高
分子による粒子(たとえば架橋ポリスチレン)などがあ
るが、特に10重量%減量時温度(窒素中で熱重量分析装
置島津TG−30Mを用いて測定。昇温速度20℃/分)が
380 ℃以上になるまで架橋度を高くした架橋高分子粒子
の場合に耐スクラッチ性、耐削れ性がより一層良好とな
るので特に望ましい。なお、コロイダルシリカに起因す
る球形シリカの場合にはアルコキシド法で製造された、
ナトリウム含有量が少ない、実質的に球形のシリカの場
合に耐スクラッチ性、耐削れ性がより一層良好となるの
で特に望ましい。しかしながら、その他の粒子、例えば
炭酸カルシウム、二酸化チタン、アルミナ等の粒子でも
フイルム厚さと平均粒径の適切なコントロールにより十
分使いこなせるものである。
The type of the inert particles A in the present invention is not particularly limited, but alumina silicate, silica in which primary particles are aggregated, internally precipitated particles, and the like are not preferable in order to satisfy the above preferable particle characteristics. Preferable particles include substantially spherical silica particles derived from colloidal silica and particles formed by a cross-linked polymer (for example, cross-linked polystyrene). Particularly, the temperature at the time of 10% weight loss (thermogravimetric analyzer in nitrogen, Shimadzu TG- Measured using 30 M. Heating rate is 20 ° C / min)
In the case of crosslinked polymer particles having a high degree of crosslinking up to 380 ° C or higher, scratch resistance and abrasion resistance are further improved, which is particularly desirable. In the case of spherical silica due to colloidal silica, it was manufactured by the alkoxide method,
In the case of a substantially spherical silica having a low sodium content, scratch resistance and abrasion resistance are further improved, which is particularly desirable. However, other particles such as calcium carbonate, titanium dioxide, and alumina can be sufficiently used by appropriately controlling the film thickness and the average particle size.

不活性粒子Aの大きさは、該不活性粒子を含有する積層
フイルム中での平均粒径が該積層フイルム厚さの0.1 〜
10倍、好ましくは0.5 〜5倍、さらに好ましくは1.1 〜
3倍の範囲とされる。積層フイルム層の厚さは、0.01〜
5μmとされる。これよりも薄いと、該フイルム層が壁
開しやすくなり、耐スクラッチ性が悪くなる。また、上
記不活性粒子Aの平均粒径と積層フイルム厚さとの比に
おいて、上記範囲よりも小さいと、不活性粒子Aによる
表面突起形成効果が小さくなると同時に突起の高さが不
均一となって、耐スクラッチ性、耐削れ性が不良とな
り、逆に大きくても、形成される突起が破壊されやすく
なって耐スクラッチ性、耐削れ性が不良となるので好ま
しくない。
The size of the inactive particles A is such that the average particle diameter in the laminated film containing the inactive particles is 0.1 to the thickness of the laminated film.
10 times, preferably 0.5 to 5 times, more preferably 1.1 to
The range is tripled. The thickness of the laminated film layer is 0.01 ~
It is set to 5 μm. If it is thinner than this, the film layer is likely to open, and the scratch resistance deteriorates. When the ratio of the average particle diameter of the inactive particles A to the thickness of the laminated film is smaller than the above range, the effect of forming surface projections by the inactive particles A becomes small and the height of the projections becomes uneven. However, the scratch resistance and the abrasion resistance become poor, and even if it is large, the projections formed are easily broken and the scratch resistance and the abrasion resistance become poor, which is not preferable.

また、熱可塑性樹脂A中の不活性粒子Aのフイルム中で
の平均粒径(直径)は、基本的には、後述の不活性粒子
Bの一次粒子の平均粒径よりも大きい。さらに好ましく
は、0.007 〜0.5 μm、好ましくは0.02〜0.45μmの範
囲である場合に、耐スクラッチ性、耐削れ性がより一層
良好となるので望ましい。
The average particle size (diameter) of the inactive particles A in the thermoplastic resin A in the film is basically larger than the average particle size of the primary particles of the inactive particles B described later. More preferably, it is in the range of 0.007 to 0.5 μm, preferably 0.02 to 0.45 μm, because scratch resistance and abrasion resistance are further improved, which is desirable.

つまり、本発明における積層フイルム層には、該フイル
ム厚さ近傍あるいはそれよりも大きな平均粒径の不活性
粒子Aが含有される。換言すれば、極薄積層フイルム
に、そのフイルム厚さ近傍あるいはそれよりも大きな平
均粒径の微小不活性粒子Aが含有される。したがって、
二軸配向熱可塑性樹脂フイルム全体に対し、その厚さ方
向に、実質的に積層フイルム層のみに集中して不活性粒
子Aを分布させることができる。その結果、積層フイル
ム中における粒子密度を容易に高くすることができ、該
粒子により形成されるフイルム表面の突起の密度も容易
に高めることができる。また、不活性粒子Aは、上記積
層フイルム中に含有されることで、二軸配向熱可塑性樹
脂フイルム全体に対し、その厚さ方向に位置規制される
ことになり、しかも積層フイルムの厚さと平均粒径とは
前述の如き関係にあるから、該粒子により形成される表
面突起の高さは、極めて均一になる。
That is, the laminated film layer in the present invention contains the inert particles A having an average particle diameter in the vicinity of or larger than the thickness of the film. In other words, the ultra-thin laminated film contains fine inert particles A having an average particle diameter in the vicinity of or larger than the thickness of the film. Therefore,
With respect to the entire biaxially oriented thermoplastic resin film, the inactive particles A can be distributed substantially in the laminated film layer in the thickness direction thereof. As a result, the particle density in the laminated film can be easily increased, and the density of protrusions formed on the surface of the film can be easily increased. In addition, the inert particles A are contained in the above-mentioned laminated film, whereby the position is regulated in the thickness direction with respect to the entire biaxially oriented thermoplastic resin film, and the thickness and the average of the laminated film are averaged. Since the particle size has the above-described relationship, the height of the surface protrusions formed by the particles becomes extremely uniform.

この熱可塑性樹脂Aのフイルム層中に、さらに不活性粒
子Bが含有される。
Inert particles B are further contained in the film layer of the thermoplastic resin A.

不活性粒子Bは、基本的には、その一次粒子の平均粒径
が前記不活性粒子Aの平均粒径よりもはるかに小さいも
のであり、一次粒子が多数、方向性をもたずに連なっ
て、数珠状あるいは網目状の凝集粒子状態でフイルム中
に含有されるものである。不活性粒子Bの一次粒子の平
均粒径としては、5〜100 nmの範囲が上記のような数
珠状あるいは網目状の凝集粒子状態を形成する上で好ま
しい。このような凝集粒子からなる不活性粒子Bは、不
活性粒子Aの周囲で多数連続的に連なって延びることに
より不活性粒子Aの積層フイルム内での保持強度を増す
とともに、該積層フイルム地自身を補強する。つまり、
不活性粒子Aは主としてフイルム表面突起形成を担い、
不活性粒子Bは不活性粒子Aの保持強度および積層フイ
ルム地の補強を担う。その結果、前述の如く不活性粒子
Aの極薄積層フイルム中に含有させることにより均一高
さでかつ高密度に形成された表面突起が、不活性粒子B
の存在により一層削れにくいものとなり、該フイルム表
面の耐削れ性、耐スクラッチ性が一層向上されることに
なる。
The average particle size of the primary particles of the inert particles B is basically much smaller than the average particle size of the inert particles A, and a large number of primary particles are arranged without directivity. Thus, it is contained in the film in the form of beaded or mesh-like aggregated particles. The average particle diameter of the primary particles of the inert particles B is preferably in the range of 5 to 100 nm in order to form the above-mentioned beaded or mesh-like aggregated particle state. The inert particles B composed of such agglomerated particles increase the holding strength of the inert particles A in the laminated film by continuously extending around the inert particles A, and at the same time, the laminated film itself. To reinforce. That is,
The inert particles A are mainly responsible for forming film surface protrusions,
The inert particles B are responsible for the holding strength of the inert particles A and the reinforcement of the laminated film material. As a result, as described above, the surface protrusions formed at a uniform height and a high density by containing the inert particles A in the ultra-thin laminated film are formed into the inert particles B.
Due to the presence of the above, the abrasion resistance and scratch resistance of the film surface are further improved.

不活性粒子Bの種類としては上記の如く数珠状、網目状
の凝集粒子を形成するものであればとくに限定されない
が、好ましいものとして、δ−アルミナ、γ−アルミ
ナ、ジルコニア、数珠状シリカ、網目状二酸化チタンを
挙げることができる。
The type of the inert particles B is not particularly limited as long as it forms a beaded or mesh-like aggregated particle as described above, but preferable ones are δ-alumina, γ-alumina, zirconia, beaded silica, and meshes. The titanium dioxide may be mentioned.

不活性粒子Bの積層フイルム中における含有量は、0.05
〜1重量%と少な目でよい。これより少ないと、上記補
強効果が期待できなくなり、多いと、微小粒子が多量に
含有されるため却って積層フイルム層が脆くなり、削れ
やすくなるおそれがある。
The content of the inert particles B in the laminated film is 0.05.
It may be as small as ~ 1% by weight. If it is less than this range, the reinforcing effect cannot be expected, and if it is more than the above range, a large amount of fine particles are contained, so that the laminated film layer becomes rather brittle and may be easily scraped.

このような熱可塑性樹脂Aと不活性粒子A、Bとを主成
分とするフイルムが熱可塑性樹脂Bを主成分とするフイ
ルムの少なくとも片面に積層される。
The film containing the thermoplastic resin A and the inert particles A and B as the main components is laminated on at least one surface of the film containing the thermoplastic resin B as the main component.

熱可塑性樹脂Bは、前述の熱可塑性樹脂Aと同様のもの
からなり、熱可塑性樹脂Bと熱可塑性樹脂Aとは同じ種
類のものでも異なるものでもよい。熱可塑性樹脂Aのフ
イルム層は、熱可塑性樹脂Bからなるフイルム層の両
面、又は片面に積層される。つまり、積層構成がA/B
/A、A/Bの場合であるが、もちろん、Aと異なる表
面状態を有するC層をAと反対面に設けたA/B/Cで
も、あるいはそれ以上の多層構造でもよい。(ここで、
A、B、Cそれぞれの熱可塑性樹脂の種類は同種でも、
異種でもよい。また、少なくとも片方の表面はA層であ
ることが必要である。) 熱可塑性樹脂Bとしても、結晶性ポリマが望ましい。具
体例として、ポリエステル、ポリアミド、ポリフェニレ
ンスルフィド、ポリオレフィンが挙げられるが、ポリエ
ステルの場合に耐スクラッチ性、耐削れ性がより一層良
好となるので特に望ましい。また、ポリエステルとして
は、エチレンテレフタレート、エチレンα、β−ビス
(2-クロルフェノキシ)エタン-4,4′-ジカルボキシレ
ート、エチレン2,6-ナフタレート単位から選ばれた少な
くとも一種の構造単位を主要構成成分とする場合に耐ス
クラッチ性が特に良好となるので望ましい。
The thermoplastic resin B is the same as the above-mentioned thermoplastic resin A, and the thermoplastic resin B and the thermoplastic resin A may be the same kind or different. The film layer of the thermoplastic resin A is laminated on both sides or one side of the film layer of the thermoplastic resin B. In other words, the laminated structure is A / B
In the case of / A and A / B, of course, A / B / C in which a C layer having a surface state different from A is provided on the surface opposite to A, or a multilayer structure of more than that may be used. (here,
Even if the type of thermoplastic resin for each of A, B, and C is the same,
It may be different. Further, at least one surface needs to be the A layer. ) Also as the thermoplastic resin B, a crystalline polymer is desirable. Specific examples thereof include polyester, polyamide, polyphenylene sulfide, and polyolefin. In the case of polyester, scratch resistance and abrasion resistance are further improved, which is particularly desirable. In addition, as the polyester, at least one structural unit selected from ethylene terephthalate, ethylene α, β-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylate, and ethylene 2,6-naphthalate units is mainly used. When it is used as a constituent component, scratch resistance becomes particularly good, which is desirable.

ただし、本発明を阻害しない範囲内、望ましい結晶性を
損なわない範囲内で、好ましくは5モル%以内であれば
他成分が共重合されていてもよい。
However, other components may be copolymerized within a range that does not impair the present invention and a range that does not impair the desired crystallinity, and preferably within 5 mol%.

本発明の熱可塑性樹脂Bにも、本発明の目的を阻害しな
い範囲内で、他種ポリマをブレンドしてもよいし、また
酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有機
添加剤が通常添加される程度添加されていてもよい。
The thermoplastic resin B of the present invention may also be blended with another type of polymer within a range that does not impair the object of the present invention, and an organic additive such as an antioxidant, a heat stabilizer, a lubricant or an ultraviolet absorber may be added. The agent may be added to the extent that it is usually added.

熱可塑性樹脂Bを主成分とするフイルム中には不活性粒
子を含有している必要は特にないが、このフイルムがフ
イルム表面の一面を形成する場合、平均粒径が0.007 〜
2μm、特に0.02〜0.45μmの不活性粒子が0.001 〜0.
2 重量%、特に0.005〜0.15重量%、さらには0.005 〜
0.12重量%含有されていると、摩擦係数、耐スクラッチ
性がより一層良好となるのみならず、フイルムの巻姿が
良好となるのできわめて望ましい。含有する不活性粒子
の種類は熱可塑性樹脂Aに含有される不活性粒子Aとし
て望ましく用いられるものを使用することが望ましい。
熱可塑性樹脂AとBに含有される粒子の種類、大きさは
同じでも異なっていても良い。
It is not particularly necessary for the film containing the thermoplastic resin B as a main component to contain inert particles, but when this film forms one side of the film surface, the average particle size is 0.007-
Inert particles of 2 μm, especially 0.02 to 0.45 μm, 0.001 to 0.
2% by weight, especially 0.005-0.15% by weight, and even 0.005-
When the content is 0.12% by weight, not only the coefficient of friction and scratch resistance are further improved, but also the winding shape of the film is improved, which is highly desirable. As the type of the inert particles contained, it is desirable to use those which are preferably used as the inert particles A contained in the thermoplastic resin A.
The types and sizes of particles contained in the thermoplastic resins A and B may be the same or different.

上述の如き不活性粒子A、Bを含有する熱可塑性樹脂A
と、熱可塑性樹脂Bとが共押出により積層され、シート
状に成形された後二軸に延伸され、二軸配向熱可塑性樹
脂フイルムとされる。本発明における共押出による積層
とは、不活性粒子A、Bを含有する熱可塑性樹脂Aと、
熱可塑性樹脂Bとをそれぞれ異なる押出装置で押出し、
口金から積層シートを吐出する前にこれらを積層するこ
とをいう。この積層は、シート状に成形、吐出するため
の口金内(たとえばマニホルド)で行ってもよいが、前
述の如く積層フイルム層が極薄であることから、口金に
導入する前のポリマ管内で行うことが好ましい。とく
に、ポリマ管内の積層部を、矩形に形成しておくと、幅
方向に均一に積層できるのでその後の二軸延伸が容易に
行なえるため特に好ましい。ポリマ管内矩形積層部で積
層された溶融ポリマは、口金内マニホルドでシール幅方
向に所定幅まで拡幅され、口金からシール状に吐出され
た後、二軸に延伸される。したがって、たとえ二軸配向
後の積層フイルム層が極薄であっても、ポリマ管内矩形
積層部では、不活性粒子含有熱可塑性樹脂ポリマを、か
なりの厚さで積層することになるので、容易にかつ精度
よく積層できる。
Thermoplastic resin A containing inert particles A and B as described above
And thermoplastic resin B are laminated by coextrusion, formed into a sheet, and then biaxially stretched to obtain a biaxially oriented thermoplastic resin film. Laminating by coextrusion in the present invention means a thermoplastic resin A containing inert particles A and B,
Extruding the thermoplastic resin B with different extruders,
It means stacking these before discharging the laminated sheet from the die. This lamination may be performed in a die for forming and discharging into a sheet (for example, a manifold), but since the laminated film layer is extremely thin as described above, it is performed in a polymer tube before being introduced into the die. It is preferable. In particular, it is particularly preferable that the laminated portion in the polymer tube is formed in a rectangular shape because the laminated portion can be uniformly laminated in the width direction and the subsequent biaxial stretching can be easily performed. The molten polymer laminated in the polymer tube rectangular lamination portion is widened to a predetermined width in the seal width direction by the manifold in the die, discharged in a seal shape from the die, and then biaxially stretched. Therefore, even if the laminated film layer after biaxial orientation is extremely thin, since the inert particle-containing thermoplastic resin polymer is laminated in a considerable thickness in the rectangular laminated portion in the polymer tube, it is easy to And it can be laminated accurately.

二軸に配向された本発明の熱可塑性樹脂フイルムは、幅
方向のヤング率が400 kg/mm2以上であることが好まし
く、ビデオテープ用途等では、さらに好ましくは幅方
向、長手方向ともにヤング率が400 kg/mm2以上である
ことが好ましい。前述の矩形積層部を有するポリマ管内
で積層することにより、均一な積層が可能になり、積層
フイルム層が極薄層であっても、幅方向延伸倍率として
少なくとも3倍がとれるようになり、上記400 kg/mm2
以上の幅方向ヤング率が容易に達成できる。ヤング率が
上記値よりも低いと、広幅フイルムを使用用途に合わせ
て狭幅にスリットする際、スリットされたフイルム端面
からの粉落ち特性が悪く、発生したフイルム粉が各種障
害を惹き起こすおそれがあるので、好ましくない。ま
た、幅方向および長手方向ヤング率が上記値よりも低い
と、ビデオテープとしての耐ダビング性、ドロップアウ
ト特性が低下するおそれがあるので好ましくない。
The biaxially oriented thermoplastic resin film of the present invention preferably has a Young's modulus in the width direction of 400 kg / mm 2 or more, more preferably in the width direction and the longitudinal direction in video tape applications and the like. Is preferably 400 kg / mm 2 or more. By laminating in the polymer tube having the above-mentioned rectangular laminating section, uniform laminating is possible, and even if the laminated film layer is an extremely thin layer, the stretching ratio in the width direction can be at least 3 times. 400 kg / mm 2
The above Young's modulus in the width direction can be easily achieved. When the Young's modulus is lower than the above value, when the wide film is slit narrowly according to the intended use, the powder falling property from the slit film end face is poor, and the generated film powder may cause various troubles. Therefore, it is not preferable. If the Young's modulus in the width direction and the longitudinal direction is lower than the above values, the dubbing resistance and dropout characteristics of the video tape may deteriorate, which is not preferable.

また、本発明の二軸配向熱可塑性樹脂フイルムにおいて
は、不活性粒子A、Bを含む積層フイルム側の表層の不
活性粒子Aによる粒子濃度比が0.1 以下であることが好
ましい。この表層粒子濃度比は、後述の測定法に示す如
く、フイルム表面突起を形成する不活性粒子がフイルム
表面において如何に熱可塑性樹脂Aの薄膜で覆われてい
るかを示すものであり、粒子がフイルム表面に実質的に
直接露出している度合が高い程表層粒子濃度比が高く、
表面突起は形成するが熱可塑性樹脂Aの薄膜に覆われて
いる度合が高い程表層粒子濃度比は低い。本発明におい
ては、主として不活性粒子Aがフイルム表面の突起を形
成するが、矩形積層の効果により該不活性粒子Aが熱可
塑性樹脂Aの薄膜で覆われていることにより、不活性粒
子Aが高密度に極薄積層フイルム層に分布している状態
にあっても、該粒子が該積層フイルム層、ひいては熱可
塑性樹脂Bのベースフイルム層にしっかりと保持される
ことになる。したがって、表層粒子濃度比を上記値以下
とすることにより、粒子の脱落等が防止されて、フイル
ム表面の耐スクラッチ性、耐削れ性が高く維持される。
このような表層粒子濃度比は、共押出による積層を行う
ことによって達成可能となる。ちなみに、コーティング
方法によっても、本発明と類似のフイルム、すなわち、
ベースフイルム層に対し極薄厚さで樹脂層をコーティン
グし、該樹脂層内に不活性粒子を含有させることは可能
であるが、表層粒子濃度比が著しく高くなり(つまり粒
子が実質的に表面に直接露出する度合が著しく高くな
り)、本発明フイルムに比べ表面の極めて脆いものしか
得られない。
Further, in the biaxially oriented thermoplastic resin film of the present invention, it is preferable that the particle concentration ratio of the inactive particles A in the surface layer on the laminated film side containing the inactive particles A and B is 0.1 or less. This surface layer particle concentration ratio indicates how the inactive particles forming the film surface projections are covered with the thin film of the thermoplastic resin A on the film surface as shown in the measuring method described later. The higher the degree of direct exposure to the surface, the higher the surface layer particle concentration ratio,
Although surface protrusions are formed, the higher the degree of coverage with the thin film of the thermoplastic resin A, the lower the surface layer particle concentration ratio. In the present invention, the inactive particles A mainly form the protrusions on the film surface, but the inactive particles A are covered with the thin film of the thermoplastic resin A by the effect of the rectangular lamination, so that the inactive particles A are Even when the particles are densely distributed in the ultra-thin laminated film layer, the particles are firmly held in the laminated film layer, and by extension, in the base film layer of the thermoplastic resin B. Therefore, by setting the surface layer particle concentration ratio to the above value or less, the particles are prevented from falling off, and the scratch resistance and abrasion resistance of the film surface are maintained high.
Such a surface layer particle concentration ratio can be achieved by performing lamination by coextrusion. By the way, also by the coating method, a film similar to the present invention, namely,
It is possible to coat the base film layer with a resin layer with an extremely thin thickness and to contain the inert particles in the resin layer, but the surface layer particle concentration ratio becomes extremely high (that is, the particles are substantially on the surface). The degree of direct exposure becomes extremely high), and only the surface of the film of the invention is extremely brittle.

なお、本発明のフイルムにおいては、不活性粒子Aによ
り形成される表面突起の高さは特に限定されないが、狙
った滑り性改良(摩擦係数の低減)等の効果を得るため
には、突起平均高さが不活性粒子Aの平均粒径の0.3 倍
以上となるように、不活性粒子Aの平均粒径、熱可塑性
樹脂Aの積層フイルム層の厚さを設定することが好まし
い。また、均一なかつ高密度の突起を得るために、不活
性粒子A自身の粒径分布の標準偏差が0.5 以下であるこ
とが好ましい。
In the film of the present invention, the height of the surface protrusions formed by the inert particles A is not particularly limited, but in order to obtain the desired effect of improving slipperiness (reduction of friction coefficient) and the like, the protrusion average It is preferable to set the average particle diameter of the inert particles A and the thickness of the laminated film layer of the thermoplastic resin A so that the height is 0.3 times or more the average particle diameter of the inert particles A. Further, in order to obtain uniform and high-density projections, the standard deviation of the particle size distribution of the inert particles A itself is preferably 0.5 or less.

次に本発明フイルムの製造方法について説明する。Next, a method for producing the film of the present invention will be described.

まず、熱可塑性樹脂Aに不活性粒子A、Bを含有せしめ
る方法としては、重合後、重合中、重合前のいずれでも
良いが、ポリマにベント方式の2軸押出機を用いて不活
性粒子A、Bを同時に練り込む方法が本発明範囲の表面
形態のフイルムを得るのに有効である。また、粒子の含
有量を調節する方法としては、上記方法で高濃度マスタ
ーを作っておき、それを製膜時に不活性粒子を実質的に
含有しない熱可塑性樹脂で希釈して粒子の含有量を調節
する方法が本発明範囲の表面形態のフイルムを得るのに
有効である。さらにこの粒子高濃度マスターポリマの溶
融粘度、共重合成分などを調節して、その結晶化パラメ
ータ△Tc gを30〜80℃の範囲にしておく方法は延伸破
れなく、本発明範囲の表面形態のフイルムを得るのに有
効である。
First, as a method of incorporating the inert particles A and B into the thermoplastic resin A, either after the polymerization, during the polymerization, or before the polymerization may be performed, but the inert particles A may be added to the polymer by using a vent type twin-screw extruder. The method of kneading B and B at the same time is effective for obtaining a film having a surface morphology within the scope of the present invention. Further, as a method for adjusting the content of particles, a high-concentration master is prepared by the above method, and the content of particles is diluted by a thermoplastic resin that does not substantially contain inert particles during film formation. The adjusting method is effective for obtaining the film having the surface morphology within the scope of the present invention. Furthermore, the method of adjusting the melt viscosity, copolymerization component, etc. of the high concentration master polymer of particles to keep the crystallization parameter ΔTc g in the range of 30 to 80 ° C. does not cause stretching breakage and the surface morphology within the range of the present invention. It is effective for obtaining a film.

かくして、不活性粒子A、Bを含有するペレットAを十
分乾燥したのち、公知の溶融押出機に供給し、熱可塑性
樹脂の融点以上分解点以下の温度で溶融し、もう一方の
実質的に不活性粒子を含有しない熱可塑性樹脂B(種類
は不活性粒子を含有する熱可塑性樹脂と同一であっても
異なっていてもよい)を前述の如き積層用装置に供給
し、スリット状のダイからシート状の押出し、キャステ
ィングロール上で冷却固化せしめて未延伸フイルムを作
る。すなわち、2または3台の押出機、2または3層用
の合流ブロックあるいは口金を用いて、これらの熱可塑
性樹脂を積層する。合流ブロック方式を用いる場合は積
層部分を前述の如く矩形のものとし、両者の熱可塑性樹
脂の溶融粘度の差(絶対値)を0〜2000ポイズ、好まし
くは0〜1000ポイズの範囲にしておくことが本発明範囲
の表面形態のフイルムを安定して、幅方向の斑なく、工
業的に製造するのに有効である。
Thus, after the pellet A containing the inert particles A and B is sufficiently dried, it is supplied to a known melt extruder and melted at a temperature not lower than the melting point and not higher than the decomposition point of the thermoplastic resin, and the other substantially unmelted. A thermoplastic resin B containing no active particles (the type thereof may be the same as or different from the thermoplastic resin containing inert particles) is supplied to the laminating apparatus as described above, and a sheet is produced from a slit-shaped die. The film is extruded and cooled and solidified on a casting roll to prepare an unstretched film. That is, these thermoplastic resins are laminated using two or three extruders, a merging block or a die for two or three layers. When the confluent block method is used, the laminated portion should be rectangular as described above, and the difference (absolute value) in melt viscosity between the two thermoplastic resins should be in the range of 0 to 2000 poise, preferably 0 to 1000 poise. Is effective for industrially producing a film having a surface morphology within the scope of the present invention with stability and without unevenness in the width direction.

次にこの多層の未延伸フイルムを二軸延伸し、二軸配向
せしめる。二軸延伸の方法は同時二軸延伸、逐次二軸延
伸法のいずれでもよいが、長手方向、幅方向の順に延伸
する逐次二軸延伸法の場合に本発明範囲の表面形態のフ
イルムを安定して、幅方向の斑なく、工業的に製造する
のに有効である。逐次二軸延伸の場合、長手方向の延伸
を、3段階、特に4段階以上に分けて、40〜150 ℃の範
囲で、かつ、1000〜50000 %/分の延伸速度で、3〜6
倍行なう方法は本発明範囲の表面形態を有するフイルム
を得るのに有効である。幅方向の延伸温度、速度は、80
〜170 ℃、1000〜20000 %/分の範囲が好適である。延
伸倍率は3〜10倍が好適である。また必要に応じてさら
に長手方向、幅方向の少なくとも一方向に延伸すること
もできる。いずれにしても不活性粒子A、Bを含有する
きわめて薄い層を設けてから、面積延伸倍率(長手方向
倍率×幅方向倍率)として9倍以上の延伸を行なうこと
が本発明のポイントである。次にこの延伸フイルムを熱
処理する。この場合の熱処理条件としては、幅方向に弛
緩、微延伸、定長下のいずれかの状態で140 〜280 ℃、
好ましくは160 〜220 ℃の範囲で0.5 〜60秒間が好適で
あるが、熱処理にマイクロ波加熱を併用することによっ
て本発明範囲の表面形態を有するフイルムが得られやす
くなるので望ましい。
Next, this multilayer unstretched film is biaxially stretched and biaxially oriented. The biaxial stretching method may be simultaneous biaxial stretching or sequential biaxial stretching method, but in the case of the sequential biaxial stretching method of stretching in the longitudinal direction and the width direction in order, a film having a surface morphology within the scope of the present invention is stabilized. Therefore, it is effective for industrial production without unevenness in the width direction. In the case of sequential biaxial stretching, stretching in the longitudinal direction is divided into three stages, particularly four or more stages, in the range of 40 to 150 ° C., and at a stretching rate of 1000 to 50,000% / min, 3 to 6
The doubling method is effective for obtaining a film having a surface morphology within the scope of the present invention. The stretching temperature and speed in the width direction are 80
A range of up to 170 ° C and 1000 to 20000% / min is suitable. The stretching ratio is preferably 3 to 10 times. If necessary, it can be further stretched in at least one of the longitudinal direction and the width direction. In any case, the point of the present invention is to provide an extremely thin layer containing the inert particles A and B and then perform an area stretching ratio (longitudinal direction ratio × width direction ratio) of 9 times or more. Next, this stretched film is heat-treated. The heat treatment conditions in this case are 140 to 280 ° C. in any state of relaxation in the width direction, fine stretching and under constant length,
The temperature is preferably in the range of 160 to 220 ° C. for 0.5 to 60 seconds, but it is preferable to use microwave heating together with the heat treatment because a film having a surface morphology within the range of the present invention can be easily obtained.

本発明フイルムの製法の特徴は、特殊な方法で調製した
特定範囲の熱特性を有する高濃度粒子ポリマを用いて、
不活性粒子を含有するきわめて薄い層を設けた後にフイ
ルムを二軸延伸することであり、製膜工程内で、フイル
ムを一軸延伸した後、コーティングなどを施しさらに延
伸する方法、あるいは二軸延伸フイルムにコーティング
して作られる積層フイルムでは本発明フイルムの性能に
は遠く及ばず、また、コスト面でも本発明フイルムが優
れている。
The feature of the production method of the film of the present invention is that a high concentration particle polymer having a specific range of thermal characteristics prepared by a special method is used,
It is a method of biaxially stretching the film after providing an extremely thin layer containing inert particles.In the film forming process, the film is uniaxially stretched and then subjected to coating or the like, or a biaxially stretched film. The performance of the film of the present invention is far inferior to the laminated film produced by coating the film of the present invention, and the film of the present invention is excellent in terms of cost.

[物性の測定方法ならびに効果の評価方法] 本発明の特性値の測定方法並びに効果の評価方法は次の
通りである。
[Physical property measuring method and effect evaluating method] The characteristic value measuring method and effect evaluating method of the present invention are as follows.

(1)粒子の平均粒径 フイルムからポリエステルをプラズマ低温灰化処理法
(たとえばヤマト科学製PR−503 型)で除去し粒子を
露出させる。処理条件はポリエステルは灰化されるが粒
子はダメージを受けない条件を選択する。これをSEM
(走査型電子顕微鏡)で観察し、粒子の画像(粒子によ
ってできる光の濃淡)をイメージアナライザー(たとえ
ばケンブリッジインストルメント製QTM900 )に結び
付け、観察箇所を変えて粒子数5000個以上で次の数値処
理を行ない、それによって求めた数平均径Dを平均粒径
とする。
(1) Average particle size of particles Polyester is removed from the film by a plasma low temperature ashing method (for example, PR-503 type manufactured by Yamato Scientific Co., Ltd.) to expose the particles. The processing conditions are selected such that polyester is incinerated but particles are not damaged. This is SEM
Observe with a (scanning electron microscope), connect the image of particles (light and shade of light generated by particles) to an image analyzer (eg QTM900 made by Cambridge Instruments), change the observation point and perform the following numerical processing with 5000 or more particles The number average diameter D thus obtained is taken as the average particle diameter.

D=ΣD/N ここで、Dは粒子の円相当径、Nは個数である。なお
不活性粒子Bについては一次粒子の平均粒径を測定す
る。
D = ΣD i / N Here, D i is the equivalent circle diameter of the particles, and N is the number. For the inert particles B, the average particle size of the primary particles is measured.

(2)粒子の含有量 ポリエステルは溶解し粒子は溶解させない溶媒を選択
し、粒子をポリエステルから遠心分離し、粒子の全体重
量に対する比率(重量%)をもって粒子含有量とする。
場合によっては赤外分光法の併用も有効である。
(2) Content of particles A solvent in which the polyester is dissolved but the particles are not dissolved is selected, the particles are centrifuged from the polyester, and the ratio (% by weight) to the total weight of the particles is defined as the particle content.
In some cases, the combined use of infrared spectroscopy is also effective.

(3)結晶化パラメータ△Tc g パーキシエルマー社製のDSC(示差走査熱量計)II型
を用いて測定した。DSCの測定条件は次の通りであ
る。すなわち、試料10mgをDSC装置にセットし、300
℃の温度で5分間溶融した後、液体窒素中に急冷する。
この急冷試料を10℃/分で昇温し、ガラス転移点Tgを
検知する。さらに昇温を続け、ガラス状態からの結晶化
発熱ピーク温度をもって冷結晶化温度Tccとした。この
TccとTgの差(Tcc−Tg)を結晶化パラメータ△T
c gと定義する。
(3) Crystallization parameter ΔTc g It was measured using DSC (Differential Scanning Calorimeter) II type manufactured by Perxielmer. The measurement conditions of DSC are as follows. That is, set 10 mg of sample in the DSC device and
After melting for 5 minutes at a temperature of ° C, it is quenched in liquid nitrogen.
The temperature of this quenched sample is raised at 10 ° C./min, and the glass transition point Tg is detected. The temperature was further raised, and the crystallization exothermic peak temperature from the glass state was set as the cold crystallization temperature Tcc. The difference between Tcc and Tg (Tcc-Tg) is the crystallization parameter ΔT.
Define as c g.

(4)表面突起の平均高さ 2検出器方式の走査型電子顕微鏡[ESM−3200、エリ
オニクス(株)製]と断面測定装置[PMS−1、エリオ
ニクス(株)製]においてフイルム表面の平坦面の高さを
0として走査したときの突起の高さ測定値を画像処理装
置[IBAS2000、カールツァイス(株)製]に送り、画
像処理装置上にフイルム表面突起画像を再構築する。次
に、この表面突起画像で突起部分を2値化して得られた
個々の突起の面積から円相当径を求めこれをその突起の
平均径とする。また、この2値化された個々の突起部分
の中で最も高い値をその突起の高さとし、これを個々の
突起について求める。この測定を場所をかえて500 回繰
返し、突起個数を求め、測定された全突起についてその
高さの平均値を平均高さとした。また走査型電子顕微鏡
の倍率は、1000〜8000倍の間の値を選択する。なお、場
合によっては、高精度光干渉式3次元表面解析装置(W
YKO社製TOPO−3D、対物レンズ:40〜200 倍、
高解像度カメラ使用が有効)を用いて得られる高さ情報
を上記SEMの値に読み替えて用いてもよい。
(4) Average height of surface protrusions A flat surface of the film surface in a two-detector scanning electron microscope [ESM-3200, Elionix Co., Ltd.] and a cross-section measuring device [PMS-1, Elionix Co., Ltd.] The height measurement value of the protrusions when the height is 0 is sent to the image processing device [IBAS2000, manufactured by Carl Zeiss Co., Ltd.] to reconstruct the film surface protrusion image on the image processing device. Next, the equivalent circle diameter is calculated from the area of each protrusion obtained by binarizing the protrusion portion in this surface protrusion image, and this is made the average diameter of the protrusion. In addition, the highest value among the binarized individual projection portions is set as the height of the projection, and this is obtained for each projection. This measurement was repeated 500 times at different locations, the number of protrusions was determined, and the average value of the heights of all the measured protrusions was taken as the average height. The magnification of the scanning electron microscope is selected to be a value between 1000 and 8000 times. In some cases, a high-precision optical interference type three-dimensional surface analyzer (W
TOPO-3D made by YKO, objective lens: 40 to 200 times,
The height information obtained by using a high-resolution camera is effective) may be read as the SEM value and used.

(5)表層粒子濃度比 2次イオンマススペクトル(SIMS)を用いて、フイ
ルム中の粒子に起因する元素の内のもっとも高濃度の元
素とポリエステルの炭素元素の濃度比を粒子濃度とし、
厚さ方向の分析を行なう。SIMSによって測定される
最表層粒子濃度(深さ0の点)における粒子濃度Aとさ
らに深さ方向の分析を続けて得られる最高濃度Bの比、
A/Bを表層粒子濃度比と定義した。測定装置、条件は
下記のとおりである。
(5) Surface Layer Particle Concentration Ratio Using the secondary ion mass spectrum (SIMS), the particle concentration is defined as the concentration ratio of the highest concentration element of the elements in the film and the carbon element of polyester,
Analyze in the thickness direction. The ratio of the particle concentration A at the outermost surface particle concentration (point at depth 0) measured by SIMS and the maximum concentration B obtained by continuing the analysis in the depth direction,
A / B was defined as the surface particle concentration ratio. The measuring device and conditions are as follows.

測定装置 2次イオン質量分析装置(SIMS) 西独、ATOMIKA 社製 A-DIDA3000 測定条件 1次イオン種 :O 1次イオン加速電圧:12KV 1次イオン電流:200nA ラスター領域 :400 μm□ 分析領域:ゲート30% 測定真空度:6.0 ×109 Torr E−GUN:0.5KV-3.0 A (6)単一粒子指数 フイルムの断面を透過型電子顕微鏡(TEM)で写真観
察し、粒子を検知する。観察倍率を100000倍程度にすれ
ば、それ以上分けることができない1個の粒子が観察で
きる。粒子の占める全面積をA、その内2個以上の粒子
が凝集している凝集体の占める面積をBとした時、(A
−B)/Aをもって、単一粒子指数とする。TEM条件
は下記のとおりであり1視野面積:2μmの測定を場
所を変えて、500 視野測定する。
Measuring instrument Secondary ion mass spectrometer (SIMS) A-DIDA3000 manufactured by ATOMIKA, West Germany Measuring conditions Primary ion species: O 2 + Primary ion accelerating voltage: 12KV Primary ion current: 200nA Raster area: 400 μm □ Analysis area : Gate 30% Measuring degree of vacuum: 6.0 × 10 9 Torr E-GUN: 0.5KV-3.0 A (6) Single particle index The cross section of the film is photographically observed with a transmission electron microscope (TEM) to detect particles. If the observation magnification is set to about 100,000, one particle that cannot be further divided can be observed. When the total area occupied by particles is A and the area occupied by aggregates in which two or more particles are aggregated is B, (A
-B) / A is a single particle index. The TEM conditions are as follows: 1 field of view area: 2 μm 2 500 fields of view are measured by changing the location.

・装置:日本電子製JEM−1200EX ・観察倍率:100000倍 ・切片厚さ:約1000オングストローム (7)粒径比 上記(1)の測定において個々の粒子の長径の平均値/
短径の平均値の比である。
-Apparatus: JEM-1200EX manufactured by JEOL-Observation magnification: 100000 times-Slice thickness: Approximately 1000 angstroms (7) Particle size ratio Average value of major axis of individual particles in the above measurement (1) /
It is the ratio of the average value of the minor axis.

すなわち、下式で求められる。That is, it is calculated by the following formula.

長径=ΣD1/N 短径=ΣD2/N D1、D2はそれぞれ個々の粒子の長径(最大
径)、短径(最短径)、Nは総個数である。
Major axis = ΣD1 i / N long diameter short diameter = ΣD2 i / N D1 i, D2 i each individual particle (maximum diameter), short diameter (the shortest diameter), N is the total number.

(8)ヤング率 JIS−Z−1702に規定された方法にしたがって、イン
ストロンタイプの引っ張り試験機を用いて、25℃、65℃
RHにて測定した。
(8) Young's modulus In accordance with the method specified in JIS-Z-1702, using an Instron type tensile tester, 25 ℃, 65 ℃
It was measured by RH.

(9)積層されたフイルム中の熱可塑性樹脂A層の厚さ 2次イオン質量分析装置(SIMS)を用いて、フイル
ム中の粒子の内最も高濃度の粒子に起因する元素とポリ
エステルの炭素元素の濃度比(M/C)を粒子濃度
とし、熱可塑性樹脂A層の表面から深さ(厚さ)方向の
分析を行なう。表層では表面という界面のために粒子濃
度は低く表面から遠ざかるにつれて粒子濃度は高くな
る。本発明フイルムの場合は深さ[I]でいったん極大
値となった粒子濃度がまた減少し始める。この濃度分布
曲線をもとに極大値の粒子濃度の1/2になる深さ[I
I](ここでII>I)を積層厚さとした。条件は測定法
(5)と同様である。
(9) Thickness of Thermoplastic Resin A Layer in Laminated Film Using secondary ion mass spectrometer (SIMS), the element derived from the highest concentration of particles in the film and the carbon element of polyester The concentration ratio (M + / C + ) is defined as the particle concentration, and analysis is performed in the depth (thickness) direction from the surface of the thermoplastic resin A layer. In the surface layer, the particle concentration is low due to the interface of the surface, and the particle concentration increases as the distance from the surface increases. In the case of the film of the present invention, the particle concentration once reaching the maximum value at the depth [I] starts to decrease again. Based on this concentration distribution curve, the depth [I
I] (here, II> I) was taken as the laminated thickness. The conditions are the same as in measurement method (5).

なお、フイルム中にもっとも多く含有する粒子が有機高
分子粒子の場合はSIMSでは測定が難しいので、表面
からエッチングしながらXPS(X線光電子分光法)、
IR(赤外分光法)あるいはコンフォーカル顕微鏡など
で、その粒子濃度のデプスプロファイルを測定し、上記
同様の手法から積層厚さを求めても良い。
If the particles contained most in the film are organic polymer particles, it is difficult to measure by SIMS, so XPS (X-ray photoelectron spectroscopy), while etching from the surface,
It is also possible to measure the depth profile of the particle concentration by IR (infrared spectroscopy) or a confocal microscope, and obtain the layer thickness by the same method as above.

さらに、上述した粒子濃度のデプスプロファイルからで
はなく、フイルムの断面観察あるいは薄膜段差測定機等
によって熱可塑性樹脂Aの積層厚さを求めても良い。
Further, the laminated thickness of the thermoplastic resin A may be obtained by observing the cross section of the film or by a thin film step measuring device, etc., instead of using the depth profile of the particle concentration described above.

(10)耐スクラッチ性 フイルムを幅1/2インチのテープ状にスリットしたも
のをテープ走行試験機を使用して、ガイドピン(表面粗
度:Raで100 nm)上を走行させる(走行速度1000m
/分、走行回数10パス、巻き付け角:60゜、走行張力:
20g)。この時、フイルムに入った傷を顕微鏡で観察
し、幅2.5 μm以上の傷がテープ幅あたり2本未満は
優、2本以上10本未満は良、10本以上は不良と判定し
た。優が望ましいが、良でも実用的には使用可能であ
る。
(10) Scratch resistance The film slit into a tape with a width of 1/2 inch is run on a guide pin (surface roughness: Ra 100 nm) using a tape running tester (running speed 1000 m.
/ Min, 10 passes, winding angle: 60 °, running tension:
20g). At this time, the scratches in the film were observed with a microscope, and it was judged that scratches with a width of 2.5 μm or more per tape width were excellent when less than 2 and good when 2 or more and less than 10 were good and bad when 10 or more. Good is desirable, but good is practically usable.

(11)耐削れ性 フイルムを幅1/2インチにテープ状にスリットしたも
のに片刃を垂直に押しあて、さらに0.5 mm押し込んだ状
態で20cm走行させる(走行張力:500 g、走行速度:6.
7 cm/秒)。この時片刃の先に付着したフイルム表面の
削れ物の高さを顕微鏡で読みとり、削れ量とした(単位
はμm)。少なくとも片面について、粉の削れ量が10μ
m以下の場合は耐削れ性:良好、10μmを越える場合は
耐削れ性:不良と判定した。この削れ量:10μmという
値は、印刷工程やカレンダー工程などの加工工程で、フ
イルム表面が削れることによって、工程上、製品性能上
のトラブルがおこるか否かを判定するための臨界点であ
る。
(11) Scraping resistance A film is slit into a tape shape with a width of 1/2 inch, a single blade is pressed vertically, and the product is run 0.5 cm further for 20 cm (running tension: 500 g, running speed: 6.
7 cm / sec). At this time, the height of the scraped material on the surface of the film attached to the tip of the single blade was read with a microscope and the scraped amount was taken (unit: μm). The amount of powder scraped on at least one side is 10μ
When it was less than m, the abrasion resistance was judged to be good, and when it exceeded 10 μm, the abrasion resistance was judged to be poor. The scraped amount: 10 μm is a critical point for determining whether or not the film surface is scraped during a working process such as a printing process or a calendering process, which causes a process or product performance trouble.

[実施例] 本発明を実施例に基づいて説明する。[Examples] The present invention will be described based on Examples.

実施例1〜6、比較例1〜5 不活性粒子Aとしての平均粒径の異なる架橋ポリスチレ
ン粒子、コロイダルシリカに起因するシリカ粒子、およ
び不活性粒子Bとしての数珠状シリカ、網目状二酸化チ
タンをそれぞれ含有するエチレングリコールスラリーを
調製し、このエチレングリコールスラリーを190 ℃で1.
5 時間熱処理した後、テレフタル酸ジメチルとエステル
交換反応後、重縮合し、該粒子を0.3 〜55重量%含有す
るポリエチレンテレフタレート(以下PETと略記す
る)のペレットを作った。つまり、重合段階で不活性粒
子A、Bを同時に添加した。このペレットを用いて熱可
塑性樹脂Aを調製し、また、常法によって、実質的に不
活性粒子を含有しないPETを製造し、熱可塑性樹脂B
とした。これらのポリマをそれぞれ180 ℃で3時間減圧
乾燥(3Torr)した。熱可塑性樹脂Aを押出機1に供給
し310 ℃で溶融し、さらに、熱可塑性樹脂Bを押出機2
に供給、280 ℃で溶融し、これらのポリマを矩形積層部
を備えた合流ブロックで合流積層し、静電印加キャスト
法を用いて表面温度30℃のキャスティング・ドラムに巻
きつけて冷却固化し、2層構造の未延伸フイルムを作っ
た。この時、それぞれの押出機の吐出量を調節し総厚
さ、熱可塑性樹脂A層の厚さを調節した。この未延伸フ
イルムを温度80℃にて長手方向に4.5 倍延伸した。この
延伸は2組ずつのロールの周速差で、4段階で行なっ
た。この一軸延伸フイルムをステンタを用いて延伸速度
2000%/分で100 ℃で幅方向に4.0 倍延伸し、定長下
で、200 ℃にて5秒間熱処理し、総厚さ15μm、熱可塑
性樹脂A層厚さ0.008 〜3μmの二軸配向積層フイルム
を得た。これらのフイルムの本発明のパラメータは第1
表に示したとおりであり、本発明のパラメータが範囲内
の場合は耐スクラッチ性、耐削れ性は第1表に示したと
おり良好な値を示したが、そうでない場合は両特性を兼
備するフイルムは得られなかった。
Examples 1 to 6, Comparative Examples 1 to 5 Crosslinked polystyrene particles having different average particle diameters as the inert particles A, silica particles derived from colloidal silica, and beaded silica as the inert particles B, reticulated titanium dioxide. Prepare ethylene glycol slurries containing each of them, and add the ethylene glycol slurries at 190 ° C to 1.
After heat-treating for 5 hours, it was transesterified with dimethyl terephthalate and then polycondensed to form polyethylene terephthalate (hereinafter abbreviated as PET) pellets containing 0.3 to 55% by weight of the particles. That is, the inert particles A and B were simultaneously added in the polymerization stage. A thermoplastic resin A is prepared using the pellets, and PET containing substantially no inert particles is produced by a conventional method.
And Each of these polymers was dried under reduced pressure (3 Torr) at 180 ° C. for 3 hours. The thermoplastic resin A is supplied to the extruder 1 and melted at 310 ° C., and the thermoplastic resin B is further added to the extruder 2
, Melted at 280 ℃, these polymers are merged and laminated in a merging block equipped with a rectangular laminated part, and they are wound around a casting drum with a surface temperature of 30 ° C using the electrostatic cast method to cool and solidify, An unstretched film having a two-layer structure was made. At this time, the discharge amount of each extruder was adjusted to adjust the total thickness and the thickness of the thermoplastic resin A layer. This unstretched film was stretched 4.5 times in the longitudinal direction at a temperature of 80 ° C. This stretching was carried out in four stages with the difference in peripheral speed between each pair of rolls. This uniaxially stretched film is stretched using a stenter.
Biaxially oriented laminate with total thickness of 15 μm, thermoplastic resin A layer thickness of 0.008 to 3 μm, stretched 4.0 times in width direction at 100 ° C. at 2000% / min and heat-treated at 200 ° C. for 5 seconds under constant length. I got a film. The parameters of the present invention for these films are the first
As shown in the table, when the parameter of the present invention is within the range, the scratch resistance and the abrasion resistance show good values as shown in Table 1, but if not, they have both characteristics. No film was obtained.

[発明の効果] 以上説明したように、本発明の二軸配向熱可塑性樹脂フ
イルムによるときは、積層フイルム層内含有の不活性粒
子Aによりフイルム表面に均一な高さでかつ高密度の所
望の突起を形成でき、かつ凝集粒子状態の不活性粒子B
により上記突起およびフイルム表面地自身を補強できる
ようにしたので、該フイルム表面の耐スクラッチ性、耐
削れ性を著しく高めることができる。
[Effects of the Invention] As described above, in the case of the biaxially oriented thermoplastic resin film of the present invention, the inert particles A contained in the laminated film layer allow the desired height of uniform and high density on the film surface. Inert particles B capable of forming protrusions and in a state of agglomerated particles
Since the protrusions and the film surface itself can be reinforced by the above, the scratch resistance and abrasion resistance of the film surface can be remarkably enhanced.

また、本発明フイルムは、製膜工程内で、コーティング
などの操作なしで共押出により直接複合積層することに
よって作ったフイルムであり、製膜工程中あるいはその
後のコーティングによって作られる積層フイルムに比べ
て、最表層の分子も二軸配向であるため、フイルム全体
とともにその表層部も極めて強度が高いものとなり、し
かもコスト面、品質の安定性などにおいて有利になる。
Further, the film of the present invention is a film produced by directly compounding and laminating by coextrusion in the film forming process without an operation such as coating, and compared with a laminated film made by coating during or after the film forming process. Since the molecules of the outermost layer are also biaxially oriented, not only the entire film but also the surface layer portion thereof have extremely high strength, which is advantageous in terms of cost and stability of quality.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/08 8413−4F // B32B 27/20 Z 8413−4F B29K 105:16 B29L 9:00 4F (56)参考文献 特開 昭60−63150(JP,A) 特開 昭60−63151(JP,A) 特開 昭49−98483(JP,A) 特開 昭50−123420(JP,A) 特開 昭60−254415(JP,A) 特開 昭62−95339(JP,A) 特公 昭58−5037(JP,B2)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B32B 27/08 8413-4F // B32B 27/20 Z 8413-4F B29K 105: 16 B29L 9:00 4F (56) Reference JP 60-63150 (JP, A) JP 60-63151 (JP, A) JP 49-98483 (JP, A) JP 50-123420 (JP, A) JP-A-60-254415 (JP, A) JP-A-62-95339 (JP, A) JP-B-58-5037 (JP, B2)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂Aと不活性粒子A、Bとを主
成分とするフイルムを共押出により熱可塑性樹脂Bを主
成分とするフイルムの少なくとも片面に0.01〜5μmの
厚さで積層した二軸配向熱可塑性樹脂フイルムであっ
て、前記不活性粒子Aの平均粒径が前記熱可塑性樹脂A
のフイルム層厚さの 0.1〜10倍であり、前記不活性粒子
Bが、平均粒径が不活性粒子Aの平均粒径よりも小さい
一次粒子が方向性をもたずに多数連なった凝集粒子であ
ることを特徴とする二軸配向熱可塑性樹脂フイルム。
1. A film containing a thermoplastic resin A and inert particles A, B as a main component is laminated by coextrusion on at least one side of a film containing a thermoplastic resin B as a main component to a thickness of 0.01 to 5 .mu.m. A biaxially oriented thermoplastic resin film, wherein the average particle size of the inert particles A is the thermoplastic resin A.
The thickness of the film layer is 0.1 to 10 times, and the inactive particles B are agglomerated particles in which a large number of primary particles having an average particle size smaller than the average particle size of the inactive particles A are arranged in a non-directional manner. A biaxially oriented thermoplastic resin film characterized in that
【請求項2】前記不活性粒子Bの一次粒子の平均粒径が
5〜100 nmである請求項1記載の二軸配向熱可塑性樹
脂フイルム。
2. The biaxially oriented thermoplastic resin film according to claim 1, wherein the primary particles of the inert particles B have an average particle diameter of 5 to 100 nm.
【請求項3】前記不活性粒子Bの前記熱可塑性樹脂Aの
フイルム層中の含有量が0.05〜1重量%である請求項1
記載の二軸配向熱可塑性樹脂フイルム。
3. The content of the inert particles B in the film layer of the thermoplastic resin A is 0.05 to 1% by weight.
The biaxially oriented thermoplastic resin film described.
【請求項4】軸方向ヤング率が400 kg/mm以上である
請求項1記載の二軸配向熱可塑性樹脂フイルム。
4. The biaxially oriented thermoplastic resin film according to claim 1, which has an axial Young's modulus of 400 kg / mm 2 or more.
【請求項5】前記不活性粒子A、Bを含む積層フイルム
側の表層の不活性粒子の粒子濃度比が0.1 以下である請
求項1記載の二軸配向熱可塑性樹脂フイルム。
5. The biaxially oriented thermoplastic resin film according to claim 1, wherein the particle concentration ratio of the inactive particles in the surface layer on the laminated film side containing the inactive particles A and B is 0.1 or less.
【請求項6】前記熱可塑性樹脂Aが結晶性の樹脂である
請求項1記載の二軸配向熱可塑性樹脂フイルム。
6. The biaxially oriented thermoplastic resin film according to claim 1, wherein the thermoplastic resin A is a crystalline resin.
JP1224359A 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film Expired - Fee Related JPH0659679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224359A JPH0659679B2 (en) 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224359A JPH0659679B2 (en) 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH0390329A JPH0390329A (en) 1991-04-16
JPH0659679B2 true JPH0659679B2 (en) 1994-08-10

Family

ID=16812527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224359A Expired - Fee Related JPH0659679B2 (en) 1989-09-01 1989-09-01 Biaxially oriented thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPH0659679B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336079A (en) 1991-03-06 1994-08-09 Toray Industries, Inc. Biaxially oriented laminated film comprising particles in a specific ratio of particle density
JPH06313051A (en) * 1993-04-30 1994-11-08 Toray Ind Inc Biaxially oriented film
JP2925057B2 (en) * 1993-08-30 1999-07-26 東レ株式会社 Biaxially oriented laminated polyester film
JP3345247B2 (en) * 1996-01-26 2002-11-18 帝人株式会社 Laminated biaxially oriented polyester film
DE69927458T2 (en) 1998-05-06 2006-07-13 Teijin Ltd. BIAXIALLY ORIENTED POLYESTER COMPOSITE FILM

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166065A (en) * 1980-03-12 1981-12-19 Ici Ltd Polyester composite film and its manufacture
FR2484899A1 (en) * 1980-06-18 1981-12-24 Saint Gobain Isover METHOD AND DEVICE FOR REMOVING WATER EXCEEDING A MIXTURE OF PLASTER AND WATER, AND PRODUCTS OBTAINED
JPS583289A (en) * 1981-06-30 1983-01-10 Fujitsu Ltd Manufacture of thin film transistor
FR2548958B1 (en) * 1983-07-13 1986-03-21 Rhone Poulenc Films COMPOSITE POLYESTER FILMS
JPS6063150A (en) * 1983-09-16 1985-04-11 東レ株式会社 Polyester film for evaporating metallic thin-film
JP3088426B2 (en) * 1989-02-16 2000-09-18 帝人株式会社 Laminated biaxially oriented film

Also Published As

Publication number Publication date
JPH0390329A (en) 1991-04-16

Similar Documents

Publication Publication Date Title
JPH0277431A (en) Biaxially oriented thermoplastic resin film
JPH0659679B2 (en) Biaxially oriented thermoplastic resin film
JP2817302B2 (en) Biaxially oriented polyester film
JP2692320B2 (en) Biaxially oriented polyester film
JP2706338B2 (en) Biaxially oriented polyester film and its processed product
JP2687621B2 (en) Biaxially oriented thermoplastic resin film for magnetic tape base
JP2569853B2 (en) Biaxially oriented thermoplastic resin film and film roll
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JP3072717B2 (en) Biaxially oriented polyester film
JP2605417B2 (en) Magnetic recording media
JP2570449B2 (en) Method for producing biaxially oriented thermoplastic resin film
JP2567964B2 (en) Biaxially oriented thermoplastic resin film
JP2687643B2 (en) Biaxially oriented thermoplastic resin film
JP2860061B2 (en) Biaxially oriented thermoplastic resin film
JP2932555B2 (en) Biaxially oriented thermoplastic resin film
JPH0399847A (en) Biaxially oriented thermoplastic resin film
JP3134416B2 (en) Polyester film
JP2932553B2 (en) Biaxially oriented thermoplastic resin film
JP2973957B2 (en) Biaxially oriented thermoplastic resin film
JP3083081B2 (en) Base film for magnetic recording media
JP2736132B2 (en) Non-magnetic metallized polyester film
JP2800303B2 (en) Perpendicular magnetic recording media
JP2005007787A (en) Polyester film for thermal transfer ribbon
JPH05154907A (en) Biaxially orientated themoplastic resin film
JP3277681B2 (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees