JPH0268904A - Manufacture of alloy powder for rare earth-fe-b system bond magnet - Google Patents

Manufacture of alloy powder for rare earth-fe-b system bond magnet

Info

Publication number
JPH0268904A
JPH0268904A JP63221552A JP22155288A JPH0268904A JP H0268904 A JPH0268904 A JP H0268904A JP 63221552 A JP63221552 A JP 63221552A JP 22155288 A JP22155288 A JP 22155288A JP H0268904 A JPH0268904 A JP H0268904A
Authority
JP
Japan
Prior art keywords
powder
rare earth
spherical powder
alloy
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63221552A
Other languages
Japanese (ja)
Inventor
Yoshitomo Sato
佐藤 義智
Tsuguaki Oki
大木 継秋
Akifumi Kanbe
神戸 章史
Shinji Maekawa
前川 信治
Mutsuhiro Miyagawa
宮川 睦啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63221552A priority Critical patent/JPH0268904A/en
Publication of JPH0268904A publication Critical patent/JPH0268904A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0574Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by liquid dynamic compaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To save several steps of a conventional manufacturing process and improve magnetic characteristics of a bond magnet by melting a specific alloy and blowing off its melted alloy from a nozzle and then, obtaining a spherical powder after spraying an inactive cooling gas to the above melted alloy so that a quenching rate reaches a specific value or more and then, treating its powder with heat at a specified temperature. CONSTITUTION:An alloy 1 containing: 8-25atomic% R which is used by combining a kind of rare earth elements containing Y or two kinds or more of them; 2-8atomic% B; the residual consisting of Fe and other impurities which are inevitable for manufacturing are melted and are blown off from a nozzle 3 and an inactive cooling gas is sprayed so that a quenching rare becomes 10<3>k/sec. or more to obtain a spherical powder where an average particle size is 20-80mum and an aspect ratio (major axis/ manor axis) is 1.3 or below. After that, the spherical powder is treated with heat at a temperature of 800 deg.C or below. For example, the spherical powder which is obtained by spraying the inactive cooling gas from an atomizing nozzle 4 is cooled with liquid 6 of the inactive gas where a kind or two kinds or more of three liquid bodies consisting of Ar, He, and N2 are combined and the powder is recovered.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、希土類−Fe−B系ボンド磁石用合金粉末の
製造方法に関し、特に製造工程が削減でき、且つこの合
金粉末により製造されるボンド磁石の磁気特性を向上す
ることができる希土類−Fe−B系ボンド磁石用合金粉
末の製造方法に関する。 〔従来技術〕 希土類−Fe−B系ポンド磁石用合金粉末を製造する技
術としては、例えば特開昭62−208609号公報に
開示の如き方法が知られている。 この方法は、いわゆるロール急冷法もしくはガスアトマ
イズ法によりボンド磁石用合金粉末を製造する方法で、
ロール急冷もしくはガスアトマイズにより急、速冷却し
て得られた結晶状のリボンもしくは粉末を、0.1〜2
0μmに粉砕し、結晶化と歪とり焼鈍のために焼結のお
こらない800°C以下の温度にて熱処理する方法であ
る。 〔発明が解決しようとする課題〕 このような従来の希土類−Fe−B系ボンド磁石用合金
粉末の製造方法では、ロール急冷もしくはガスアトマイ
ズにより得られたリボンもしくは粉末を更に、機械的に
粉砕して使用している。このため、製造工程が増える。 粉砕時に酸化あるいは粉砕工具からの混粉を生じ磁気特
性が劣化する、粉砕して得られた粉末の形状が角ばった
形状となり次工程の成形時に流動性が悪く、成形後のボ
ンド磁石の充填密度が低く磁気特性が劣化するなどの問
題があった。 従って、本発明の目的とするところは、製造工程が削減
でき、且つこの製造方法により製造されるボンド磁石の
磁気特性を向上させることができる希土類−Fe−B系
ボンド磁石用合金粉末の製造方法を提供することである
。 〔課題を解決するための手段〕 上記目的を達成するために、本発明が採用する主たる手
段は、原子百分率で88〜25%(RはYを含む希土類
元素の一種あるいは二種以上を組み合わせて用いる),
B2〜8%、残部が鉄及びその他製造上不可避な不純物
からなる合金を溶融してノズルより噴出し、これに2.
冷速度が103に/sec以上となるように不活性冷却
ガスを吹き付け、平均粒径20〜80μm、アスペクト
比(長径/短径)1.3以下の球形粉末を得た後、該f
、に形粉末を800°C以下の温度で熱処理する点であ
る。 即ち、本発明は、いわゆるガスアトマイ、ズ法を希土類
−Fe−B系ボンド磁石用合金粉末の製造方法に応用し
たもので、原子百分率で88〜25%(RはYを含む希
土類元素の一種あるいは二種以上を組み合わせて用いる
),B2〜8%、残部が鉄及びその他製造上不可避な不
純物からなる合金を溶融してノズルより噴出し、これに
急冷速度が103に/sec以上となるように不活性ガ
スを吹き付けることにより、平均粒径20〜80μm。 アスペクト比(長径/短径)1.3以下の球形粉末を得
るものである。この球形粉末は、形状的にも磁気特性に
も優れているため、このままの状態で熱処理を行いボン
ド磁石を製造することができる。 ここで9冷速度をI O’ k /sec以北とするの
は、10’ k/sec未満では、得られる球形粉末に
α−Feが晶出し、このα−Feを拡散させるためには
,B00 ’C以上で熱処理しなければならなくなるた
めである。また,B00°C以下で熱処理するのは,B
00 ’Cより高い温度で球形粉末を熱処理すると、焼
結による接着や酸化がおこり、磁気特性を劣化させるた
めである。そして、平均粒径20〜80μm1アスペク
ト比(長径/短径)1.3以下の球形粉末を得るように
したのは、平均粒径が20μm未満では酸化や焼結をお
こし,B011mより大きい場合はα−Feが品出する
ため好ましくなく、アスペクト比1.3より大きい粉末
では、成形時に流動性が悪(なるためである。 〔実施例〕 続いて、添付した図面を参照して、本発明を具体化した
一実施例につき説明し、本発明の理解に供するにこに第
1図は、本発明の一実施例に用いる粉末製造装置の概略
側断面図である。 この実施例では、原子百分率で88〜25%(RはYを
含む希土類元素の一種あるいは二種以上を組み合わせて
用いる),B2〜8%、残部が鉄及びその他製造上不可
避な不純物からなる合金lを溶融して、真空チャンバ部
10内に配設されたタンデイツシュ2の先端のノズル3
より噴出し、これに2.冷速度がI O’ k /se
c以上となるように不活性冷却ガス(HeあるいはHe
とA、の混合ガス)をアトマイズノズル4より吹き付け
る。 そうすると、アトマイズチャンバ部ll内で平均粒径2
0〜80μm、アスペクト比(長径/短径)1.3以下
の球形粉末が得られる。 このようにして得られた球形粉末は、粉末回収部12の
粉末回収容器5内に入れられた不活性ガスの液体(液体
A1.液体He、液体N2の一種あるいは二種以上を組
み合わせたもの)6により冷却され回収される。そして
、回収された球形粉末は,B00°C以下の温度で熱処
理される。 なお、不活性冷却ガスとして、HeあるいはHeとA、
の混合ガスとしたのは、例えばA、ガスを用いた場合、
得られる球形粉末にα−Feが晶出し、熱処理を800
°Cより高い温度で行わなければならなくなるためであ
る。また、球形粉末の回収を不活性ガスの液体により行
うのは、不活性ガスの雰囲気内で回収した場合、やはり
α−Feが晶出するからである。 以上の方法により製造したボンド磁石用合金粉末の磁気
特性を表1に示す。ここで、合金組成は原子百分率で1
3%Na−81%Fe−6%B。 アトマイズ圧力は90kg/cJ、得られる球形粉末の
平均粒径は25μm、熱処理温度は500°Cの条件下
で製造した。表1において、射出成形性とは、メルトイ
ンデックス法で射出成形圧力5kg/c+flにおける
吐出粉末量を表し、従来法(2)のアスペクト比5の粉
末の吐出粉末量を1とした場合の吐出量比、磁気特性と
は、射出成形したボンド磁石の(B H) mayの値
(MGOe)である。 これによると、従来法に比べて本実施例法により製造し
たボンド磁石の方が磁気特性に優れどいることがわかる
。特に、不活性冷却ガスとしてHe回収雰囲気として液
体Arを用いた実施例法(3)については、射出成形性
及び磁気特性の両方ともが優れた値を示L7ている。
[Industrial Application Field] The present invention relates to a method for producing rare earth-Fe-B alloy powder for bonded magnets, and in particular, a method that reduces the number of production steps and improves the magnetic properties of bonded magnets produced using this alloy powder. The present invention relates to a method for producing rare earth-Fe-B alloy powder for bonded magnets. [Prior Art] As a technique for producing rare earth-Fe-B based alloy powder for pound magnets, a method as disclosed in, for example, Japanese Patent Application Laid-Open No. 62-208609 is known. This method is a method of manufacturing alloy powder for bonded magnets using the so-called roll quenching method or gas atomization method.
A crystalline ribbon or powder obtained by rapid cooling by roll quenching or gas atomization is 0.1 to 2
This is a method in which the material is pulverized to 0 μm and heat treated at a temperature of 800° C. or lower, where sintering does not occur, for crystallization and strain relief annealing. [Problems to be Solved by the Invention] In such a conventional method for producing rare earth-Fe-B alloy powder for bonded magnets, the ribbon or powder obtained by roll quenching or gas atomization is further mechanically pulverized. I am using it. This increases the number of manufacturing steps. During pulverization, oxidation or mixed powder from the pulverizing tool occurs, resulting in deterioration of magnetic properties.The shape of the powder obtained by pulverization becomes angular, resulting in poor fluidity during molding in the next step, and the packing density of the bonded magnet after molding. There were problems such as low magnetic properties and deterioration of magnetic properties. Therefore, the object of the present invention is to provide a method for manufacturing rare earth-Fe-B alloy powder for bonded magnets, which can reduce manufacturing steps and improve the magnetic properties of bonded magnets manufactured by this manufacturing method. The goal is to provide the following. [Means for Solving the Problems] In order to achieve the above object, the main means adopted by the present invention is 88 to 25% in atomic percentage (R is one or a combination of two or more rare earth elements including Y). use),
An alloy consisting of 2 to 8% B, the balance being iron and other impurities unavoidable in manufacturing is melted and ejected from a nozzle, and 2.
After spraying an inert cooling gas at a cooling rate of 103/sec or more to obtain a spherical powder with an average particle size of 20 to 80 μm and an aspect ratio (major axis/minor axis) of 1.3 or less, the f
, the square-shaped powder is heat-treated at a temperature of 800°C or less. That is, the present invention applies the so-called gas atomization method to a method for producing rare earth-Fe-B alloy powder for bonded magnets. (used in combination of two or more types), B2 to 8%, the balance consisting of iron and other impurities unavoidable in manufacturing is melted and ejected from a nozzle, and the quenching rate is 103/sec or more. By spraying with inert gas, the average particle size is 20 to 80 μm. A spherical powder having an aspect ratio (major axis/minor axis) of 1.3 or less is obtained. Since this spherical powder has excellent shape and magnetic properties, it can be heat-treated as it is to produce a bonded magnet. Here, the reason why the cooling rate is set north of I O' k /sec is that if the cooling rate is less than 10' k/sec, α-Fe will crystallize in the obtained spherical powder, and in order to diffuse this α-Fe, This is because heat treatment must be performed at B00'C or higher. In addition, heat treatment at temperatures below B00°C
This is because if the spherical powder is heat-treated at a temperature higher than 00'C, adhesion and oxidation due to sintering will occur, deteriorating the magnetic properties. The reason for obtaining spherical powder with an average particle size of 20 to 80 μm and an aspect ratio (major axis/breadth axis) of 1.3 or less is because if the average particle size is less than 20 μm, oxidation and sintering will occur, and if it is larger than B011m, This is undesirable because α-Fe is undesirable, and powders with an aspect ratio larger than 1.3 have poor fluidity during molding. 1 is a schematic side sectional view of a powder manufacturing apparatus used in an embodiment of the present invention. In this embodiment, an atomic Melting an alloy l consisting of 88 to 25% in percentage (R is one or a combination of two or more rare earth elements including Y), B2 to 8%, and the balance is iron and other impurities unavoidable in manufacturing, A nozzle 3 at the tip of a tandem dish 2 arranged in the vacuum chamber section 10
More gushing, and 2. The cooling rate is I O' k /se
Inert cooling gas (He or He
and A) is sprayed from the atomizing nozzle 4. Then, in the atomizing chamber section ll, the average particle size is 2.
A spherical powder having a diameter of 0 to 80 μm and an aspect ratio (major axis/minor axis) of 1.3 or less is obtained. The spherical powder obtained in this way is an inert gas liquid (liquid A1, liquid He, liquid N2, or a combination of two or more types) placed in the powder collection container 5 of the powder collection section 12. 6 and collected. The collected spherical powder is then heat treated at a temperature of B00°C or lower. In addition, as an inert cooling gas, He or He and A,
For example, when using gas A,
α-Fe crystallizes in the resulting spherical powder, and heat treatment is performed at 800°C.
This is because it has to be carried out at a temperature higher than °C. Further, the reason why the spherical powder is collected using an inert gas liquid is that α-Fe will crystallize if the powder is collected in an inert gas atmosphere. Table 1 shows the magnetic properties of the alloy powder for bonded magnets produced by the above method. Here, the alloy composition is 1 in atomic percentage.
3%Na-81%Fe-6%B. The atomization pressure was 90 kg/cJ, the average particle size of the resulting spherical powder was 25 μm, and the heat treatment temperature was 500°C. In Table 1, injection moldability refers to the amount of powder discharged at an injection molding pressure of 5 kg/c+fl using the melt index method, and the amount of powder discharged when the amount of powder discharged with an aspect ratio of 5 in conventional method (2) is set to 1. The magnetic property is the (B H) may value (MGOe) of the injection molded bonded magnet. According to this, it can be seen that the bonded magnet manufactured by the method of this example has better magnetic properties than the conventional method. In particular, Example Method (3) in which liquid Ar was used as the inert cooling gas and the He recovery atmosphere showed excellent values for both injection moldability and magnetic properties.

【発明の効果】【Effect of the invention】

本発明によれば、原子百分率でR8−25%(RはYを
含む希土類元素の一種あるいは二種以上を組み合わせて
用いる’),B2〜8%、残部が鉄及びその他製造上不
可避な不純物からなる合金を溶融してノズルより噴出し
、これに栄冷速度が10’に/sec以上となるように
不活性冷却ガスを吹き付け、平均粒径20〜80μm、
アスペクト比(長径/短径)1.3以下の球形粉末を得
た後、該球形粉末を800°C以下の温度で熱処理する
ことを特徴とする粘土NR−Fe−B系ボンド磁石用合
金粉末の製造方法が提供され1.:れによりガスアトマ
イズで得られた球形粉末を機械的にわ)砕せず、そのま
ま熱処理が行えるため製造工程が削減でき、コストダウ
ンが図れる。また、この合金粉末から製造されるボンド
磁石は磁気特性も優れている。
According to the present invention, the atomic percentage is R8-25% (R is one or a combination of two or more rare earth elements including Y), B2-8%, and the balance is iron and other impurities unavoidable in manufacturing. The alloy is melted and ejected from a nozzle, and an inert cooling gas is blown onto it so that the cooling rate is 10'/sec or more, and the average particle size is 20 to 80 μm.
Clay NR-Fe-B alloy powder for bonded magnets characterized by obtaining spherical powder with an aspect ratio (major axis/minor axis) of 1.3 or less, and then heat-treating the spherical powder at a temperature of 800°C or less. A manufacturing method is provided.1. As a result, the spherical powder obtained by gas atomization can be heat-treated as it is without mechanically crushing it, reducing the manufacturing process and reducing costs. Additionally, bonded magnets manufactured from this alloy powder have excellent magnetic properties.

〔符号の説明〕[Explanation of symbols]

1・・合金 3・・・ノズル 6・・・不活性ガスの液体。 第1図 出願人  株式会社神戸!!!鋼所 1. Alloy 3... Nozzle 6...Inert gas liquid. Figure 1 Applicant: Kobe Co., Ltd.! ! ! steelworks

Claims (3)

【特許請求の範囲】[Claims] (1)原子百分率でR8〜25%(RはYを含む希土類
元素の一種あるいは二種以上を組み合わせて用いる),
B2〜8%,残部が鉄及びその他製造上不可避な不純物
からなる合金を溶融してノズルより噴出し、これに急冷
速度が10^3k/sec以上となるように不活性冷却
ガスを吹き付け、平均粒径20〜80μm,アスペクト
比(長径/短径)1.3以下の球形粉末を得た後、該球
形粉末を800℃以下の温度で熱処理することを特徴と
する希土類−Fe−B系ボンド磁石用合金粉末の製造方
法。
(1) R8 to 25% in atomic percentage (R is one or a combination of two or more rare earth elements including Y),
An alloy consisting of B2~8%, the balance being iron and other impurities unavoidable in manufacturing is melted and ejected from a nozzle, and an inert cooling gas is sprayed onto it so that the quenching rate is 10^3 k/sec or more, and the average A rare earth-Fe-B bond characterized in that after obtaining a spherical powder with a particle size of 20 to 80 μm and an aspect ratio (major axis/minor axis) of 1.3 or less, the spherical powder is heat-treated at a temperature of 800°C or less. A method for producing alloy powder for magnets.
(2)不活性冷却ガスとして、HeあるいはHeとAr
の混合ガスを用いるようにした請求項(1)記載の希土
類−Fe−B系ボンド磁石用合金粉末の製造方法。
(2) He or He and Ar as an inert cooling gas
The method for producing a rare earth-Fe-B bonded magnet alloy powder according to claim 1, wherein a mixed gas of:
(3)不活性冷却ガスの吹き付けにより得られた球形粉
末を、液体Ar,液体He,液体N_2の一種あるいは
二種以上を組み合わせた不活性ガスの液体により冷却し
て回収するようにした請求項(1)記載の希土類−Fe
−B系ボンド磁石用合金粉末の製造方法。
(3) A claim in which the spherical powder obtained by spraying an inert cooling gas is cooled and recovered by an inert gas liquid that is a combination of one or more of liquid Ar, liquid He, and liquid N_2. (1) Rare earth described - Fe
- A method for producing alloy powder for B-based bonded magnets.
JP63221552A 1988-09-05 1988-09-05 Manufacture of alloy powder for rare earth-fe-b system bond magnet Pending JPH0268904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221552A JPH0268904A (en) 1988-09-05 1988-09-05 Manufacture of alloy powder for rare earth-fe-b system bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221552A JPH0268904A (en) 1988-09-05 1988-09-05 Manufacture of alloy powder for rare earth-fe-b system bond magnet

Publications (1)

Publication Number Publication Date
JPH0268904A true JPH0268904A (en) 1990-03-08

Family

ID=16768508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221552A Pending JPH0268904A (en) 1988-09-05 1988-09-05 Manufacture of alloy powder for rare earth-fe-b system bond magnet

Country Status (1)

Country Link
JP (1) JPH0268904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536539A (en) * 1999-02-01 2002-10-29 マグネクウェンチ インターナショナル インコーポレイテッド Rare earth permanent magnet alloy and its manufacturing method
EP1554411A1 (en) 2002-10-25 2005-07-20 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536539A (en) * 1999-02-01 2002-10-29 マグネクウェンチ インターナショナル インコーポレイテッド Rare earth permanent magnet alloy and its manufacturing method
EP1554411A1 (en) 2002-10-25 2005-07-20 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material

Similar Documents

Publication Publication Date Title
JP5191620B2 (en) Rare earth permanent magnet alloy manufacturing method
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
JPH0268904A (en) Manufacture of alloy powder for rare earth-fe-b system bond magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
US6468440B1 (en) Magnet powder and method for producing the same, and bonded magnet using the same
KR101683439B1 (en) Permanent Magnet Powder containing Rare Earth Element and a Method thereof
KR970003124B1 (en) Process for manufacturing mpp core forming powder and process for manufacturing mpp core using the powder
US6524399B1 (en) Magnetic material
JPH01205402A (en) Manufacture of rare earth fe-b magnetic powder
JPH0582319A (en) Permanent magnet
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
KR100201602B1 (en) Method for producing sendust alloy powder
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH04141502A (en) Manufacture of alloy powder for rare earth metal bond magnet
CN115831522A (en) Amorphous soft magnetic alloy powder and preparation method and application thereof
JPS6263645A (en) Production of permanent magnet material
JPS58125804A (en) Powder as raw material for permanent magnet and its manufacture
JPS63100107A (en) Production of amorphous alloy powder
JPH11269502A (en) Manganese-aluminum-carbon alloy powder, production of anisotropic manganese-aluminum-carbon magnet using this powder, and anisotropic manganese-aluminum-carbon magnet
JPH04263403A (en) Anisotropic permanent magnet and manufacture thereof
KR19980014321A (en) Process for producing permalloy alloy powder excellent in magnetic properties
JP3142851B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
US20030221749A1 (en) Magnetic material
JPH06306414A (en) Production of alloy powder for magneto-optical recording medium producing target and alloy powder
JPS58147007A (en) Preparation of permanent magnet