KR100201602B1 - Method for producing sendust alloy powder - Google Patents

Method for producing sendust alloy powder Download PDF

Info

Publication number
KR100201602B1
KR100201602B1 KR1019960033253A KR19960033253A KR100201602B1 KR 100201602 B1 KR100201602 B1 KR 100201602B1 KR 1019960033253 A KR1019960033253 A KR 1019960033253A KR 19960033253 A KR19960033253 A KR 19960033253A KR 100201602 B1 KR100201602 B1 KR 100201602B1
Authority
KR
South Korea
Prior art keywords
powder
producing
alloy powder
permalloy
permalloy alloy
Prior art date
Application number
KR1019960033253A
Other languages
Korean (ko)
Other versions
KR19980014320A (en
Inventor
오방원
류영호
배광욱
Original Assignee
배창환
주식회사창성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배창환, 주식회사창성 filed Critical 배창환
Priority to KR1019960033253A priority Critical patent/KR100201602B1/en
Publication of KR19980014320A publication Critical patent/KR19980014320A/en
Application granted granted Critical
Publication of KR100201602B1 publication Critical patent/KR100201602B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 마그네트 코아(magnet core)용으로 사용하는 퍼멀로이합금(permalloy) 분말의 제조방법에 관한 것이며; 그 목적은 자기적 특성이 우수한 퍼멀로이합금분말을 제공함에 있다.The present invention relates to a method for producing a permalloy powder for use in a magnet core; The purpose is to provide a permalloy alloy powder having excellent magnetic properties.

상기 목적달성을 위한 본 발명은 마그네트 코아용 퍼멀로이합금분말을 제조하는 방법에 있어서, 원하는 성분의 퍼멀로이합금에 황 또는 인을 첨가하고 이를 용해하고 상기 용융금속을 불활성분위기하에서 압력 500-2400PSI의 분사가스로 분무하여 1-5mm 두께의 박판을 연속적으로 제조하고, 제조된 박판을 10-100㎛ 범위의 평균입도를 갖는 분말로 분쇄하여 구성되는 청정성이 우수한 퍼멀로이합금분말의 제조방법에 관한 것을 그 기술적 요지로 한다.In the present invention for achieving the above object, in the method for producing a permalloy alloy powder for magnet core, sulfur or phosphorus is added to the permalloy alloy of the desired component and dissolved therein, and the molten metal is injected gas under an inert atmosphere at a pressure of 500-2400 PSI The technical gist of the present invention relates to a method for preparing a permalloy alloy powder having excellent cleanliness, which is prepared by continuously producing thin plates having a thickness of 1-5 mm and grinding the prepared thin plates into powders having an average particle size in the range of 10-100 μm. Shall be.

Description

자기적 특성이 우수한 퍼멀로이합금분말의 제조방법Manufacturing method of permalloy alloy powder with excellent magnetic properties

본 발명은 마그네트 코아(magnet core)용으로 사용하는 퍼멀로이합금(permalloy) 분말의 제조방법에 관한 것으로, 보다 상세하게는 자기적 특성이 우수한 퍼멀로이합금분말을 용이하게 얻을 수 있는 새로운 제조방법에 관한 것이다.The present invention relates to a method for producing a permalloy alloy (permalloy) powder for use in magnet cores, and more particularly to a new production method that can easily obtain a permalloy alloy powder having excellent magnetic properties. .

퍼멀로이합금은 Ni-Fe 또는 Ni-Fe-Mo합금으로 자기투자율이 높은 특성을 나타내기 때문에 보통 마그네트 코아용 재료로 많이 사용되고 있다. 퍼멀로이합금은 분말로 제조되며, 퍼멀로이합금분말은 통상 잉고트(ingot)로 주조한 후 파쇄하여 얻거나(이하, 단지 `주조-파쇄법') 합금용해후 물을 분사하여 얻는 방법(이하, 단지 `수분사법')이 있다.Permalloy alloys are Ni-Fe or Ni-Fe-Mo alloys, which have high magnetic permeability, and thus are commonly used as magnet core materials. The permalloy alloy is made of powder, and the permalloy alloy powder is usually obtained by casting into ingots and then crushing (hereinafter referred to as 'cast-crushing method') or by spraying water after melting the alloy (hereinafter, only ` There is a 'pollination'.

상기 주조-파쇄법은 원하는 합금성분에 황이나 인과 같은 입계취화원소를 첨가한 다음, 용해하여 잉코트로 주조한 후, 주조된 잉고트를 열간압연을 통해 얇은 박판으로 성형하고, 이 박판을 급랭시키면 취화되는 성질을 이용하여 퍼멀로이박판을 급랭한 후, 급랭된 박판을 죠크러셔(jaw crusher) 등을 이용하여 조분쇄시키고, 볼밀(ball mill)을 이용하여 더욱 작은 크기로 분쇄하여 최종 분말을 제조하는 방법이다. 그러나, 상기 주조-파쇄법의 경우 잉고트의 제조 및 이를 분쇄하는 과정에서 많은 시간이 소요되어 생산성이 떨어질 뿐만아니라 박판의 응고과정에서 성분원소의 거시편석(macro segregation)이 발생되어 최종 분말의 자기적 특성에 커다란 편차가 발생할 수 있는 단점이 있다.In the casting-crushing method, a grain boundary embrittlement element such as sulfur or phosphorus is added to a desired alloy component, dissolved, cast into an ingot, and the cast ingot is formed into a thin sheet through hot rolling, and the thin sheet is quenched. After quenching the permalloy thin plate using the embrittlement property, the quenched thin plate is coarsely pulverized using a jaw crusher or the like, and then pulverized to a smaller size using a ball mill to produce a final powder. Way. However, in the case of the casting-crushing method, the production of the ingot and the process of crushing it take a lot of time and reduce productivity as well as macro segregation of the components in the solidification process of the thin plate, resulting in the magnetic field of the final powder. There is a disadvantage that a large deviation in the characteristics can occur.

한편, 수분사법은 퍼멀로이합금을 원하는 조성으로 용해한 후 수분사기(water atomizer)에서 고속의 물에 의해 분말을 직접 제조하는 방법으로 분말제조과정에서 물과의 접촉에 의해 표면이 산화된 상태이므로 수소분위기에서 환원 열처리를 실시한다. 상기 방법은 용융금속이 고속으로 분사되는 물(water jet)에 의해 금속분말이 직접 제조되므로 물과 필연적으로 접촉하는 제조 특성상 분말내에 다량의 산화물이 혼입되어 이에 따라 얻어지는 분말의 자기적 특성은 상기 주조-파쇄법에 의해 제조된 분말에 비하여 떨어지는 단점이 있다.On the other hand, the water spray method is a method in which the permalloy alloy is dissolved in a desired composition, and then the powder is directly manufactured by high-speed water in a water atomizer. Therefore, the surface is oxidized by contact with water in the powder manufacturing process. Reduction heat treatment is performed at. Since the metal powder is directly manufactured by a water jet in which molten metal is injected at a high speed, a large amount of oxide is incorporated into the powder due to the manufacturing characteristics inevitably in contact with water, and thus the magnetic properties of the powder obtained are -There is a disadvantage in comparison with the powder produced by the shredding method.

따라서, 본 발명은 상기한 종래방법과는 달리 분말의 성분편차 및 산화물이 거의 존재하지 않아 자기적 특성이 우수한 퍼멀로이합금분말을 용이하게 제조할 수 있는 새로운 방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a new method which can easily prepare a permalloy alloy powder having excellent magnetic properties since there are almost no component deviations and oxides of the powder unlike the conventional method described above.

제1도는 본 발명방법에 부합되는 퍼멀로이합금분말의 제조장치를 개략적으로 도시한 구성도1 is a configuration diagram schematically showing an apparatus for producing permalloy alloy powder in accordance with the method of the present invention.

본 발명은 마그네트 코아용 퍼멀로이합금분말을 제조하는 방법에 있어서,The present invention provides a method for producing a permalloy alloy powder for magnet cores,

원하는 성분의 퍼멀로이합금에 황 또는 인을 첨가하고 이를 용해하는 단계;Adding sulfur or phosphorus to the permalloy alloy of the desired component and dissolving it;

상기 용융금속을 불활성분위기하에서 직경이 6-20mm인 노즐을 통해 압력 500-2400PSI의 분사가스로 상기 노즐로부터 2-5m 떨어진 기판상에 분무하여 박판을 연속적으로 제조하는 단계; 및Continuously producing a thin plate by spraying the molten metal on a substrate 2-5 m away from the nozzle with an injection gas of pressure 500-2400 PSI through a nozzle having a diameter of 20-20 mm under an inert atmosphere; And

상기 박판을 10-100㎛ 범위의 평균입도를 갖는 분말로 분쇄하는 단계; 를 포함하여 구성되는 청정성이 우수한 퍼멀로이합금분말의 제조방법에 관한 것이다.Grinding the thin plate into powder having an average particle size in the range of 10-100 μm; It relates to a method for producing a permalloy alloy powder excellent in cleanliness comprising a.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 가스분무적층법을 이용하여 파쇄하기 쉬운 형태의 퍼멀로이합금 박판을 제조하는 공정과 이를 분쇄하여 분말로 제조하는 공정으로 구성된다. 제1도는 본 발명에 따른 제조방법에 부합되는 장치를 개략적으로 도시한 것으로, 제1도를 통해 본 발명의 제조방법을 설명하면 다음과 같다.The present invention is composed of a process for producing a permalloy alloy sheet of a form that is easy to be broken using a gas spray lamination method and a process of pulverizing the powder. FIG. 1 schematically shows an apparatus conforming to the manufacturing method according to the present invention. The manufacturing method of the present invention will be described with reference to FIG.

제1도에 나타난 장치를 통해, 먼저, 용해로(1)에서 원하는 합금성분을 조절하고 이를 용해하여 용금금속(2)을 만든다. 통상 용해는 1750-1800℃ 의 온도범위에서 이루어진다. 이때, 본 발명에 부합되는 합금은 통상의 퍼멀로이합금이면 가능하며, 바람직하게는 Fe: 15-18wt%, Mo: 1.5-5.5wt%, 및 잔부 Ni 로 조성되는 것이다.Through the apparatus shown in FIG. 1, first, the desired alloy component in the melting furnace 1 is adjusted and dissolved to form the molten metal 2. Dissolution usually takes place in the temperature range of 1750-1800 ° C. At this time, the alloy according to the present invention can be a conventional permalloy alloy, preferably Fe: 15-18wt%, Mo: 1.5-5.5wt%, and the balance Ni.

그리고, 상기 용융금속(2)에 황이나 인과 같은 입계취화원소를 첨가하여 용해시키면 용융금속이 분무적층과정에서 형성되는 박판에서 상기 원소들이 입계에 석출되어 후속되는 분쇄과정에서 용이하게 분말로 제조될 수 있는 잇점이 있다. 첨가되는 입계원소의 양은 약 0.01-0.05중량% 정도가 바람직하다.And, by adding and dissolving grain boundary embrittlement elements such as sulfur or phosphorus in the molten metal (2), the molten metal is precipitated at the grain boundary in the thin plate formed during the spray lamination process, and is easily prepared into powder in the subsequent grinding process. There is an advantage to this. The amount of grain boundary added is preferably about 0.01-0.05% by weight.

상기와 같이 용해된 금속(2)은 외부가스공급원(3)에서 공급되는 불활성 가스와 함께 분사노즐(4)을 통해 분무챔버(5)내에서 고속으로 분사되어 가스제트와 충돌하여 액적(liquid droplet)으로 분무되며, 액적들은 챔버(5)내에서 비행하는 동안 응고가 진행되면서 고액상태에 있을 때 벨트콘베이어(6)와 같은 기판(substrate)과 충돌하여 기판상에서 완전히 응고가 종료되어 박판(7)이 얻어진다. 상기 챔버(5)는 분무되는 용용금속이 외부의 산소에 의해 산화되는 것을 방지하기 위해 외부가스공급원(3)을 통해 질소, 알곤 또는 헬륨 등의 가스가 공급되어 불활성분위기를 이루고 있다.The molten metal 2 is sprayed at high speed in the spray chamber 5 through the injection nozzle 4 together with the inert gas supplied from the external gas supply source 3 to collide with the gas jet to form liquid droplets. Droplets are collided during flight in the chamber 5 and collide with a substrate such as a belt conveyor 6 when the liquid is in a solid state, so that solidification is completely terminated on the substrate. Is obtained. The chamber 5 forms an inert atmosphere by supplying a gas such as nitrogen, argon or helium through the external gas supply source 3 in order to prevent the molten metal sprayed from being oxidized by external oxygen.

상기 분사시 용융금속이 기판에 적층되어 박판(6)으로 제조되기 위해서는 분사노즐의 직경이 6-20mm의 범위가 바람직하고, 또한 분사노즐과 제조되는 기판과의 거리가 2-5m 범위가 되도록 함이 바람직하다. 보다 바람직하게는 최소한의 박판 이송및 후속되는 분쇄과정에서의 용이한 분쇄를 위해서 상기 박판의 두께를 1-5mm의 범위로 하는 것이다.When the molten metal is laminated on the substrate to produce the thin plate 6, the diameter of the injection nozzle is preferably in the range of 6-20 mm, and the distance between the injection nozzle and the substrate to be manufactured is in the range of 2-5 m. This is preferred. More preferably, the thickness of the thin plate is in the range of 1-5 mm for the minimum thin plate transfer and easy grinding in the subsequent grinding process.

이와같이 연속적으로 제조되는 박판은 벨트콘베이어(7)의 일측 끝단에서 분리블레이드(parting blade)(8)에 의해 분리된 다음, 분쇄하기 용이하도록 공기 등에 의해 급랭스테이지(stage)(9)에서 급랭된 후, 취화된 박판은 지지롤(10)을 통과하고, 이후 죠크러셔(jaw crusher)(11)에서 조분쇄되며, 조분쇄된 분말은 다시 볼밀(ball mill)(12)을 거치면서 미분쇄된 분말로 얻어지게 되는 것이다. 이때 제조되는 분말은 종래의 주조-파쇄법에 의해 제조되는 분말에 비해 분쇄가 용이함은 물론이지만 시브(sieve)(13)에서도 입도선별이 보다 용이하다. 본 발명에서 얻어지는 분말의 평균입도 크기가 대체로 10-100㎛의 범위로 되어 마그네트코아용 합금분말로 적합하다. 특히, 본 발명에 따르면 용융금속이 매우 작은 크기의 액적으로 분무된 후 기판상에서 최종적으로 응고되기 때문에 분말내의 성분이 편석되지 않는 특징이 있다. 또한 제조되는 분말은 다량의 물과 접촉되어 분말표면에 산화물이 존재하여 자기적 특성이 저하되는 종래의 수분사법에 의해 얻어진 분말에 비해 분무적층공정이 모두 불활성분위기에서 이루어지기 때문에 산화물이 거의 존재하지 않고 청정도가 매우 우수하여 자기적 특성도 크게 향상된다.The thin plates thus manufactured are separated by a parting blade 8 at one end of the belt conveyor 7 and then quenched in a quench stage 9 by air or the like for easy grinding. , The embrittled thin plate passes through the support roll 10, and then coarsely pulverized in a jaw crusher 11, and the coarsely pulverized powder is again pulverized while passing through a ball mill 12. To be obtained. At this time, the powder produced is easier to grind than the powder produced by the conventional casting-crushing method, but sieve (sieve) 13 is also easier to select the particle size. The average particle size of the powder obtained in the present invention is generally in the range of 10-100 µm, and is suitable as an alloy powder for magnet cores. In particular, according to the present invention, since the molten metal is finally solidified on the substrate after being sprayed with droplets of a very small size, the components in the powder are not segregated. In addition, the powders produced are almost free of oxides because the spray deposition process is performed in an inert atmosphere, compared to the powder obtained by the conventional water spraying method, in which the powders are in contact with a large amount of water and oxides are present on the surface of the powders. Cleanliness is very good and the magnetic properties are greatly improved.

상술한 바와 같이, 본 발명은 가스분무적층과정을 통해 먼저 박판을 제조하고, 상기 박판을 통상의 방법으로 분쇄하므로써, 종래의 주조-파쇄법에 비하여 분쇄가 용이할 뿐만아니라 종래의 수분사법에 의해 얻어진 분말에 비해 산화물이 거의 존재하지 않아 청정성이 매우 높은 퍼멀로이합금분말이 얻어지며, 이러한 퍼멀로이합금분말은 자기적 특성이 우수하여 마그네트코아로 매우 유용한 효과가 있다.As described above, in the present invention, the thin plate is first manufactured through a gas spray lamination process, and the thin plate is pulverized by a conventional method, which is not only easier to grind than the conventional casting-crushing method but also by a conventional water spray method. Compared with the obtained powder, since there is little oxide, a very high cleanliness of permalloy alloy powder is obtained, and such permalloy alloy powder has excellent magnetic properties and has a very useful effect as a magnet core.

Claims (5)

마그네트 코아용 퍼멀로이합금분말을 제조하는 방법에 있어서,In the method for producing a permalloy alloy powder for magnet core, 원하는 성분의 퍼멀로이합금에 황 또는 인을 첨가하고 이를 용해하는 단계;Adding sulfur or phosphorus to the permalloy alloy of the desired component and dissolving it; 상기 용융금속을 불활성분위기하에서 직경이 6-20mm인 노즐을 통해 압력 500-2400PSI의 분사가스로 상기 노즐로부터 2-5m 떨어진 기판상에 분무하여 박판을 연속적으로 제조하는 단계; 및Continuously producing a thin plate by spraying the molten metal on a substrate 2-5 m away from the nozzle with an injection gas of pressure 500-2400 PSI through a nozzle having a diameter of 20-20 mm under an inert atmosphere; And 상기 박판을 10-100㎛ 범위의 평균입도를 갖는 분말로 분쇄하는 단계; 를 포함하여 구성됨을 특징으로 하는 자기적 특성이 우수한 퍼멀로이합금분말의 제조방법Grinding the thin plate into powder having an average particle size in the range of 10-100 μm; Method for producing a permalloy alloy powder having excellent magnetic properties, characterized in that it comprises a 제1항에 있어서, 상기 합금성분은 Fe: 15-18wt%, Mo: 1.5-5.5wt%, 및 잔부 Ni 및 기타 불가피한 불순물을 포함하여 조성됨을 특징으로 하는 제조방법The method of claim 1, wherein the alloying component is composed of Fe: 15-18 wt%, Mo: 1.5-5.5 wt%, and balance Ni and other unavoidable impurities. 제1항에 있어서, 상기 용해는 1750-1800℃ 에서 이루어짐을 특징으로 하는 제조방법The method according to claim 1, wherein the dissolution is performed at 1750-1800 ° C. 제1항에 있어서, 상기 인 또는 황의 첨가량이 0.01-0.05wt% 임을 특징으로 하는 제조방법The method of claim 1, wherein the amount of phosphorus or sulfur added is 0.01-0.05 wt%. 제1항 내지 제4항중 어느 한 항에 있어서, 상기 박판의 두께는 1-5mm의 범위임을 특징으로 하는 제조방법The method according to any one of claims 1 to 4, wherein the thickness of the thin plate is in the range of 1-5 mm.
KR1019960033253A 1996-08-09 1996-08-09 Method for producing sendust alloy powder KR100201602B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960033253A KR100201602B1 (en) 1996-08-09 1996-08-09 Method for producing sendust alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960033253A KR100201602B1 (en) 1996-08-09 1996-08-09 Method for producing sendust alloy powder

Publications (2)

Publication Number Publication Date
KR19980014320A KR19980014320A (en) 1998-05-25
KR100201602B1 true KR100201602B1 (en) 1999-06-15

Family

ID=19469238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960033253A KR100201602B1 (en) 1996-08-09 1996-08-09 Method for producing sendust alloy powder

Country Status (1)

Country Link
KR (1) KR100201602B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041221A1 (en) * 2003-10-24 2005-05-06 Chang Sung Corporation Unit block used in manufacturing core with soft magnetic metal powder, and method for manufacturing core with high current dc bias characteristics using the unit block

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041221A1 (en) * 2003-10-24 2005-05-06 Chang Sung Corporation Unit block used in manufacturing core with soft magnetic metal powder, and method for manufacturing core with high current dc bias characteristics using the unit block

Also Published As

Publication number Publication date
KR19980014320A (en) 1998-05-25

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
EP1187147B1 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JP6372441B2 (en) Method for producing water atomized metal powder
JP6372442B2 (en) Method for producing water atomized metal powder
KR101646986B1 (en) Apparatus and method for producing amorphous alloy powder
KR100201602B1 (en) Method for producing sendust alloy powder
KR100201603B1 (en) Method for producing permalloy powder
KR100400989B1 (en) Method for the preparation of a sintered body of high-hardness high-chromium cast iron
JP2006283100A (en) Method for cutting rare earth alloy powder molding
JP2612419B2 (en) Method for producing powder for MPP core and method for producing MPP core using the powder
KR101683439B1 (en) Permanent Magnet Powder containing Rare Earth Element and a Method thereof
TWI496174B (en) Ndfeb magnet and method for producing the same
JPH01205402A (en) Manufacture of rare earth fe-b magnetic powder
US6524399B1 (en) Magnetic material
KR20200065570A (en) Fe-cu alloy powder, method for manufacturing of the same, and sintered product using the same
CN108962527A (en) A kind of magnetic material and preparation method thereof
KR100484545B1 (en) Fabrication method of soft magnetic powders by two stage cooling melt drag process
KR100533360B1 (en) Magnetic alloy manufacture method to use strip casting process
CN115831522A (en) Amorphous soft magnetic alloy powder and preparation method and application thereof
US7195661B2 (en) Magnetic material
JPH0268904A (en) Manufacture of alloy powder for rare earth-fe-b system bond magnet
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JP2000357605A (en) MANUFACTURE METHOD FOR Sm2Fe17
KR100320156B1 (en) Powder for sendust core, method for preparing the same and method for fabricating sendust core using the same
JP2011143455A (en) Method and device of manufacturing magnet material

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050224

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee