JPS58147007A - Preparation of permanent magnet - Google Patents

Preparation of permanent magnet

Info

Publication number
JPS58147007A
JPS58147007A JP57029667A JP2966782A JPS58147007A JP S58147007 A JPS58147007 A JP S58147007A JP 57029667 A JP57029667 A JP 57029667A JP 2966782 A JP2966782 A JP 2966782A JP S58147007 A JPS58147007 A JP S58147007A
Authority
JP
Japan
Prior art keywords
powder
matrix
permanent magnet
magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57029667A
Other languages
Japanese (ja)
Other versions
JPS6322604B2 (en
Inventor
Chitoshi Hagi
萩 千敏
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57029667A priority Critical patent/JPS58147007A/en
Publication of JPS58147007A publication Critical patent/JPS58147007A/en
Publication of JPS6322604B2 publication Critical patent/JPS6322604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain uniform magnetic powder for a matrix magnet of, particularly, Cu substituted R2Co17 series by a method wherein fused metal containing certain percentages of a rear earth element R and transition metals (Co, Fe) is rapidly cooled to reduce the metal to powder, which is then subjected to ageing. CONSTITUTION:Use is made of M which contains one or more than one kind of R, Si, Ti, Zr, Hf, Nb, Ta, V which contains one or more than one kind of rare earth element, or mainly Sm, Cs. Then an alloy R (Co1-x-y-zFexCuyMz)A having a composition within the range of 0.01<=x<=0.4, 0.02<=y<=0.25, 0.001<=z<=0.15, 5.5<=A<=8.5 is fused and jetted out of a nozzle onto a thermal-conductive roll rotating at high speed in the atmosphere of N2 and then rapidly cooled at 10<3> deg.C/ sec or over so that the powder obtained in a heat-fused state may have the normal temperature. The magnetic powder is subjected to ageing in predetermined conditions and particle size adjustment, mixed with a binder, arranged in the magnetic field, and formed into a matrix magnet. This method enables the mass production of uniform magnetic powder for a permanent magnet of Cu substituted R2Co17 series effective as a matrix magnet.

Description

【発明の詳細な説明】 本発明は希土類元素Rと遷移金属(Co 、 Fg )
の金属間化合物マトリックス永久磁石、%に希土鵡成分
の少ないCtb置換盤R2Co 1y系マトリック諷磁
石に関するものである。マトリックス磁石はRCo5(
’/、)系、R2Co 17 (’47 )系をとわす
、m結磁石と比較して密度が低く、得られる磁気特性も
低い。
[Detailed Description of the Invention] The present invention provides rare earth elements R and transition metals (Co, Fg).
The present invention relates to an intermetallic compound matrix permanent magnet, and a Ctb substitution disk R2Co 1y matrix permanent magnet with a low rare earth component. The matrix magnet is RCo5 (
'/, ) system, R2Co 17 ('47) system, and m-crystalline magnets have a lower density and lower magnetic properties.

しかしながら磁場中成形後、焼結、加工等を必要とせず
成形体をそのまま製品化できるところに%黴がある。さ
らに成形の際には肘用成形、圧縮成形、押出し成形等の
武術により複雑な形状のものを安価に製造することが可
能であり、焼結磁石とは異なった広い応用が期待できる
。特KCb置換温R2Co 17系マトリックス磁石は
希土類コバルトマトリックス磁石の中でも高特性が得ら
れており、組成的にも希土類成分が少ないことから従来
より希土類コバルトマトリックス磁石の欠点であった酸
化に対する安定性も比較的良好である◎又C°語置換@
 R2Co1y系永久磁石はその保磁力機講が微細析出
物による磁壁の″Fanning ’であることからl
lIcの磁粉の粒度依存性がきわめて小さい。この様な
費質はマトリックス磁石として非常に有利である。
However, after molding in a magnetic field, the molded body can be made into a product as it is without the need for sintering, processing, etc., which is a problem. Furthermore, during molding, it is possible to manufacture complex shapes at low cost by using martial arts such as elbow molding, compression molding, and extrusion molding, and a wide range of applications can be expected, unlike sintered magnets. The special KCb substitution temperature R2Co 17 matrix magnet has high characteristics among rare earth cobalt matrix magnets, and because it has a low composition of rare earth components, it also has stability against oxidation, which has traditionally been a drawback of rare earth cobalt matrix magnets. Relatively good ◎Also C° word replacement @
The coercive force mechanism of R2Co1y permanent magnets is ``Fanning'' of the domain wall due to fine precipitates.
The particle size dependence of lIc magnetic powder is extremely small. Such cost quality is very advantageous as a matrix magnet.

し、かしながら従来C語置換llR2C01y系マトリ
ックス磁石の磁粉の製造方法はまず溶解によりインゴッ
トを作成し1次にインゴットの均質化、溶体化を行なう
ため高温(1100〜12oot)K数時間保持した後
急冷(ailあるいはAデガス気流中)しているO急冷
したインゴットは次に保磁力を得る目的で時効処理を施
こし粉砕後絞度調整しマトリックス磁粉としている。以
上の様にインゴットの溶体化ケ必要としその°後急冷を
するため、均質な磁粉な得るにはインゴットの大きさ、
量に限度があり大量のインゴットを処理するには均質な
磁粉−bz得られない欠点が生じていた。本発明はCμ
置換mR2Co17系マトリックス磁石の上記欠点を解
消するために成されたもので合金溶湯を超急″冷するこ
とにより粉末を得てさらに時効処理を施こした均質な磁
粉な得るデ・久磁石の製造方法を提供することを目的と
するものである。すなわち、各元素を溶解し。
However, in the conventional method for producing magnetic powder for C-substituted llR2C01y matrix magnets, an ingot was first prepared by melting, and then the ingot was held at a high temperature (1100 to 1200 K) for several hours in order to homogenize and solutionize it. The O quenched ingot, which has been post-quenched (in ail or A degas airflow), is then subjected to aging treatment for the purpose of obtaining coercive force, and after pulverization, the degree of restriction is adjusted to form matrix magnetic powder. As mentioned above, the ingot needs to be solutionized and then rapidly cooled, so in order to obtain homogeneous magnetic powder, the size of the ingot is
There is a limit to the amount of ingots, and there is a drawback that homogeneous magnetic powder-bz cannot be obtained when processing a large amount of ingots. The present invention is based on Cμ
This method was developed to solve the above-mentioned drawbacks of substituted mR2Co17-based matrix magnets.The production of homogeneous magnets made by obtaining powder by ultra-rapidly cooling a molten alloy and then subjecting it to an aging treatment. The purpose is to provide a method for dissolving each element.

合金化した溶湯なノズルから高速回転するロール面上に
噴出させ均質な超急冷粉末を得る方法でこの粉末が超急
冷により高温での溶体化状態を常温に持ちきたしている
わけで、マ) IJラックス石の磁粉として使用するK
はこの粉末に時効処理を加えれば良いということである
。なお超急冷を行なう場合1合金溶湯および粉末が酸化
しないように真空あるいは不活性ガス雰囲気で行なう必
要があり、ロールの材質としては熱伝導性の良い(:u
 、 Fgおよびそれらの合金が適当である。又超急冷
の速度は合金溶湯の噴出温度および圧力、ロールの一転
速度等の条件により変化し、速い方が望ましいが、10
5υ/sec 以上で有効である。その他アモルファス
金属粉末作製方法であるガスアトマイズ法、セントリフ
、−ガル・アトマイズ法、双ロール法、メルト・スピニ
ング法等の応用も可能であり、急冷てるのに効果のある
非金属元素B、P、C,Si等を添加することもある。
By jetting the alloyed molten metal from a nozzle onto the roll surface rotating at high speed to obtain a homogeneous super-quenched powder, this powder is super-quenched to bring the solution state at high temperature to room temperature. K used as magnetic powder for lux stones
This means that it is sufficient to add an aging treatment to this powder. In addition, when performing ultra-rapid cooling, it is necessary to perform it in a vacuum or an inert gas atmosphere to prevent the molten alloy 1 and powder from oxidizing, and the roll material has good thermal conductivity (:u
, Fg and their alloys are suitable. Also, the speed of super-quenching varies depending on conditions such as the jetting temperature and pressure of the molten alloy, and the rotation speed of the roll, and the faster the speed, the better.
Effective at 5υ/sec or more. Other amorphous metal powder production methods such as gas atomization method, centrifuge, -gal atomization method, twin roll method, melt spinning method, etc. can also be applied, and nonmetallic elements B, P, and C, which are effective for rapid cooling, can also be applied. , Si, etc. may be added.

この粉末は以下時効処理1粒度調整、)(インダ  ′
−との混合、磁場中成形、磁場中射出成形、磁場中押出
し成形等の同化の工sKよって本発明のマトリックス磁
石は製造される。時効処理を工合金組成により多様に変
化する。一般には多段時効、連続時効等が用いられるが
組成によっては一段の時効でも充分である。RとしてS
w+を用いる場合多段時効、連続時効の開始温度は80
0〜900υが選ばれS篇の一部なC−で置換してい(
と時効開始温度は低下する。時効は400υまでで充分
であり、通常400υまでの多段時効ないし連続冷却が
用いられる。粒度調整にりいては本合金系の場合広い範
囲の粒度の粉末の利用が可能であり超急冷粉末粒度は浴
湯噴出ガスの温度、圧力やロール回転速度により変化し
、上記条件を選ぶことによりそのままの粒度でも使用可
能である。しかし充噴率をあげるため粒度の異なる粉末
を混合して用いることが一般的であるため粉砕はディス
ク・ミル、ボールミ・ル、振動ミル等により行なわれる
。成形体作成は粒度調整した粉末を磁場中成形後バイン
ダーを含浸する方法およびあらかじめバインダーと粉末
を混合しておき、ai磁場中成形後バインダー固化する
方法、とがある。
This powder is subjected to the following aging treatment to adjust the particle size.
The matrix magnet of the present invention is manufactured by assimilation processes such as mixing with -, molding in a magnetic field, injection molding in a magnetic field, and extrusion molding in a magnetic field. The aging treatment varies depending on the alloy composition. Generally, multi-stage aging, continuous aging, etc. are used, but depending on the composition, even one-stage aging is sufficient. R as S
When using w+, the starting temperature for multi-stage aging and continuous aging is 80
0 to 900υ are selected and replaced with C-, which is part of the S section (
and the aging start temperature decreases. Aging up to 400 υ is sufficient, and multi-stage aging or continuous cooling up to 400 υ is usually used. Regarding particle size adjustment, in the case of this alloy system, it is possible to use powder with a wide range of particle sizes. It can also be used in its original particle size. However, in order to increase the injection rate, it is common to use a mixture of powders with different particle sizes, so pulverization is carried out using a disk mill, ball mill, vibrating mill, etc. There are two ways to create a molded body: a method in which particle size-adjusted powder is molded in a magnetic field and then impregnated with a binder, and a method in which the binder and powder are mixed in advance and solidified with the binder after molding in an AI magnetic field.

本発明に用いられる合金は、R(Co)φy−z”、g
cu、 M2)Aである。ここでRはS肩、C,な中心
とした希土類金属のIll又は2種以上の組みあわせで
あり1MはSi 、Ti 、Zr 、Hf、!1k :
Ta 、Vの1種又。
The alloy used in the present invention is R(Co)φy-z", g
cu, M2) A. Here, R is Ill or a combination of two or more rare earth metals centered on S shoulder, C, and 1M is Si, Ti, Zr, Hf,! 1k:
One of Ta and V.

は2種以上の組みあわせである。又Q、01≦X≦r:
L40α02≦y≦0.25 、0.001≦2≦α1
5 、45≦A≦8.5  である。F−置換量Sが0
.01以下の場合飽和磁化の増加が期待できず、 0.
40以上の場合は飽和磁化は増加するものの、・角型、
 IECが著しく低下する。Cm置換量yが0.02°
以下の場合充分な析出硬化が進行せず、tflcが得ら
れない。Q、25以上の場合飽和磁化が減少してしまう
。添加元素量2がα001以下の場合、rflcの改善
が見られず、[115以上の場合飽和磁化の減少が著し
い。Aの値をa5から8.5に限定した理由は55以下
にすると飽和磁化が小さくなりすぎ、充分な特性が得ら
れない。又8.5以上にした場合溶解インゴットにデン
ドライトが出やすくこの異相によってzilcが低下す
る。
is a combination of two or more types. Also, Q, 01≦X≦r:
L40α02≦y≦0.25, 0.001≦2≦α1
5, 45≦A≦8.5. F-substitution amount S is 0
.. If it is less than 0.01, no increase in saturation magnetization can be expected;
If the value is 40 or more, the saturation magnetization increases;
IEC decreases significantly. Cm substitution amount y is 0.02°
In the following cases, sufficient precipitation hardening does not proceed and tflc cannot be obtained. When Q is 25 or more, the saturation magnetization decreases. When the additive element amount 2 is less than α001, no improvement in rflc is observed, and when it is more than 115, the saturation magnetization decreases significantly. The reason for limiting the value of A from a5 to 8.5 is that if it is less than 55, the saturation magnetization becomes too small and sufficient characteristics cannot be obtained. Further, when the value is 8.5 or more, dendrites are likely to appear in the melted ingot, and this foreign phase causes a decrease in zilc.

本発明におけるバインダーとしてはエポキシ樹脂が使用
可能であるが、特に熱安定性の丁ぐれたジアミド類およ
びフェニール復脂を硬化材として用いたエポキシ樹脂が
好適である。さらにエチレン酢酸ビニール共重合体、変
性ポクオレフィン系樹脂、低融点ポクアミド樹脂等も使
用できる。
Epoxy resins can be used as the binder in the present invention, and epoxy resins using diamides with poor thermal stability and phenyl resin as hardening agents are particularly suitable. Furthermore, ethylene vinyl acetate copolymers, modified pokuolefin resins, low melting point pokuamide resins, etc. can also be used.

以下実施例によって本発明′を説明する。The present invention' will be explained below with reference to Examples.

〈実施例1〉 S” (”’ (L688 ” (12C”tzlEf
 (LO12)7.0 な、る合金fkAr雰囲気にお
いて高周波加熱によりルツボ中で溶融し1450ででこ
の溶融液な下のノズルから噴出させ双ロール型のアトマ
イズ法にて急冷粉末を作製した。ロール回転数は双ロー
ルが6000丁、plm 、急冷ロールが5000rJ
ulとした。ここで得られた急冷粉末を次に時効処理を
行なった。用いたパターンは800℃×21r保持後1
3υ/vainの速度で400 tまで徐冷し、 40
0tX8Ar’保持するというものである。
<Example 1>S"("' (L688 "(12C"tzlEf
(LO12) 7.0 An alloy fk was melted in a crucible by high-frequency heating in an Ar atmosphere, and the molten liquid was jetted out from a lower nozzle at 1450 °C to produce a rapidly solidified powder using a twin-roll atomization method. Roll rotation speed is 6000 rolls for twin rolls, plm, and 5000 rJ for quenching rolls.
It was set as ul. The rapidly cooled powder obtained here was then subjected to aging treatment. The pattern used was 1 after holding at 800℃ x 21r.
Slowly cool down to 400 t at a rate of 3υ/vain,
0tX8Ar' is held.

時効処理の終了した粉末の粒度はディスク・ミルにより
粒度な150μ以下に調−後エチレン酢酸ビニールアル
コール共重合体と混疎し縦磁場中で圧縮成形した。金型
の温度は100vである。成形圧10# は10t0−であり、配向磁場は8  である。得1れ
た成形体の磁気特性を表IK示す。なお比較。
The particle size of the aged powder was adjusted to 150 μm or less using a disk mill, mixed with ethylene acetate vinyl alcohol copolymer, and compression molded in a vertical magnetic field. The temperature of the mold is 100v. The molding pressure 10# is 10t0-, and the orientation magnetic field is 8. Table IK shows the magnetic properties of the molded article obtained. Further comparison.

のため従来法で作製した同一組成のマトリックス磁石の
磁気特性を示す。(粉末粒度、便用した樹脂、成形圧力
、配向磁場強度の条件は同一である。)表   1 これら磁石を100υX 2000”’保持後、磁束の
減少率(優1ots )を調べた。試料形状は101’
X7’(7’=−2)である。
The magnetic properties of matrix magnets with the same composition prepared using the conventional method are shown below. (The conditions of powder particle size, used resin, molding pressure, and orientation magnetic field strength were the same.) Table 1 After holding these magnets at 100 υ x 2000'', the rate of decrease in magnetic flux (excellent 1 ots) was investigated.The sample shape was 101'
X7'(7'=-2).

本発明法では5.’ % s従来法では9.5優であっ
た。
In the method of the present invention, 5. ' % sThe conventional method was 9.5 excellent.

本発明法による磁粉が均質であるため% tazzが改
善されていることがわかる@ 〈実施例2〉 実施例1と同様の方法により表2に示す6種の合金急冷
粉末を作製し、続いて750v^850 t Xl 0
hrl 保持後1υ/ntinで400υまで徐冷した
。これらの処理を施こした粉末の粒度な調整し■125
〜250μと■〈44μの2サイズ準備した。サイズ@
75%、サイズ■25鳴およびシランカップリング材I
Wt@を混合し、20XD−の磁場中で横磁場成形した
。成形体に耐熱性レジンlSOXレジン(日立商品名)
を真空中含浸した。使用した合金および得られた磁気特
性を表2に示す。
It can be seen that the % tazz is improved because the magnetic powder produced by the method of the present invention is homogeneous @ <Example 2> Six types of rapidly solidified alloy powders shown in Table 2 were produced by the same method as in Example 1, and then 750v^850t Xl 0
After maintaining the hrl, it was gradually cooled down to 400 υ at 1 υ/ntin. Adjusting the particle size of the powder subjected to these treatments ■125
Two sizes were prepared: ~250μ and ■〈44μ. size@
75%, size ■25 ring and silane coupling material I
Wt@ was mixed and subjected to transverse magnetic field molding in a 20XD- magnetic field. Heat-resistant resin lSOX resin (Hitachi product name) for the molded body
was impregnated in vacuo. Table 2 shows the alloys used and the magnetic properties obtained.

表  2 手続補正書(自発) 1□、15126.1,14.1 特許庁長官殿 事件の表示 昭和57年特許願第 19667  号発明の名称 乗入磁石の@遣方法 補正をする者 名 #、I運】 日立金属株式会社 代表畠河野 典夫 代   理   人 居  所   東京都千代田区丸の内2丁目1番2号E
l :を金に株式会社内11m  tK京 mm54−
4a4補jEの対象 補正の内容 1  #1ill書の「発明の詳細な説明」の媚の記載
を下記の通り訂正する◎ 紀 (1)明覇書第g頁1g1z行の「武術」を「技術」に
訂正する。
Table 2 Procedural amendment (voluntary) 1□, 15126.1, 14.1 Indication of the case of the Commissioner of the Patent Office 1982 Patent Application No. 19667 Name of the invention Name of the person making the amendment #, I-luck] Hitachi Metals Co., Ltd. Representative Norio Hatakekono Address Address: 2-1-2 E, Marunouchi, Chiyoda-ku, Tokyo
l: 11m inside the company tKkyo mm54-
4a4 Supplement jE Targeted Amendment Contents 1 #1 The description of flattery in the “Detailed Description of the Invention” in Book 1ill is corrected as follows. ” is corrected.

(2)同書同jjJllllQ行の「保磁刃側1を「保
磁力機構」に訂正する。
(2) Correct "coercive blade side 1" in line jjJllllQ of the same book to "coercive force mechanism".

煤 (s)同書115jilll13行の「光噴率」ヲ「充
噸率」に訂正する〇 (4)同書1s6貞第9行のrOnJを「Ou」に訂正
する0 (6)回書同貞第10行の「析出硬化」を「析出硬化」
に訂正する。
Soot (s) Correct "light ejection rate" in line 115jill 13 of the same book to "charge rate" 〇 (4) Correct rOnJ in line 9 of 1s 6 of the same book to "Ou" 0 (6) Circular Dosei No. Change “precipitation hardening” in line 10 to “precipitation hardening”
Correct.

以  上that's all

Claims (1)

【特許請求の範囲】 … R(Co1−x−y−zFgscbyMz)、 (
ここでRは5FII。 C−を中心とした希土類金属の。1種又は2種以夷の組
合わせであり、MはSi m Ti 、 Zr 、 U
 、 Nb 。 Ta−Vの1種又は2種以上の組合わせ、0.01≦X
≦α40.α02≦y≦0.25 、 Q、ool≦2
≦(115゜5.5≦A≦8.5)で示される組成を有
する合金溶湯を超急冷することにより粉末を作製し次に
時効処理を施こすことを特徴とする永久磁石め製造方法
。 (21%許請求の範囲第1項記載の製造方法において、
上記粉末をバインダーと混合し、磁場中で配向および圧
縮成形したことを特徴とする永久磁石の製造方法。゛ r51 41許請求の範囲第1項記載の製造方法におい
て、上記粉末を磁場中配向および圧縮成形した後、バイ
ンダーを含浸することを特徴とする永久磁石の製造方法
[Claims] ... R(Co1-x-y-zFgscbyMz), (
Here R is 5FII. Rare earth metals centered on C-. One type or a combination of two or more types, M is Si m Ti, Zr, U
, Nb. One type or combination of two or more types of Ta-V, 0.01≦X
≦α40. α02≦y≦0.25, Q, ool≦2
A method for producing a permanent magnet, characterized in that powder is produced by ultra-quenching a molten alloy having a composition of ≦(115°5.5≦A≦8.5), and then subjected to aging treatment. (21% In the manufacturing method described in claim 1,
A method for producing a permanent magnet, characterized in that the above powder is mixed with a binder, oriented and compression molded in a magnetic field.゛r51 41. The method of manufacturing a permanent magnet according to claim 1, wherein the powder is oriented in a magnetic field and compression molded, and then impregnated with a binder.
JP57029667A 1982-02-25 1982-02-25 Preparation of permanent magnet Granted JPS58147007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57029667A JPS58147007A (en) 1982-02-25 1982-02-25 Preparation of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57029667A JPS58147007A (en) 1982-02-25 1982-02-25 Preparation of permanent magnet

Publications (2)

Publication Number Publication Date
JPS58147007A true JPS58147007A (en) 1983-09-01
JPS6322604B2 JPS6322604B2 (en) 1988-05-12

Family

ID=12282459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57029667A Granted JPS58147007A (en) 1982-02-25 1982-02-25 Preparation of permanent magnet

Country Status (1)

Country Link
JP (1) JPS58147007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254708A (en) * 1984-05-31 1985-12-16 Daido Steel Co Ltd Manufacture of permanent magnet
JPS61139637A (en) * 1984-12-12 1986-06-26 Hitachi Metals Ltd Target for sputter and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254708A (en) * 1984-05-31 1985-12-16 Daido Steel Co Ltd Manufacture of permanent magnet
JPS61139637A (en) * 1984-12-12 1986-06-26 Hitachi Metals Ltd Target for sputter and its manufacture

Also Published As

Publication number Publication date
JPS6322604B2 (en) 1988-05-12

Similar Documents

Publication Publication Date Title
JP5191620B2 (en) Rare earth permanent magnet alloy manufacturing method
US7691323B2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JPH0553853B2 (en)
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
JPWO2003012802A1 (en) Manufacturing method of nanocomposite magnet by atomizing method
JPH0447024B2 (en)
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JPS63109101A (en) Production of nd-b-fe alloy powder for magnet
CN1257516C (en) Magnetic alloy powder for permanent magnet and mfg. method thereof
JPS58147007A (en) Preparation of permanent magnet
JP2002161302A (en) Alloyed magnetic powder for permanent magnet and manufacturing method for the same
US6524399B1 (en) Magnetic material
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP2001244107A (en) Iron-based alloy permanent magnet powder and its manufacturing method
US7195661B2 (en) Magnetic material
JPS6353241A (en) Rare earth-iron-type high-efficiency permanent magnet material foil and its production
JPH05135925A (en) Manufacture of rare earth magnet material
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPS62290807A (en) Production of rare earth containing magnet alloy
JPH01300503A (en) Manufacture of permanent magnet powder
JP2001223103A (en) Fine crystal type iron-base alloy magnet and method of manufacturing the same
JPH11269502A (en) Manganese-aluminum-carbon alloy powder, production of anisotropic manganese-aluminum-carbon magnet using this powder, and anisotropic manganese-aluminum-carbon magnet
JPS6110961B2 (en)
JPS6347906A (en) Manufacture of rare earth permanent magnet powder
JPH1154307A (en) Manufacture of magnet alloy thin strip and resin binding bonded magnet