JPH0268857A - Manufacture of lead acid battery - Google Patents

Manufacture of lead acid battery

Info

Publication number
JPH0268857A
JPH0268857A JP63220921A JP22092188A JPH0268857A JP H0268857 A JPH0268857 A JP H0268857A JP 63220921 A JP63220921 A JP 63220921A JP 22092188 A JP22092188 A JP 22092188A JP H0268857 A JPH0268857 A JP H0268857A
Authority
JP
Japan
Prior art keywords
zrp
positive electrode
phosphate
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63220921A
Other languages
Japanese (ja)
Inventor
Koichi Yamasaka
山坂 孝一
Miyuki Nishimura
西村 美由紀
Seiji Kamiharashi
征治 上原子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63220921A priority Critical patent/JPH0268857A/en
Publication of JPH0268857A publication Critical patent/JPH0268857A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent capacity reduction due to high density by adding zirconium phosphate(ZrP) to high density positive electrode active material. CONSTITUTION:Paste used in a lead acid battery is prepared from lead powder to which zirconium phosphate zirconium having the stratified crystal structure, and after the paste is formed in dilute sulfuric acid containing derivative phosphate shown by the chemical formula (R: organic derivate), the paste is immersed in phosphate to increase the volume of vacancy in positive electrode active material. Namely, zirconium phosphate is a solid acid characterized by the stratified structure shown by Zr(HPO4)2.2H2O and ZrP and is the dielectric material having the superior acid proof characteristics. When ZrP is heated in water solution containing derivative phosphate shown by the formula I, the distance between layers is increased reversibly according to the size of the organic derivative R so that ZrP is expanded according to the size of the R inside the positive electrode active material. Then when a positive electrode plate is immersed in phosphate liquid and heated, the expanded ZrP organic derivative is returned to the ZrP so that the distance between the layers is reduced. Thus the reduction of capacity may be prevented due to increased density of the positive electrode active material may be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の製造法の改良に関するもので、放電
容量の大きい長寿命の鉛蓄電池を提供することを目的と
している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in the manufacturing method of a lead-acid battery, and an object thereof is to provide a lead-acid battery with a large discharge capacity and a long life.

従来の技術 鉛蓄電池は、他の蓄電池系に比較し、性能とコストのバ
ランスが良くとれた電池であるため、電子機器の電源や
電動車輌の電源として広く用いられている。
BACKGROUND OF THE INVENTION Lead-acid batteries have a better balance between performance and cost than other storage battery systems, and are therefore widely used as power sources for electronic devices and electric vehicles.

これらの電源に要求される重点性能は、高容量化と長寿
命化の2点であるが、この2性能は相反する関係にある
ことが、一般的に知られており、この2性能の最適点で
電池設計がなされている。
The two key performances required of these power supplies are high capacity and long life, but it is generally known that these two performances are in a contradictory relationship, and the optimum performance of these two performances is generally known. The battery design has been made in several points.

長寿命化に重点を置いた設計では、正極活物質の充填密
度を高くした電池が用いられているが、これは、mI述
のように、容量性能を犠牲にした設計である。容量低下
の原因は、活物質が高密度化されているため多孔度が低
下し、電解液中の硫酸イオンの拡散が阻害されるためで
あると考えられる。
Batteries with a high packing density of positive electrode active material are used in designs that emphasize longevity, but as mentioned above, this is a design that sacrifices capacity performance. The reason for the decrease in capacity is considered to be that the porosity of the active material decreases due to its high density, which inhibits the diffusion of sulfate ions in the electrolyte.

これまで、このような課題を解決するために、異方性黒
鉛を正極ペースト中に添加することが、開示されている
(例えば特開昭60−89071号公報)。
In order to solve these problems, it has been disclosed to add anisotropic graphite to a positive electrode paste (for example, Japanese Patent Laid-Open No. 60-89071).

これは、層状構造を有する正極ペースト中の異方性黒鉛
が硫酸中で陽極酸化され、黒鉛層間化合物が生成して膨
張し正極活物質中の空孔体積を増大させるため、硫酸イ
オンの拡散性が向上し、容量低下が防止できる。
This is because the anisotropic graphite in the positive electrode paste, which has a layered structure, is anodized in sulfuric acid and graphite intercalation compounds are generated and expand, increasing the pore volume in the positive electrode active material. capacity is improved, and a decrease in capacity can be prevented.

しかしながら異方性黒鉛は放置中、あるいは充室中に酸
化される。これに伴ない電解液中の水と反応し、二酸化
炭素が発生し、電解液の減少が促進される。特に電解液
量の少ない密閉型鉛蓄電池においては、電解液量れの原
因となっていた。
However, anisotropic graphite is oxidized during storage or during filling. Accompanying this, it reacts with water in the electrolyte, generates carbon dioxide, and accelerates the reduction of the electrolyte. Particularly in sealed lead-acid batteries where the amount of electrolyte is small, this causes the amount of electrolyte to run out.

発明が解決しようとする課題 長寿命化に重点を置いた高密度正極活物質の容量低下を
防止するために添加された異方性黒鉛は、放置あるいは
充電中に酸化され、電解液中の水と反応し減液の原因と
なっていた。また、電解液量の少ない密閉型鉛蓄電池で
は、電解液が個れ、電池性能の早期劣化をひき起こして
いた。
Problems to be Solved by the Invention Anisotropic graphite, which is added to prevent capacity reduction in high-density cathode active materials with an emphasis on extending their lifespan, oxidizes during storage or charging, causing water in the electrolyte to oxidize. This caused a reaction and caused fluid loss. In addition, in sealed lead-acid batteries with a small amount of electrolyte, the electrolyte occupies, causing early deterioration of battery performance.

本発明は、この電解液減少を防止することを目的とする
ものである。
The present invention aims to prevent this decrease in electrolyte solution.

課題を解決するための手段 上記の課題を解決するだめに、本発明では、異方性黒鉛
の代わりに層状結晶構造を有するリン酸ジルコニウムを
添加した鉛粉を用いて鉛蓄電池用(R:有機誘導体)で
示されるリン酸誘導体を含む希硫酸中で化成した後に、
さらにリン酸中に浸漬することによって、正極活物質中
の空孔体積を増大させたものである。
Means for Solving the Problems In order to solve the above problems, in the present invention, lead powder for lead-acid batteries (R: organic After chemical conversion in dilute sulfuric acid containing the phosphoric acid derivative shown in
Furthermore, the pore volume in the positive electrode active material was increased by immersing it in phosphoric acid.

作用 リン酸ジルコニウムはZr(HPO4)2 ・2H20
(以下、ZrPと略す。) の組成式で示されるところ
の層状構造を有する固体酸であシ、耐酸性に優れた絶縁
物質である。その結晶構造はZrO2八面体より成る面
の上下に、リン酸基四面体(O5POH)が頂点の酸素
原子を共有して結合した構造を有して導体)で示される
リン酸誘導体の水溶液中で46°Cに加熱すると、層間
リン酸基と溶液中のリン酸基が次式の反応に示すように
、交換反応を起こす。
Action Zirconium phosphate is Zr(HPO4)2 2H20
(hereinafter abbreviated as ZrP) is a solid acid having a layered structure as shown by the composition formula, and is an insulating material with excellent acid resistance. Its crystal structure has a structure in which phosphate group tetrahedrons (O5POH) are bonded above and below a plane consisting of ZrO2 octahedrons by covalently bonding the oxygen atom at the apex. When heated to 46°C, an exchange reaction occurs between the interlayer phosphoric acid groups and the phosphoric acid groups in the solution as shown in the following reaction.

Zr(HPO4)(RPJ)・xH2O+HsPOi+
(2x)H2O・・・・・・・・・・・・(1) 有機誘導体Hの大きさによシ、層間距離は可逆的に拡大
する。このZrP有機誘導体のモデル図を第2図に示し
た。なお、Rの種類と眉間距離の一例を次表に示した。
Zr(HPO4)(RPJ)・xH2O+HsPOi+
(2x) H2O (1) Depending on the size of the organic derivative H, the interlayer distance reversibly increases. A model diagram of this ZrP organic derivative is shown in FIG. An example of the type of R and the distance between the eyebrows is shown in the following table.

ZrP  を添加しだ鉛粉を用いて゛鉛蓄電池用ペスト
を調整し、リン酸誘導体(R−PO3H2)を含む希硫
酸中で化成すると、ペーストの化成反応と同時に上記(
1)式によるZrPの層間反応が右に進行するため、正
極活物質内部でZrPは、Rの大きさに応じた膨張状態
となる。次にリン酸液中に正極板を浸漬、加熱すると膨
張状態のZrP有機誘導体は、反応1が左に進行するた
め元のZrPにもどり、層間距離が12.3人まで収縮
する。このZrP 結晶粒子の膨張、収縮によって正極
活物質の空孔体積は増大し、前述した理由によって正極
活物質の高密度化による容量低下が防止できることとな
る。
When a paste for lead-acid batteries is prepared using lead powder to which ZrP is added and chemically formed in dilute sulfuric acid containing a phosphoric acid derivative (R-PO3H2), the chemical formation reaction of the paste and the above (
Since the interlayer reaction of ZrP according to the formula 1) proceeds to the right, ZrP enters an expanded state according to the size of R inside the positive electrode active material. Next, when the positive electrode plate is immersed in a phosphoric acid solution and heated, the expanded ZrP organic derivative returns to the original ZrP because reaction 1 proceeds to the left, and the interlayer distance shrinks to 12.3. This expansion and contraction of the ZrP crystal particles increases the pore volume of the positive electrode active material, and for the reasons described above, it is possible to prevent a decrease in capacity due to increased density of the positive electrode active material.

また、ZrPは酸に対して優れた安定性を示すため放置
または充電中に分解することはない。従って電解液の減
少が促進されることはなく、異方性黒鉛添加の場合に生
じた課題は解消される。
Furthermore, since ZrP exhibits excellent stability against acids, it does not decompose during storage or charging. Therefore, the reduction of the electrolyte is not accelerated, and the problem that occurred when adding anisotropic graphite is solved.

実施例 本発明による一実施例について説明する。Example An embodiment according to the present invention will be described.

pbo約76%、残部pbからなる通常の鉛粉を用いて
常法によシ調整した高密度正極ペーストの練合末期時に
、ZrPを所定量添加した。用いたZrPは、層間距離
12.3人を有する結晶粉末である。またZrP結晶粒
子は板状形状をしておシ、本実施例に用いたものは、結
晶層方向に約4μmの厚さを有した結晶であシ、約50
μm径のふるいを通過したものである。このペーストを
厚さ3.6絹の鉛合金格子に充填し、所定の熟成、乾燥
工程によシ、未化成正極板とした。これをガラスマント
より成るセパレータを介して、負極板と組み合わせ、約
20kg/d−の圧力をかけた。次に3゜多硫酸の中に
フェニルホスホンa (C6Hs−POsH2)を5・
チ添加した電解液中に極板群を浸漬し、45°Cで化成
を行なった。化成終了後、極板群を6チリン酸中に45
°C15時間浸漬した、その後40%硫酸で十分洗浄し
た後、電槽内に極板群を移した。このようにして、正極
容量規制で10Ah容量(ZrP無添加時)の密閉型鉛
蓄電池を試作し、ZrPの添加量と容量の変化を第3図
に示した。図中、縦軸はZrP 無添加の場合の容量に
対する容量割合、横軸は鉛粉I Kg当りに添加したZ
rP の添加割合である。このように容量は添加量とと
もに増大し、0.5wt% 添加でほぼ最大20チの容
量アップが認められ、それ以上の添加しても横ばい状態
であった。
A predetermined amount of ZrP was added at the final stage of kneading a high-density positive electrode paste prepared by a conventional method using ordinary lead powder consisting of about 76% PBO and the balance PB. The ZrP used is a crystalline powder with an interlayer distance of 12.3. The ZrP crystal particles have a plate-like shape, and the ones used in this example are crystals with a thickness of about 4 μm in the direction of the crystal layer, and about 50 μm.
It passed through a sieve with a diameter of μm. This paste was filled into a lead alloy grid having a thickness of 3.6 silk, and subjected to a predetermined aging and drying process to form an unformed positive electrode plate. This was combined with a negative electrode plate through a separator made of a glass mantle, and a pressure of about 20 kg/d- was applied. Next, add 5.
The electrode plate group was immersed in an electrolytic solution to which H was added, and chemical formation was performed at 45°C. After completion of chemical formation, the electrode plate group was placed in 6-thiphosphoric acid for 45 minutes.
After being immersed at °C for 15 hours and thoroughly washed with 40% sulfuric acid, the electrode plate group was transferred into a battery container. In this way, a sealed lead-acid battery with a capacity of 10 Ah (without ZrP) was fabricated as a prototype with positive electrode capacity regulations, and the changes in capacity versus the amount of ZrP added are shown in FIG. In the figure, the vertical axis is the capacity ratio to the capacity when no ZrP is added, and the horizontal axis is the Z added per kg of lead powder.
This is the addition ratio of rP. As described above, the capacity increased with the amount added, and when 0.5 wt% was added, the capacity increased by approximately 20 inches at the maximum, and remained unchanged even when more than that amount was added.

この密閉型鉛蓄電池を100サイクル充放電をくり返し
た後に正極中に残存するZrP を定量すると、はぼ1
00%のZrPが残存していた。また、減液量に関して
は無添加のものと同等であった。
After 100 cycles of charging and discharging this sealed lead-acid battery, the amount of ZrP remaining in the positive electrode was quantified.
00% ZrP remained. Moreover, the amount of liquid reduction was equivalent to that without additives.

第4図は、密閉型鉛蓄電池のサイクル寿命を示したもの
である。図中、縦軸は容量チ、横軸はサイクル数である
。無添加の電池の初期容量を1o。
FIG. 4 shows the cycle life of a sealed lead acid battery. In the figure, the vertical axis is the capacity, and the horizontal axis is the number of cycles. The initial capacity of a battery without additives is 1o.

%とじて、0.20の定電流で80%の放電と、0.2
0で100%の充電をくり返し68〜毎に0.2Cの定
電流で容量測定(終止電圧1.70 V/cell )
したものである。ZrPをo、5wt%添加したものと
無添加のものを比較すると、ZrPをo、a wt%添
加することにより、寿命が延びていることがわかる。
%, 80% discharge at constant current of 0.20 and 0.2
Repeat 100% charging at 0 and measure the capacity with a constant current of 0.2C every 68 minutes (final voltage 1.70 V/cell)
This is what I did. Comparing the product with and without the addition of ZrP at o.5wt%, it can be seen that the life is extended by adding o.a wt% of ZrP.

発明の効果 以上のように本発明によれば、高密度正極活物質中にZ
rPを添加することによって、高密度に起因する容量低
下を防止することができ、また、密閉化鉛蓄電池に適用
した場合、電解液間れによる早期容量低下をなくすこと
ができるという効果かえられる。
Effects of the Invention As described above, according to the present invention, Z is present in the high-density positive electrode active material.
By adding rP, it is possible to prevent a capacity decrease due to high density, and when applied to a sealed lead-acid battery, it has the effect of eliminating an early capacity decrease due to electrolyte gaps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZrP  の層状構造を示すモデル図、第2図
はZrP有機誘導体のモデル図、第3図はZrPの添加
量と容量の増加率の関係を示した図、第4図はZrP 
o、s Wtチ添加と無添加の密閉型鉛蓄電池のサイク
ル寿命を示す図である。 1図 第2図 hジθ  H2O hグθ 23A H2O1−120
Figure 1 is a model diagram showing the layered structure of ZrP, Figure 2 is a model diagram of ZrP organic derivatives, Figure 3 is a diagram showing the relationship between the amount of ZrP added and the rate of increase in capacity, and Figure 4 is a diagram of ZrP.
1 is a diagram showing the cycle life of sealed lead-acid batteries with and without addition of o, s Wt. 1 Figure 2 hji θ H2O hg θ 23A H2O1-120

Claims (1)

【特許請求の範囲】 層状結晶構造を有するリン酸ジルコニウムを添加した鉛
粉を用いて調整した鉛蓄電池用ペーストを、一般式▲数
式、化学式、表等があります▼(但しRは有機誘導体) で示されるリン酸誘導体を含む希硫酸中で化成後、リン
酸中に浸漬した正極を用いることを特徴とする鉛蓄電池
の製造法。
[Claims] A paste for lead-acid batteries prepared using lead powder added with zirconium phosphate having a layered crystal structure is prepared by the general formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (where R is an organic derivative). 1. A method for producing a lead-acid battery, comprising using a positive electrode immersed in phosphoric acid after chemical conversion in dilute sulfuric acid containing the shown phosphoric acid derivative.
JP63220921A 1988-09-02 1988-09-02 Manufacture of lead acid battery Pending JPH0268857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220921A JPH0268857A (en) 1988-09-02 1988-09-02 Manufacture of lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220921A JPH0268857A (en) 1988-09-02 1988-09-02 Manufacture of lead acid battery

Publications (1)

Publication Number Publication Date
JPH0268857A true JPH0268857A (en) 1990-03-08

Family

ID=16758633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220921A Pending JPH0268857A (en) 1988-09-02 1988-09-02 Manufacture of lead acid battery

Country Status (1)

Country Link
JP (1) JPH0268857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141066A (en) * 2000-10-31 2002-05-17 Shin Kobe Electric Mach Co Ltd Control valve type lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141066A (en) * 2000-10-31 2002-05-17 Shin Kobe Electric Mach Co Ltd Control valve type lead acid battery
JP4635325B2 (en) * 2000-10-31 2011-02-23 新神戸電機株式会社 Control valve type lead acid battery

Similar Documents

Publication Publication Date Title
EP0352115B1 (en) Lead-acid battery
EP0809311A1 (en) Negative electrode plate for lead storage battery containing graphite powder
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
US3899349A (en) Carbon dioxide curing of plates for lead-acid batteries
JPH0268857A (en) Manufacture of lead acid battery
JP4066509B2 (en) Manufacturing method of lead acid battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JPS6357913B2 (en)
JPH0414760A (en) Lead-acid accumulator
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JPS6028171A (en) Manufacture of paste type pole plate for lead storage battery
JP2002343359A (en) Sealed type lead storage battery
JPH0410181B2 (en)
JPH02106875A (en) Lead-acid battery
KR19990062513A (en) Battery
JP2002343413A (en) Seal type lead-acid battery
JPH08180857A (en) Electrode plate for lead-acid battery