JPH0266426A - Measuring instrument for scattered light - Google Patents

Measuring instrument for scattered light

Info

Publication number
JPH0266426A
JPH0266426A JP63218956A JP21895688A JPH0266426A JP H0266426 A JPH0266426 A JP H0266426A JP 63218956 A JP63218956 A JP 63218956A JP 21895688 A JP21895688 A JP 21895688A JP H0266426 A JPH0266426 A JP H0266426A
Authority
JP
Japan
Prior art keywords
photosensors
scattered light
measuring
photosensor
dark current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63218956A
Other languages
Japanese (ja)
Other versions
JPH0616008B2 (en
Inventor
Takeshi Niwa
丹羽 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63218956A priority Critical patent/JPH0616008B2/en
Publication of JPH0266426A publication Critical patent/JPH0266426A/en
Publication of JPH0616008B2 publication Critical patent/JPH0616008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging

Abstract

PURPOSE:To remove both the influences of dark current and sensitivity change by arranging a dark current measuring photosensor whose photodetecting faces are shielded near photosensors for measuring the intensity of scattered light and correcting the outputs of partial photosensors by the output ratios of amplifiers with sensitivity compensation and amplifiers without sensitivity compensation. CONSTITUTION:The dark current measuring photosensors Pb1, Pb2 whose photodetecting faces are shielded are arranged near plural scattered light measuring photosensors P1 to Pn, Ps arranged corresponding to scattered angle of scattered light and the outputs of photosensors Pb1, Pb2 are corrected by mutual photodetecting area ratios and the corrected values are subtracted from the outputs of the photosensors P1 to Pn, Ps. For instance, the output of the photosensor Pn is inputted to the amplifier 10 with sensitivity compensation and the amplifier 9 without sensitivity compensation, the ratio of the outputs is calculated and the outputs of the other photosensors P1, to Pn-1 are corrected by the output ratio. Consequently, the influences of dark current due to the scattered light measuring photosensors and sensitivity change can be removed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば分散状態の粒子等に光を照射すること
によって生ずる散乱光を測定するための装置に関し、例
えばレーザ光回折/散乱式粒度分布測定装置等への応用
が可能な散乱光測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a device for measuring scattered light generated by, for example, irradiating light onto particles in a dispersed state. This invention relates to a scattered light measuring device that can be applied to distribution measuring devices and the like.

〈従来の技術〉 レーザ光回折/散乱式粒度分布測定装置においては、媒
液中で分散飛しょう状態の試料粒子にレーザ光を照射し
、試料粒子によって回折もしくは散乱された光の強度分
布を測定することにより、フランホーファ回折もしくは
ミー散乱理論に基づいて試料粒子の粒度分布を算出する
<Prior art> In a laser beam diffraction/scattering type particle size distribution measuring device, a laser beam is irradiated onto sample particles in a dispersed state in a medium, and the intensity distribution of the light diffracted or scattered by the sample particles is measured. By doing so, the particle size distribution of the sample particles is calculated based on Franhofer diffraction or Mie scattering theory.

この種の測定装置では、通常、媒液中に試料粒子を分散
させた懸濁液を測定セル内に入れて光を照射するが、こ
の照射光の光軸上に、測定セルを経た光を集光するため
のレンズを設け、そのレンズの焦点位置には互いに半径
の異なるリング状のフォトセンサを同心状に複数個設け
た、いわゆるリングデテクタが配設され、これによって
前方散乱光(回折光)の強度分布(散乱角と強度の関係
)を求めている。
In this type of measurement device, a suspension of sample particles dispersed in a medium is usually placed in a measurement cell and irradiated with light. A lens for condensing light is provided, and a so-called ring detector is provided at the focal point of the lens, in which a plurality of ring-shaped photosensors with different radii are arranged concentrically. ) is the intensity distribution (relationship between scattering angle and intensity).

ところで、この種の粒度分布測定装置においては、測定
セル内に純粋′な媒液のみ入れ、これにレーザ光を照射
したときの散乱光強度をブランク値(ベース値)として
、試料懸濁液にレーザ光を照射したときの散乱光強度か
らこのブランク値を減算して真の散乱光強度としている
ので、ブランク値測定時と試料懸濁液による散乱光測定
時において温度差が無ければ、上述の減算によってフォ
トセンサの暗電流値は消去される。また、リングデテク
タは一般に共通のウェハ上に同一のプロセスで多数のリ
ング状フォトセンサを形成して製造されるので、このリ
ングデテクタ上の各センサの感度特性は相互にほぼ同一
と考えられ、相対光強度から粒度分布を求める方式の原
理上、各フォトセンサの感度変化は粒度分布測定結果に
対してあまり影響を及ぼさない。
By the way, in this type of particle size distribution measuring device, only a pure medium is placed in the measurement cell, and the intensity of the scattered light when the medium is irradiated with a laser beam is used as a blank value (base value), and the intensity of the scattered light is used as a blank value (base value). This blank value is subtracted from the scattered light intensity when the laser beam is irradiated to obtain the true scattered light intensity, so if there is no temperature difference between the blank value measurement and the scattered light measurement using the sample suspension, the above-mentioned The dark current value of the photosensor is erased by subtraction. In addition, since ring detectors are generally manufactured by forming a large number of ring-shaped photosensors on a common wafer in the same process, the sensitivity characteristics of each sensor on this ring detector are considered to be almost the same, and the relative Due to the principle of the method of determining particle size distribution from light intensity, changes in the sensitivity of each photosensor do not have much influence on the particle size distribution measurement results.

〈発明が解決しようとする課題〉 しかし、温度変化の大きい場所で装置を使用する場合に
は、ブランク値の測定を頻繁に行わないと暗電流の影響
が出てしまい、また、リングデテクタ以外に、測定セル
の側方に90°等の大角度散乱光測定用フォトセンサを
配設する場合には、両者の温度変動に差があれば、これ
による暗電流の変動の違いおよび相対的な感度変化が粒
度分布測定結果に直接影響を及ぼし、測定誤差となって
しまう。特に、大角度散乱光測定用センサは測定セルの
直近の側方に設置されるので、室温と温度差のある懸濁
液を測定する場合には温度の影響を受けやすい。
<Problems to be Solved by the Invention> However, when using the device in a place with large temperature changes, the effect of dark current will occur unless the blank value is measured frequently. , when installing a photosensor for measuring scattered light at a large angle such as 90° to the side of the measurement cell, if there is a difference in temperature fluctuation between the two, the difference in dark current fluctuation due to this and the relative sensitivity Changes directly affect the particle size distribution measurement results, resulting in measurement errors. In particular, since the sensor for measuring large-angle scattered light is installed on the side immediately adjacent to the measurement cell, it is susceptible to the influence of temperature when measuring a suspension that has a temperature difference from room temperature.

散乱光は微弱であり、半導体フォトセンサを使用した場
合には暗電流の影響は大きく、また、この暗電流は温度
に対して指数関数的に変化するので、信号処理系の電気
回路のみでの補正は困難であるとともに、感度変化の補
正については、フォトセンサ数が多数に及ぶので、それ
ぞれの増幅器に感度補償機能を付加するのは高価となっ
てしまう。
Scattered light is weak, and when a semiconductor photosensor is used, the influence of dark current is large.Also, this dark current changes exponentially with temperature, so it is difficult to use only the electrical circuit of the signal processing system. Correction is difficult, and since there are a large number of photosensors to correct sensitivity changes, it would be expensive to add a sensitivity compensation function to each amplifier.

本発明はこのような点に鑑みてなされたもので、わずか
な部品の付加によって、散乱光測定用フォトセンサにお
ける暗電流と感度変化による影響を除去することのでき
る散乱光測定装置の提供を目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide a scattered light measuring device that can eliminate the effects of dark current and sensitivity changes in a photosensor for measuring scattered light by adding only a few parts. It is said that

〈課題を解決するための手段〉 上記の目的を達成するための構成を、実施例に対応する
第1図、第2図を参照しつつ説明すると、本発明は、散
乱光の散乱角に対応して配置される複数の散乱光測定用
フォトセンサP、〜P、、(およびPs)の近傍に、受
光面が遮蔽された暗電流測定用フォトセンサPbI(お
よびPb□)を設け、各散乱光測定用フォトセンサP1
〜P、、(Ps)の出力から、暗電流測定用フォトセン
サPb+(Pb□)の出力を、互いの受光面積比で補正
して減算するとともに、各散乱光測定用フォトセンサの
うち同一ウェハ上に形成されたフォトセンサ群P1〜P
7についてはそのうちの一部のフォトセンサ(例えばP
fi)の出力を感度補償付きおよび感度補償無しの各増
幅器10および9にそれぞれ入力してその双方の増幅a
9,1Oの出力比を算出し、他のフォトセンサP1〜P
7−1の出力は感度補償無しの増幅器9・・・9に入力
してその増幅器出力を上記の出力比で補正するよう構成
したことによって、特徴づけられる。
<Means for Solving the Problems> A configuration for achieving the above object will be described with reference to FIGS. 1 and 2 corresponding to the embodiment. A dark current measurement photosensor PbI (and Pb Photo sensor P1 for light measurement
From the outputs of ~P, , (Ps), the outputs of the dark current measurement photosensors Pb+(Pb□) are corrected and subtracted by the mutual light-receiving area ratio, and among the scattered light measurement photosensors, the outputs of the same wafer are subtracted. Photo sensor groups P1 to P formed above
Regarding 7, some photosensors (for example, P
fi) is input to each of the amplifiers 10 and 9 with sensitivity compensation and without sensitivity compensation, respectively, and amplifies both of them.
9. Calculate the output ratio of 1O, and calculate the output ratio of the other photosensors P1 to P.
The output of 7-1 is characterized by being input to amplifiers 9 . . . 9 without sensitivity compensation, and the amplifier outputs are corrected by the above output ratio.

く作用〉 フォトセンサP1〜P、(Ps)の出力iは、基準温度
との温度差をΔtとすると、 i=入射光強度×係数×(1+温度係数×Δt)+暗電
流 と考えられる。
Effects> The output i of the photosensors P1 to P, (Ps) is considered to be: i=incident light intensity×coefficient×(1+temperature coefficient×Δt)+dark current, where Δt is the temperature difference from the reference temperature.

ここで、暗電流の大きさは、前述したように温度変化に
対して指数関数的に変化するものの、同一タイプのフォ
トセンサでは同一のΔtであれば受光面積に比例する。
Here, although the magnitude of the dark current changes exponentially with temperature change as described above, it is proportional to the light-receiving area for the same type of photosensor at the same Δt.

フォトセンサP1〜P、(あるいはPs)の近傍に受光
面が遮蔽された暗電流測定用フォトセンサPb+(ある
いはPb□)を設けて、フォトセンサP、〜p−(ps
)の出力11〜i n(t s)から、Pい(pb□)
の出力ib+(ib□)を互いの面積比で補正した後に
減算することで温度変化があっても暗電流による影響は
キャンセルされる。
A dark current measurement photosensor Pb+ (or Pb□) whose light-receiving surface is shielded is provided near the photosensors P1 to P, (or Ps), and the photosensors P, ~p-(ps
), from the output 11~i n(t s), P(pb□)
By subtracting the output ib+(ib□) after correcting it by their area ratio, the influence of dark current is canceled even if there is a temperature change.

また、感度変化に関しては、同一のフエハ上に形成され
たフォトセンサ群P1〜P、、については同一の特性を
持ち、かつ、温度もほぼ同一と考えられるので、例えば
フォトセンサP、1の出力について感度補償付きの増幅
器10と感度補償無しの増幅器9の双方に入力してその
出力比を算出し、他のフォトセンサP I ” P n
−1の出力をこの出力比で補正することにより等価的に
感度の補正が可能である。
Regarding sensitivity changes, it is considered that the photosensor groups P1 to P, formed on the same wafer have the same characteristics and are also approximately the same in temperature, so for example, the output of photosensors P and 1 is considered to be the same. is input to both the amplifier 10 with sensitivity compensation and the amplifier 9 without sensitivity compensation to calculate the output ratio, and calculate the output ratio of the other photosensors P I ” P n
By correcting the -1 output using this output ratio, the sensitivity can be equivalently corrected.

〈実施例〉 第1図は本発明実施例の構成を示す平面図で、第2図は
そのリングデテクタ5の受光面の正面図である。この実
施例ではレーザ光回折/散乱式の粒度分布測定装置に本
発明を適用した例を示している。
<Embodiment> FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG. 2 is a front view of the light-receiving surface of the ring detector 5. This example shows an example in which the present invention is applied to a laser beam diffraction/scattering type particle size distribution measuring apparatus.

試料粒子Wは媒液中に均一に分散された状態で測定セル
1内に流される。
The sample particles W are flowed into the measurement cell 1 while being uniformly dispersed in the medium.

測定セル1の後方には、レーザ光源2とビームエキスパ
ンダ3からなる照射光光学系が配設されており、測定セ
ル1内の試料粒子Wに所定断面を有する平行レーザビー
ムを照射することができる。
An irradiation optical system consisting of a laser light source 2 and a beam expander 3 is disposed behind the measurement cell 1, and is capable of irradiating sample particles W in the measurement cell 1 with a parallel laser beam having a predetermined cross section. can.

測定セル1の前方の照射光光軸上には、試料粒子Wによ
る散乱光を集光するためのフーリエ変換レンズ4が配設
されているとともに、その焦点位置にはリングデテクタ
5が配設されている。
A Fourier transform lens 4 is disposed on the optical axis of the irradiation light in front of the measurement cell 1 for condensing the light scattered by the sample particles W, and a ring detector 5 is disposed at its focal position. ing.

リングデテクタ5は、第2図に示すように、共通のウェ
ハ51上に、それぞれ照射光の光軸を中心として互いに
異なる半径のn個のリング状の半導体フォトセンサP+
、Pz・・・P、、、が形成されてなっており、各フォ
トセンサP1〜P、lの出力はそれぞれ独立的に採り出
せるよう構成されている。そして、このリングデテクタ
8には、同じウェハ51上にP1〜P、lとは別に暗電
流測定用フォトセンサPblが形成されている。この暗
電流測定用フォトセンサP、は、ウェハ51上に各フォ
トセンサP。
As shown in FIG. 2, the ring detector 5 includes n ring-shaped semiconductor photosensors P+ each having a different radius around the optical axis of the irradiated light on a common wafer 51.
, Pz . In addition, in this ring detector 8, a photosensor Pbl for dark current measurement is formed on the same wafer 51, separately from P1 to P, l. Each photo sensor P for dark current measurement is mounted on the wafer 51.

〜P7と同一のプロセスで形成され、その受光面は遮蔽
板6によって外光から遮蔽されている。
~P7 is formed by the same process, and its light receiving surface is shielded from external light by a shielding plate 6.

測定セル1の側方には、側方(90” ”)散乱光測定
用フォトセンサP、が配設されているとともに、その直
近には、このフォトセンサP、と同一面積の受光面を持
つ全く同一のフォトセンサの受光面を遮蔽板で覆ってな
る暗電流測定用フォトセンサPb□が配設されている。
On the side of the measurement cell 1, a photosensor P for measuring side (90") scattered light is arranged, and in the immediate vicinity thereof, there is a light-receiving surface having the same area as this photosensor P. A dark current measuring photosensor Pb□, which is formed by covering the light-receiving surface of an identical photosensor with a shielding plate, is provided.

リングデテクタ5上の各フォトセンサP1〜P、lと暗
電流測定用フォトセンサPbl、および側方散乱光測定
用フォトセンサP、とその・直近の暗電流測定用フォト
センサPb2の出力は、それぞれ前置増幅器8・・・8
に入力されている。そして、リングデテクタ5上のフォ
トセンサP、−P、およびPblについては、フォトセ
ンサP7の出力17のみが前置増幅器8を介して感度補
償付きの増幅器10と感度補償無しの増幅器9の双方に
入力されており、他のフォトセンサP1〜Py+−1お
よびPいの出力il〜1+1−1およびib+は前置増
幅器8・・・8を介してそれぞれ感度補償無しの増幅器
9,9に入力されている。また、側方散乱光測定用フォ
トセンサP。
The outputs of each of the photosensors P1 to P, l on the ring detector 5, the dark current measurement photosensor Pbl, the side scattered light measurement photosensor P, and the nearest dark current measurement photosensor Pb2 are as follows. Preamplifier 8...8
has been entered. Regarding the photosensors P, -P, and Pbl on the ring detector 5, only the output 17 of the photosensor P7 is sent via the preamplifier 8 to both the amplifier 10 with sensitivity compensation and the amplifier 9 without sensitivity compensation. The outputs of the other photosensors P1 to Py+-1 and Py to il to 1+1-1 and ib+ are input to amplifiers 9 and 9 without sensitivity compensation via preamplifiers 8...8, respectively. ing. Also, a photosensor P for measuring side scattered light.

と暗電流測定用フォトセンサPbZの出力i3およびi
b□については、それぞれ前置増幅器8.8を経た後、
出力i3からibzを減じた信号が感度補償付きの増幅
器10に入力されている。
and the outputs i3 and i of the photosensor PbZ for dark current measurement
For b□, after passing through the preamplifier 8.8, respectively,
A signal obtained by subtracting ibz from the output i3 is input to the amplifier 10 with sensitivity compensation.

そして、全ての増幅器9・・・9および10.10の出
力はマルチプレクサ11を介して順次A−D変換器12
によってデジタル化された後、コンピュータ13に採り
込まれるよう構成されている。
Then, the outputs of all the amplifiers 9...9 and 10.10 are sequentially sent to the A-D converter 12 via the multiplexer 11.
After being digitized by the computer 13, it is configured to be imported into the computer 13.

コンピュータ13では、各増幅器9・・・9および10
.10からのデジタル変換データを採り込み、以下に示
す演算を施した後、それぞれ対応するフォトセンサP、
−P、およびP、による散乱光強度測定−データとして
、粒度分布の算出に供する。
In the computer 13, each amplifier 9...9 and 10
.. After taking in the digital conversion data from 10 and performing the calculations shown below, the corresponding photosensors P,
- Measurement of intensity of scattered light by P and P - used as data to calculate particle size distribution.

すなわち、コンピュータ13にはリングデテクタ5上の
フォトセンサp、−p、、および暗電流測定用フォトセ
ンサPblの各受光面の面積Δ1〜A7およびA bl
があらかじめ入力されており、各フォトセンサP、−P
、から感度補償無しの増幅器9・・・9を介して採り込
まれたデータをそれぞれd二(j=1〜n)とするとと
もに、フォトセンサPfiから感度補償付きの増幅器1
0を介して採り込まれたデータをD’r+とじ、暗電流
測定用フォトセンサPblから増幅器9を介して採り込
まれたデータをab+とすると、まず、 を算出する。次に、 を算出した後、j=1〜n−1について、D、=K −
d、           ・・・(4)を算出する。
That is, the computer 13 has the areas Δ1 to A7 and A bl of each light receiving surface of the photosensors p, -p on the ring detector 5 and the photosensor Pbl for dark current measurement.
is input in advance, and each photosensor P, -P
, through the amplifiers 9 without sensitivity compensation...
Let D'r+ be the data taken through 0, and ab+ be the data taken from the dark current measurement photosensor Pbl through the amplifier 9. First, calculate the following. Next, after calculating D,=K − for j=1 to n−1
d, ...(4) is calculated.

そして、D1〜DllをリングデテクタS上の各フォト
センサP1〜P、、による光強度測定データとして採用
する。
Then, D1 to Dll are employed as light intensity measurement data by each of the photosensors P1 to P on the ring detector S.

また、側方散乱光測定用フォトセンサP、の出力から暗
電流測定用フォトセンサPb2の出力を減じて感度補償
付き増幅器10を介して採り込まれたデータD、につい
ては、このり、をそのまま側方散乱光測定データとして
採用する。
In addition, regarding the data D obtained through the amplifier 10 with sensitivity compensation by subtracting the output of the photosensor Pb2 for measuring dark current from the output of the photosensor P for side scattered light measurement, this value is left unchanged. Adopted as side scattered light measurement data.

以上の本発明実施例によれば、リングデテクタ5上のフ
ォトセンサPL−P7と暗電流測定用フォトセンサPい
については、それぞれ同一のウェハ51上に同一のプロ
セスによって形成されたものであるから、それぞれが互
いにほぼ同等の特性を示し、また、互いの位置も接近し
ていることから、周囲温度の変化に際してもそれぞれの
温度もほぼ同一に変化すると見なしてよく、このことか
らフォトセンサPI−P、lおよびPblの暗電流はそ
れぞれの受光面の面積に比例すると考えてよい。したが
って(1)、 (21式によって各データから暗電流の
影啓分が除去され、また、(31,(4)式によってフ
ォトセンサP l”” P n−1からのデータは等価
的に感度補償されたものとなる。更に、側方散乱光測定
用フォトセンサP、の出力についても、その直近に置か
れた同一のフォトセンサからなる暗電流測定用フォトセ
ンサPb2の出力を滅じた後に感度補償付きの増幅器1
0で増幅するから、暗電流および感度変化の影響は完全
に除去されたものとなる。
According to the embodiment of the present invention described above, the photosensor PL-P7 on the ring detector 5 and the photosensor P for dark current measurement are formed on the same wafer 51 by the same process. , each exhibits almost the same characteristics as each other, and their positions are close to each other, so it can be assumed that the temperature of each changes almost the same even when the ambient temperature changes. From this, the photosensor PI- It may be considered that the dark currents of P, l, and Pbl are proportional to the areas of their respective light-receiving surfaces. Therefore, by equations (1) and (21, the influence of dark current is removed from each data, and by equations (31 and (4), the data from the photosensor P l"" P n-1 is equivalently Furthermore, the output of the side scattered light measurement photosensor P is also compensated for after the output of the dark current measurement photosensor Pb2, which is the same photosensor placed immediately next to it, is eliminated. Amplifier 1 with sensitivity compensation
Since the amplification is performed at 0, the effects of dark current and sensitivity changes are completely removed.

なお、感度補償付きの増幅器10は、一般に公知の高温
度係数を持つ抵抗器を使用して得られる増幅器である。
Note that the amplifier 10 with sensitivity compensation is an amplifier obtained using a generally known resistor having a high temperature coefficient.

また、以上の本発明実施例では、各フォトセンサの出力
を前置増幅器を介して増幅器に入力したが、フォトセン
サの出力を電流アンプに入力してもよいことは勿論であ
る。
Further, in the above-described embodiments of the present invention, the output of each photosensor is inputted to the amplifier via the preamplifier, but it goes without saying that the output of the photosensor may be inputted to the current amplifier.

〈発明の効果〉 以上説明したように、本発明によれば、散乱光測定用フ
ォトセンサに近接して暗電流測定用フォトセンサを1個
または数個設けるとともに、感度補償付きの増幅器を1
個または2個程度追加するだけで、暗電流および感度変
化のいずれの影響をも除去することができ、粒度分布測
定装置等への適用により、温度変化の激しい場所での測
定においてもブランク値の測定を顯繁に行なうことなく
正確な散乱光強度を得ることができ、また、高温もしく
は低温の試料でも誤差の少ない測定が可能となった。ま
た、同様な理由により、リングデテクタと側方散乱光測
定用フォトセンサ等の他の1個もしくは複数個のフォト
センサの組み合わせ測定においても、その信頼性が向上
する。
<Effects of the Invention> As described above, according to the present invention, one or more photosensors for dark current measurement are provided in the vicinity of the photosensor for measuring scattered light, and one amplifier with sensitivity compensation is provided.
By simply adding one or two pieces, it is possible to eliminate the effects of both dark current and sensitivity changes. By applying it to particle size distribution measuring equipment, it is possible to eliminate blank values even when measuring in places with rapid temperature changes. Accurate scattered light intensity can be obtained without repeated measurements, and measurements with few errors can be made even with samples at high or low temperatures. Furthermore, for the same reason, the reliability is also improved in a combined measurement using a ring detector and one or more other photosensors such as a photosensor for measuring side scattered light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成を示す平面図、第2図はそ
のリ ド・ 2・・ 5・・ 6.7・・ 8・・ 9・・ 10・・ PIS−Pfl、Ps・・ pbt・ pbz” ングデテクタ5の正面図である。 ・測定セル ・レーザ光源 ・リングデテクタ ・遮蔽板 ・前置増幅器 ・感度補償無しの増幅器 ・感度補償付きの増幅器 ・フォトセンサ ・暗電流測定用フォトセンサ
Fig. 1 is a plan view showing the configuration of an embodiment of the present invention, and Fig. 2 is a plan view showing the structure of the lid 2... 5... 6.7... 8... 9... 10... PIS-Pfl, Ps... pbt.・ It is a front view of the “pbz” ring detector 5. ・ Measurement cell ・ Laser light source ・ Ring detector ・ Shielding plate ・ Preamplifier ・ Amplifier without sensitivity compensation ・ Amplifier with sensitivity compensation ・ Photo sensor ・ Photo sensor for dark current measurement

Claims (1)

【特許請求の範囲】[Claims] 粒子等の物体に光を照射することによって生ずる散乱光
を測定するための装置において、各散乱角に対応して配
置される複数の散乱光強度測定用フォトセンサの近傍に
、受光面が遮蔽された暗電流測定用フォトセンサを設け
、上記各散乱光強度測定用フォトセンサの出力から、上
記暗電流測定用フォトセンサの出力を互いの受光面積比
で補正してして減算するとともに、上記各散乱光強度測
定用フォトセンサのうち、同一ウェハ上に形成されたフ
ォトセンサ群についてはそのうちの一部のフォトセンサ
の出力を感度補償付きおよび感度補償無しの各増幅器に
それぞれ入力してその双方の増幅器の出力比を算出し、
他のフォトセンサの出力は感度補償無しの増幅器に入力
してその増幅器出力を上記出力比で補正するよう構成し
たことを特徴とする、散乱光測定装置。
In a device for measuring scattered light generated by irradiating an object such as a particle with light, a light receiving surface is shielded near a plurality of photosensors for measuring the intensity of scattered light arranged corresponding to each scattering angle. A photosensor for measuring dark current is provided, and the output of the photosensor for measuring dark current is corrected and subtracted from the output of each photosensor for measuring scattered light intensity, and the output of each of the photosensors for measuring the intensity of scattered light is corrected and subtracted from the output of each of the photosensors for measuring scattered light intensity. Among the photosensors for measuring the intensity of scattered light, for a group of photosensors formed on the same wafer, the outputs of some of the photosensors are input to each amplifier with sensitivity compensation and without sensitivity compensation. Calculate the output ratio of the amplifier,
A scattered light measuring device characterized in that the outputs of the other photosensors are input to an amplifier without sensitivity compensation, and the output of the amplifier is corrected by the output ratio.
JP63218956A 1988-08-31 1988-08-31 Scattered light measuring device Expired - Lifetime JPH0616008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218956A JPH0616008B2 (en) 1988-08-31 1988-08-31 Scattered light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218956A JPH0616008B2 (en) 1988-08-31 1988-08-31 Scattered light measuring device

Publications (2)

Publication Number Publication Date
JPH0266426A true JPH0266426A (en) 1990-03-06
JPH0616008B2 JPH0616008B2 (en) 1994-03-02

Family

ID=16727975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218956A Expired - Lifetime JPH0616008B2 (en) 1988-08-31 1988-08-31 Scattered light measuring device

Country Status (1)

Country Link
JP (1) JPH0616008B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688308A1 (en) * 1992-03-04 1993-09-10 Cilas LASER GRANULOMETER.
JP2005279328A (en) * 2004-03-26 2005-10-13 Hamamatsu Photonics Kk Determination method for finely pulverizing condition, determination device, production method for particulate and production device
JP2010164572A (en) * 2002-07-17 2010-07-29 Particle Sizing Systems Inc Sensor and method for high-sensitivity optical particle counting and sizing
JP2011154005A (en) * 2010-01-28 2011-08-11 Nikon Corp Encoder
JP2012042705A (en) * 2010-08-19 2012-03-01 Ricoh Co Ltd Distance measurement device and imaging device
CN102944516A (en) * 2012-11-13 2013-02-27 天津市一瑞生物工程有限公司 Circuit for carrying out biochemical detection by multiple light sources and multiple pore channels

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688308A1 (en) * 1992-03-04 1993-09-10 Cilas LASER GRANULOMETER.
JP2010164572A (en) * 2002-07-17 2010-07-29 Particle Sizing Systems Inc Sensor and method for high-sensitivity optical particle counting and sizing
JP2005279328A (en) * 2004-03-26 2005-10-13 Hamamatsu Photonics Kk Determination method for finely pulverizing condition, determination device, production method for particulate and production device
JP2011154005A (en) * 2010-01-28 2011-08-11 Nikon Corp Encoder
JP2012042705A (en) * 2010-08-19 2012-03-01 Ricoh Co Ltd Distance measurement device and imaging device
CN102944516A (en) * 2012-11-13 2013-02-27 天津市一瑞生物工程有限公司 Circuit for carrying out biochemical detection by multiple light sources and multiple pore channels

Also Published As

Publication number Publication date
JPH0616008B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
JP3393817B2 (en) Particle size distribution measuring device
JPH0315124B2 (en)
JPH0266426A (en) Measuring instrument for scattered light
JP2754096B2 (en) Sample surface condition measurement device using electron beam
JPS62195504A (en) Surface position detecting device
JPS59188931A (en) Height measuring apparatus for wafer
JPH07110966A (en) Method and apparatus for measurement of warp of substance
JPH0511257B2 (en)
JP2626009B2 (en) Particle size distribution analyzer
JPS6244645A (en) Measuring instrument for particle size of sprayed particles
JP4105888B2 (en) Particle size distribution measuring device
JP2674128B2 (en) Particle size distribution analyzer
JPH0534259A (en) Device for measuring particle size distribution
JPH1038683A (en) Light quantity detector
CN206594061U (en) The particulate matter detection means of automatic drift compensation
JPS62289749A (en) Reflection factor measuring instrument
JP2810121B2 (en) Optical disc stamper inspection device
JPS62118243A (en) Surface defect inspecting instrument
JPH058498Y2 (en)
US3348055A (en) Apparatus for monitoring the intensity of a beam of radiant energy
JP2876255B2 (en) Particle size distribution analyzer
JP2007127443A (en) Photodetector and photodetection method
JPH0510822A (en) Radiation temperature measuring instrument
US20040118995A1 (en) Correction for non-linearities in FTIR photo detectors
JPS623609A (en) Range finder