JPH0265921A - Finishing working through electrolytic working - Google Patents

Finishing working through electrolytic working

Info

Publication number
JPH0265921A
JPH0265921A JP16055188A JP16055188A JPH0265921A JP H0265921 A JPH0265921 A JP H0265921A JP 16055188 A JP16055188 A JP 16055188A JP 16055188 A JP16055188 A JP 16055188A JP H0265921 A JPH0265921 A JP H0265921A
Authority
JP
Japan
Prior art keywords
electrode
gap
electrolytic
workpiece
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16055188A
Other languages
Japanese (ja)
Inventor
Yohei Kuwabara
桑原 陽平
Teruo Asaoka
浅岡 輝雄
Shogo Yoshioka
省吾 吉岡
Haruki Sugiyama
治樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP16055188A priority Critical patent/JPH0265921A/en
Publication of JPH0265921A publication Critical patent/JPH0265921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To finish a work, keeping the working gap between an electrode and the work constant over the whole worked surface region, by raising the electrode by a prescribed distance after the supply of the pulse electric current and spreading the gap between the electrode and the work and removing the electrolytic products, etc. in the gap by jetting an electrolytic liquid into the expanded gap and lowering the electrode by a prescribed distance and resetting the electrode at a prescribed position. CONSTITUTION:The pulse electric current is supplied into between an electrode and a work 4 which are oppositely installed, keeping a prescribed gap, through an electrolytic solution in standstill state, by an electric power source device 8, and after the pulse electric current is cut off, the electrode 2 is raised by a prescribed distance through a conversion part 7 by a drive part 6 on the basis of the instruction supplied from a controller 12, and the gap is increased. Further, a fresh electrolytic liquid is jetted between the expanded gap, and the electrolytic products, etc. in the gap are removed. Then, the electrode 2 is lowered by a prescribed distance, and reset at a prescribed position, and a work 1 can be finishing-worked, maintaining the working gap always at a constant value over the whole worked surface regions of the work 1.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解加工による仕上げ加工方法に係り、特
に三次元形状のワークを短時間かつ高精度に仕上げて、
鏡面状の光沢面が得られる電解加工による仕上げ加工方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a finishing method using electrolytic machining, and in particular, a method for finishing a three-dimensional workpiece in a short time and with high precision.
The present invention relates to a finishing method using electrolytic processing that provides a mirror-like glossy surface.

[従来の技術] 従来、金属加工方法として電解加工方法が知られている
。この電解加工方法は、電極とワークとの間隙に硝酸ナ
トリウムや塩化ナトリウム等の電解液を溝たし、電極を
サーボ機構により送りながら、直流電流をワークから電
極に流すとともに、間隙の電解液を高速で流して、安定
した電解作用を阻害する電解生成物、即ち溶出した金属
化合物や金属イオン及び水素ガス等を除去して加工する
ものである。(特公昭53−18760号公報参照) [発明が解決しようとする課題] しかしながら、この電解加工方法にあっては、特に三次
元形状の底付き加工(凹窩状に形成された三次元構造の
ものに対する加工をいう)において、電極とワークとの
加工間隙をワークの加工面全域に亘り一定に維持するこ
とが不可能であるとともに、電解液の流入口の位置及び
流入口からの距離あるいは三次元形状のワーク加工面の
屈曲度等により間隙の流路抵抗が変化して、電解液を間
隙に−様な流速で流すのが不可能である。
[Prior Art] Conventionally, an electrolytic processing method is known as a metal processing method. In this electrolytic processing method, an electrolytic solution such as sodium nitrate or sodium chloride is placed in the gap between the electrode and the workpiece, and while the electrode is being fed by a servo mechanism, a direct current is passed from the workpiece to the electrode, and the electrolyte in the gap is removed. It is processed by flowing at high speed to remove electrolytic products that inhibit stable electrolytic action, such as eluted metal compounds, metal ions, and hydrogen gas. (Refer to Japanese Patent Publication No. 53-18760.) [Problems to be Solved by the Invention] However, in this electrolytic processing method, it is particularly difficult to process a three-dimensional bottomed structure (a three-dimensional structure formed in a concave shape). It is impossible to maintain the machining gap between the electrode and the workpiece constant over the entire machining surface of the workpiece. The flow path resistance of the gap changes depending on the degree of curvature of the processed surface of the workpiece in its original shape, making it impossible to flow the electrolytic solution into the gap at a similar flow rate.

したがって、電極とワークとの加工間隙が、ワークの加
工表面において部分的に変化、特に電極送り方向と直交
する方向において変化するとともに、間隙に生成される
電解生成物の排除が位置によって異なり、加工の進行状
況に差異が生じてワークに電極の精密な転写を行うこと
が困難であり、光沢面等の高精度な表面品質を得たい場
合、別の研磨工程を必要とする等、ワークの仕上げに多
くの時間と労力がかかるという不都合があった。また、
電極を送るためのサーボ機構が複雑でコストアップにな
るという不都合があった。
Therefore, the machining gap between the electrode and the workpiece changes partially on the machining surface of the workpiece, especially in the direction perpendicular to the electrode feeding direction, and the removal of electrolytic products generated in the gap differs depending on the position. It is difficult to accurately transfer the electrode to the workpiece due to differences in the progress of the polishing process, and if you want to obtain a high-precision surface quality such as a glossy surface, another polishing process is required. The disadvantage is that it takes a lot of time and effort. Also,
The disadvantage is that the servo mechanism for sending the electrodes is complicated and costs increase.

そこで、この発明の目的は、ワークの加工面全域に亘り
、電極との加工間隙を常に一定に維持し得て、鏡面状の
光沢面等の高精度な表面品質を短時間に得ることができ
る電解加工による仕上げ加工方法を実現するにある。
Therefore, the purpose of this invention is to be able to maintain a constant machining gap with the electrode over the entire machining surface of a workpiece, and to obtain highly accurate surface quality such as a mirror-like glossy surface in a short time. The goal is to realize a finishing method using electrolytic processing.

口課題を解決するための手段] この目的を達成するために、この発明は、静止電解液中
で対設した電極とワークとの極間にパルス電流を供給し
てワークを仕上げ加工するものにおいて、電極とワーク
とが所定間隙で対向配置する如く、電極を所定位置に設
定するステップと、パルス電流供給後に電極を所定距離
(L)上昇させ、電極とワークとの間隙を拡大するステ
ップと、拡大した間隙に電解液を噴出して間隙の電解生
成物等を排除するステップと、前記電極を所定距離(L
)下降させて前記所定位置に再設定するステップとを具
備することを特徴とする。
[Means for Solving the Problems] To achieve this object, the present invention provides a method for finishing a workpiece by supplying a pulsed current between electrodes and a workpiece disposed opposite each other in a static electrolyte. , a step of setting the electrode at a predetermined position so that the electrode and the workpiece are arranged facing each other with a predetermined gap; a step of raising the electrode by a predetermined distance (L) after supplying the pulse current to enlarge the gap between the electrode and the workpiece; A step of ejecting electrolyte into the enlarged gap to eliminate electrolytic products, etc. in the gap, and a step of moving the electrode a predetermined distance (L).
) lowering and resetting to the predetermined position.

[作 用コ この発明の構成によれば、静止した電解液を介して所定
間隙で対設した電極とワークとの極間にパルス電流を供
給し、このパルス電流がオフした後、電極を所定距離(
L)上昇させて間隙を拡大するともに、この拡大した間
隙に新鮮な電解液を噴出して、間隙の電解生成物等を排
除し、そして、電極を所定距離(L)下降させて前記の
所定位置に再設定するため、加工間隙をワークの加工面
全域に亘り常に一定に維持く加工の進行により加工間隙
は大きくなる)しながらワークを仕上げ加工できる。
[Function] According to the configuration of the present invention, a pulse current is supplied between the electrode and the workpiece which are disposed opposite to each other with a predetermined gap through a stationary electrolyte, and after this pulse current is turned off, the electrode is moved to the predetermined position. distance(
L) raise the electrode to enlarge the gap, spray fresh electrolyte into the enlarged gap to remove electrolysis products, etc. in the gap, and then lower the electrode a predetermined distance (L) to expand the gap. Since the position is reset, the workpiece can be finished machined while maintaining the machining gap constant over the entire machining surface of the workpiece (the machining gap increases as machining progresses).

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜4図は、この発明の一実施例を示すものである。1 to 4 show an embodiment of the present invention.

第1.2図において、電解仕上げ加工装置1は、電極2
を固定する電極固定装置3、ワーク4を固定するワーク
固定装置5、電極駆動部6の回転運動を往復運動に変換
する駆動変換部7、パルス電流を発生する電源装置8、
モータ駆動制御部9と加工条件制御部10と電解液流制
御部11等からなる制御装置12、ワーク4に関する各
種データ等を入力する入力装置13、電解液を濾過する
電解液濾過装置14、及び加工槽15等からなる。
In FIG. 1.2, the electrolytic finishing device 1 includes an electrode 2
an electrode fixing device 3 that fixes the workpiece 4, a workpiece fixing device 5 that fixes the workpiece 4, a drive conversion section 7 that converts the rotational motion of the electrode drive section 6 into reciprocating motion, a power supply device 8 that generates a pulse current,
A control device 12 consisting of a motor drive control section 9, a processing condition control section 10, an electrolyte flow control section 11, etc., an input device 13 for inputting various data regarding the workpiece 4, an electrolyte filtration device 14 for filtering the electrolyte, and It consists of a processing tank 15, etc.

前記電極固定装置3は、その下部に設けたロッド16の
下端に、例えば純銅もしくはグラファイトからなる電極
2を、その電極面2aとワーク4の加工面4aとが三次
元方向に−様な間隙17を保つように固定する。そして
、前記電極固定装置3は、電極駆動部6と駆動変換部7
とにより前記間隙17を所定値に設定すべく上下動する
。即ち、電極駆動部6のロータリーエンコーダ18とタ
コジェネレータ19からの信号により前記モータ駆動制
御部9から出力される制御信号により、モータ20を回
転制御して、前記電極固定装置3を上下動させ、電極面
2aと加工面4aとを所定の間隙17に設定する。
The electrode fixing device 3 has an electrode 2 made of, for example, pure copper or graphite attached to the lower end of a rod 16 provided at the bottom thereof, and a gap 17 such that the electrode surface 2a and the processed surface 4a of the workpiece 4 are spaced in a three-dimensional direction. Fix it to keep it. The electrode fixing device 3 includes an electrode drive section 6 and a drive conversion section 7.
Accordingly, the gap 17 is moved up and down to set it to a predetermined value. That is, the rotation of the motor 20 is controlled by control signals output from the motor drive control section 9 based on signals from the rotary encoder 18 and the tacho generator 19 of the electrode drive section 6, and the electrode fixing device 3 is moved up and down. A predetermined gap 17 is set between the electrode surface 2a and the processed surface 4a.

前記ワーク固定装置5は、絶縁性の高いグラナイトもし
くはセラミックス製のテーブルで、電解仕上げ加工装置
1のX−Yテーブル21のXテーブル(図示せず)上に
加工槽15の底板とともにボルト等により固定する。ま
た、このワーク固定装置5の上面にはワーク4がボルト
22等により固定され、これにより、ワーク4、ワーク
固定装置5、加工槽15がX−Yテーブル21の移動用
ツマミ23.24の回転操作によりX方向及びY方向に
一体的に移動する。
The work fixing device 5 is a highly insulating table made of granite or ceramics, and is fixed to the X table (not shown) of the X-Y table 21 of the electrolytic finishing device 1 together with the bottom plate of the processing tank 15 by bolts or the like. do. Further, the workpiece 4 is fixed to the upper surface of the workpiece fixing device 5 by bolts 22, etc., and thereby the workpiece 4, the workpiece fixing device 5, and the processing tank 15 are rotated by the movement knobs 23 and 24 of the X-Y table 21. When operated, it moves integrally in the X and Y directions.

前記電極2とワーク4との極間に、所定のピーク電流密
度を有するパルス電流を供給する電源装置8と、この電
源装置8を制御する前記制御装置12の加工条件制御部
lOは、例えば第3図に示す如く構成する。
A power supply device 8 that supplies a pulse current having a predetermined peak current density between the electrode 2 and the workpiece 4, and a machining condition control unit IO of the control device 12 that controls the power supply device 8, for example. It is configured as shown in Figure 3.

即ち、電源装置8は直流電源部25と充放電部26とで
構成され、直流電源部25は、変圧器27と整流器28
とからなり、変圧器27により電圧を所定値に降下させ
整流器28により整流して直流電流を得て、後述する゛
蓄電器29−1〜29−nに供給する。
That is, the power supply device 8 includes a DC power supply unit 25 and a charging/discharging unit 26, and the DC power supply unit 25 includes a transformer 27 and a rectifier 28.
The voltage is lowered to a predetermined value by a transformer 27 and rectified by a rectifier 28 to obtain a direct current, which is supplied to capacitors 29-1 to 29-n, which will be described later.

また、充放電部26は、極間に電荷を放電する複数個の
蓄電器29−1〜29−nと、これらの各蓄電器29−
1〜29−nに接続し直流電源部25側への電荷の逆流
を阻止するダイオード30−1〜30−nと、放y側へ
電荷を放電させるべく開閉される放電スイッチ31−1
〜31−nと、前記各蓄電器29−1〜29−nを所定
に充電すべく前記直流電源部25からの電源を給断する
充電スイッチ32とからなる。
The charging/discharging unit 26 also includes a plurality of capacitors 29-1 to 29-n that discharge charges between electrodes, and each of these capacitors 29-
Diodes 30-1 to 30-n are connected to diodes 1 to 29-n to prevent backflow of charges to the DC power supply section 25 side, and a discharge switch 31-1 is opened and closed to discharge charges to the y side.
31-n, and a charging switch 32 that supplies and disconnects power from the DC power supply section 25 to charge each of the capacitors 29-1 to 29-n to a predetermined value.

この充放電部26を制御する加工条件制御部10は、蓄
電器29−1〜29−nの充電電圧値を検出する電圧検
出器33と、この電圧検出器33で検出した充電電圧値
とD/A変換器34からの出力1直とを比較する電圧比
較器35と、この電圧比較器35からの出力信号により
前記蓄電器29−1〜29−nの充電の完了及び開始を
検出する充電検出器36と、極間に放電される電荷の電
流値を検出する電流検出器37と、この電流検出器37
で検出した電流値のピーク値をホールドするピークホー
ルド回路38と、このピークホールド回路38でホール
ドしたピーク電流値とD/A変換器39の出力値とを比
較する電流比較器40と、所定時間幅のパルスを発生す
るパルス発生器41と極間に放電する電荷の電流波形を
設定する電流波形設定器42からの入力信号により前記
各放電スイッチ31−1〜31nに開閉駆動信号を出力
するゲート回路43と、前記各蓄電器29−1〜29−
nへ供給する充電電圧値を設定しその信号を前記D/A
変換器34に出力する充電電圧設定器44と、極間に流
れる電流値を設定しその信号を前記D/A変換器39に
出力する電流設定器45と、前記入力装置13の入力デ
ータ等に基づき加工条件等を演算・処理するCPU46
と、電極2とワーク4の接触を検知する接触検知器47
等からなる。なお、図中符号48は放電スイッチ31−
1〜31−nの開時に逆起電力により各放電スイッチ3
1−1〜31−nが破壊するのを防止するダイオードで
ある。
The machining condition control unit 10 that controls the charging/discharging unit 26 includes a voltage detector 33 that detects the charging voltage values of the capacitors 29-1 to 29-n, and a D/D ratio between the charging voltage values detected by the voltage detector 33 and A voltage comparator 35 that compares the first output from the A converter 34, and a charge detector that detects the completion and start of charging of the capacitors 29-1 to 29-n based on the output signal from the voltage comparator 35. 36, a current detector 37 that detects the current value of the charge discharged between the electrodes, and this current detector 37.
a peak hold circuit 38 that holds the peak value of the current value detected by the current comparator 40 that compares the peak current value held by the peak hold circuit 38 with the output value of the D/A converter 39; A gate that outputs an opening/closing drive signal to each of the discharge switches 31-1 to 31n based on an input signal from a pulse generator 41 that generates a pulse with a certain width and a current waveform setter 42 that sets the current waveform of the charge discharged between the poles. The circuit 43 and each of the capacitors 29-1 to 29-
Set the charging voltage value to be supplied to the D/A and send the signal to the D/A.
A charging voltage setting device 44 that outputs to the converter 34, a current setting device 45 that sets the current value flowing between the poles and outputs the signal to the D/A converter 39, and input data of the input device 13, etc. A CPU 46 that calculates and processes processing conditions etc. based on the
and a contact detector 47 that detects contact between the electrode 2 and the workpiece 4.
Consists of etc. Note that the reference numeral 48 in the figure indicates the discharge switch 31-
When 1 to 31-n are opened, each discharge switch 3 is
This is a diode that prevents 1-1 to 31-n from being destroyed.

なお、ここで、蓄電器29−1〜29−nが充放電する
際の前記CPO46の制御について説明する。まずCP
U46は、予め人力装置13によって人力されたワーク
4の加工面積Sと、極間に供給するパルス電流のオンタ
イムton(以下パルス幅という)等とに基づき、供給
するパルス電流のピーク電流密度が所定値となる充電電
圧値を、予め記憶装置に入力されている特性表により算
出し、加工条件制御部10の充電電圧設定器44に出力
する−そして、蓄電器29−1〜29−nが所定の充電
電圧値で充電されると、充電完了信号が充電検出器36
から入力される。この信号によりCP U46は、パル
ス発生器41及び電流波形設定器42に制御信号を出力
してゲート回路43をオンさせて、放電スイッチ311
〜31−nをオンさせ、極間に所定のパルス電流を供給
する。そして、このパルス電流の電流値が電流検出器3
7により検出され、その時のピーク値がピークホールド
回路38によりホールドされる。
Note that control of the CPO 46 when the capacitors 29-1 to 29-n are charged and discharged will be explained here. First, CP
U46 determines that the peak current density of the pulsed current to be supplied is based on the machining area S of the workpiece 4 that has been manually machined by the manual device 13 in advance, the on-time ton (hereinafter referred to as pulse width) of the pulsed current supplied between the electrodes, etc. A charging voltage value to be a predetermined value is calculated from a characteristic table input in advance to the storage device, and output to the charging voltage setter 44 of the processing condition control unit 10.Then, the capacitors 29-1 to 29-n are When the battery is charged at the charging voltage value, a charging completion signal is sent to the charging detector 36.
Input from Based on this signal, the CPU 46 outputs a control signal to the pulse generator 41 and current waveform setter 42 to turn on the gate circuit 43 and turn on the discharge switch 311.
31-n is turned on and a predetermined pulse current is supplied between the electrodes. Then, the current value of this pulse current is detected by the current detector 3.
7, and the peak value at that time is held by the peak hold circuit 38.

このホールドされたピーク値と、前記電流設定器45の
デジタル信号をD/A変換器39でアナログ変換した信
号値とが電流比較器40で比較され、その結果がCPU
46に入力される。この場合の電流比較器40の比較方
法は、電流設定器45のカウンタ(図示せず)の計数値
をOから1ステツプつづ上昇させ、この値をD/A変換
した値がピークホールド回路38のピーク値を超えた時
に、電流比較器40の出力が反転し、その時のカウンタ
の計数値がピーク電流値としてCPU46に記憶される
This held peak value is compared with a signal value obtained by converting the digital signal from the current setting device 45 into an analog signal by the D/A converter 39, and the result is sent to the CPU.
46. In this case, the comparison method of the current comparator 40 is to increase the count value of the counter (not shown) of the current setter 45 one step at a time from O, and the value obtained by D/A converting this value is the value of the peak hold circuit 38. When the peak current value is exceeded, the output of the current comparator 40 is inverted, and the count value of the counter at that time is stored in the CPU 46 as the peak current value.

CPU46は、この記憶したピーク電流値に基づき、充
電電圧設定器44の設定電圧値の補正(例えば記憶した
ピーク電流値が仮に設定した設定電流値以下の場合には
設定電圧値を増加、ピーク電流値が設定電流値より大き
い場合は設定電圧値を減少)を行い、極間に供給される
パルス電流が所定のピーク電流密度となるように制御す
る。
Based on the stored peak current value, the CPU 46 corrects the set voltage value of the charging voltage setter 44 (for example, increases the set voltage value if the stored peak current value is lower than the temporarily set set current value, and adjusts the peak current value). If the value is larger than the set current value, the set voltage value is decreased), and the pulse current supplied between the electrodes is controlled so as to have a predetermined peak current density.

前記入力装置13は、ワーク4に関する各種データ及び
加工条件等を人力し、これらの各信号を制御装置12の
モータ駆動制御部9及び加工条件制御部10に出力する
The input device 13 inputs various data and machining conditions regarding the workpiece 4 manually, and outputs these signals to the motor drive control section 9 and the machining condition control section 10 of the control device 12.

また、前記電解液濾過装置14は、加工で生じた電解生
成物を含む電解液を濾過するもので、電解液流制御部1
1からの制御信号に基づいて、加工槽15内に電解液を
供給するとともに、加工中に電極面2aと加工面4a間
に生成した電解生成物等を排除するために、噴出ノズル
49を介して間隙に新鮮な電解液を噴出する。
Further, the electrolyte filtration device 14 filters an electrolyte containing electrolytic products generated during processing, and the electrolyte flow control unit 1
Based on the control signal from 1, an electrolytic solution is supplied into the machining tank 15, and in order to eliminate electrolytic products generated between the electrode surface 2a and the machining surface 4a during machining, an electrolytic solution is supplied through the jet nozzle 49. to squirt fresh electrolyte into the gap.

次に、この電解仕上げ加工装置1による仕上げ加工動作
の一例について第4図のフローチャートにより説明する
Next, an example of the finishing operation by this electrolytic finishing apparatus 1 will be explained with reference to the flowchart of FIG. 4.

仕上げ加工に際しては、電極固定装置3のロッド16の
下端に、例えばワーク4を放電加工する際に使用した電
極2を、あるいはワイヤーカット放電加工により切り抜
かれた残部を電極2として固定するとともに、ワーク固
定装置5にワーク4をそれぞれ取付け(50) 、入力
装置13によりワーク4の加工面積S、供給するパルス
電流のパルス幅ton、パルス休止時間t off、加
ニー回当りのパルス電流の供給回数n、加工回数No−
N2、加工間隙δ、電極上昇距離り等のパラメータを入
力(51)する。そして、電極2を下降させてその電極
面2aを加工面4aに接触(52)させ、前記接触検知
器47でその位置を検出しこれを原点Aとする。
During finishing, the electrode 2 used for electrical discharge machining of the workpiece 4, or the remainder cut out by wire-cut electrical discharge machining, is fixed as the electrode 2 to the lower end of the rod 16 of the electrode fixing device 3, and the workpiece is Each workpiece 4 is attached to the fixing device 5 (50), and the input device 13 inputs the machining area S of the workpiece 4, the pulse width ton of the pulse current to be supplied, the pulse rest time t off, and the number of pulse currents supplied per knee n. , processing number No.
Parameters such as N2, machining gap δ, and electrode lifting distance are input (51). Then, the electrode 2 is lowered to bring the electrode surface 2a into contact with the processing surface 4a (52), and the contact detector 47 detects the position, which is set as the origin A.

次に、前記電解液濾過装置14から加工槽15内に電解
液を供給(53) b、加工回数が所定回数N。
Next, the electrolytic solution is supplied from the electrolytic solution filtration device 14 into the processing tank 15 (53) b, and the number of processing times is a predetermined number N.

であるか否かを判断(54) l、、、この判断(54
)がNoの場合は、電極2を前記原点Aから上昇させて
加工間隙δを維持する位置に電極2を設定(55)する
とともに、電解液が電極面2aと加工面4a間に満ち、
電解液が静止(電解液の流れ・動きが略停止した状態を
いう)したら(56) 、加工条件制御部10の制御信
号により、電源8置8から、ワーク4の加工面積Sに応
じた所定のパルス電流、例えばピーク電流密度が40A
 / c rn2で、パルス幅tonが20m5ecの
単一のパルス電流を極間に供給(57)する。このパル
ス電流により、仕上げ加工開始前にあるいは後述する面
粗度向上用のパルス電流の供給により生成された、ワー
ク4の加工面4aの酸化皮膜等を剥離する。そしてこの
パルス電流がオフしたら、前記モータ駆動制御部9の信
号によりモータ20を駆動して電極2を予め入力した所
定距離(L)だけ上昇(58)させ、電極面2aを加工
面4aから離間させて間隙を拡大するとともに、この拡
大した間隙に前記噴出ノズル49から新鮮な電解液を噴
出して、間隙に溶出した酸化皮膜等を排除(59)する
Judgment whether or not (54) l,,,this judgment (54
) is No, the electrode 2 is raised from the origin A and set at a position where the machining gap δ is maintained (55), and the electrolyte is filled between the electrode surface 2a and the machining surface 4a,
When the electrolyte is stationary (meaning the state where the flow and movement of the electrolyte has almost stopped) (56), a control signal from the machining condition control unit 10 causes the power source 8 to be activated at a predetermined level according to the machining area S of the workpiece 4. pulse current, e.g. peak current density is 40A
/ crn2, a single pulse current with a pulse width ton of 20 m5ec is supplied between the poles (57). This pulsed current removes the oxide film and the like on the processed surface 4a of the workpiece 4, which is generated before the start of finishing processing or by supplying a pulsed current for improving surface roughness, which will be described later. When this pulse current is turned off, the motor 20 is driven by the signal from the motor drive control section 9 to raise the electrode 2 by a predetermined distance (L) inputted in advance (58), thereby separating the electrode surface 2a from the processing surface 4a. At the same time, fresh electrolytic solution is ejected from the ejection nozzle 49 into the enlarged gap to eliminate the oxide film etc. eluted into the gap (59).

酸化皮膜等を排除した後は、電極2を距離(L)だけ下
降(60)させるとともに、今までの加工が所定回数N
1か否かを判断(61)シ、この判断(61)でNOの
場合は、前記ステップ(55)に戻り、電極2を最初に
設定した位置に再設定する。この場合、電極2とワーク
4の加工間隙は、加工の進行により最初の加工間隙δよ
り大きくなることになる。
After removing the oxide film, etc., the electrode 2 is lowered (60) by a distance (L), and the previous processing is repeated a predetermined number of times N.
1 or not is determined (61). If NO in this determination (61), the process returns to step (55) and the electrode 2 is reset to the initially set position. In this case, the machining gap between the electrode 2 and the workpiece 4 becomes larger than the initial machining gap δ as machining progresses.

前記ステップ(61)でYESの場合、つまり所定回数
N1の加工が行われた場合は、電源装置8から供給され
るパルス電流を加工面積Sに応じた面粗度向上用の所定
のパルス電流に切換える(62)。そして、電極を前記
ステップ(55)と同じ位置に設定(63) l、、、
間隙の電解液が静止(64) シたら、前記パルス電流
をn電極間に供給(65〜66)する。このパルス電流
は、例えば、ピーク電流密度が40A/am”でパルス
幅tonが5m5ec、パルス休止時間t offが2
55m s e cのパルス電流を5回連続供給する。
If YES in step (61), that is, if machining has been performed a predetermined number of times N1, the pulse current supplied from the power supply device 8 is changed to a predetermined pulse current for improving surface roughness according to the machining area S. Switch (62). Then, set the electrode at the same position as in step (55) (63) l...
When the electrolyte in the gap becomes stationary (64), the pulsed current is supplied between the n-electrodes (65-66). This pulse current has, for example, a peak current density of 40 A/am'', a pulse width ton of 5 m5 ec, and a pulse rest time t off of 2.
A pulse current of 55 msec is continuously supplied 5 times.

このパルス電流がオフしたら、前記ステップ(58)〜
(60)と同様、電極2を所定距離りだけ上昇(67)
させるとともに、噴出ノズル49から新鮮な電解液を噴
出して間隙の電解生成物等を排除(68) l、、、電
極2を距RLだけ下降(69)させる。
When this pulse current is turned off, the steps (58) to
Similar to (60), raise electrode 2 by a predetermined distance (67)
At the same time, fresh electrolyte is ejected from the ejection nozzle 49 to eliminate electrolytic products in the gap (68) l, . . . The electrode 2 is lowered by a distance RL (69).

そして、加工回数がN2か否かを判断(70) シ、こ
の判断(70)でNoの場合は、ステップ(63)に戻
り、またYESの場合は、ステップ(54)に戻り、ス
テップ(54)でYESになるまで、ステップ(55)
〜(70)を繰り返す。ステップ(54)てYESにな
った時点で全ての仕上げ加工を終了(71)する。
Then, it is determined whether the number of machining is N2 or not (70).If this determination (70) is No, the process returns to step (63), and if YES, the process returns to step (54). ) until YES becomes step (55)
- Repeat (70). When the answer is YES in step (54), all finishing operations are completed (71).

即ち、この実施例は、ステップ(55)〜(61)でワ
ーク4の加工面4aの酸化皮膜等を除去し、その後、ス
テップ(62)〜(70)で面粗度を向上させつつ加工
面4aを鏡面状に仕上げるという工程を所定回数繰り返
すものである。
That is, in this embodiment, the oxide film etc. on the machined surface 4a of the workpiece 4 is removed in steps (55) to (61), and then the machined surface is improved while improving the surface roughness in steps (62) to (70). The process of finishing 4a into a mirror surface is repeated a predetermined number of times.

なお、ステップ(54)でYESになった場合に、直ち
に仕上げ加工を終了せずに、例えば、前記面粗度向上用
のパルス電流とは異なる光沢面形成用の所定のパルス電
流に切り換えて、前記ステップ(63)〜(70)と同
様のステップを繰り返して仕上げ加工を終了することも
できるし、ステップク54)の後に、前記ステップ(6
2)〜(70)の面粗度向上用の仕上げ加工を行い、そ
の後、ステップ(55)〜(61)の酸化皮膜除去の加
工を行って仕上げ加工を終了するようにしてもよい。
Note that if the result in step (54) is YES, without immediately ending the finishing process, for example, switch to a predetermined pulse current for forming a glossy surface that is different from the pulse current for improving the surface roughness, The finishing process can be completed by repeating steps similar to the steps (63) to (70), or the step (6) can be completed after step 54).
2) to (70) for improving the surface roughness may be performed, and then steps (55) to (61) for removing the oxide film may be performed to complete the finishing process.

このように、この発明に係る電解加工による仕上げ加工
方法にあっては、パルス電流供給後に電極2を所定距離
(L)だけ上昇させて、間隙を拡大するとともに、この
間隙に新鮮な電解液を噴出して間隙の電解生成物等を確
実に排除し、その後、電極2を所定距離(L)だけ下降
させて、電極2を常に同一位置に設定するため、電極2
とワーク4との加工間隙は、加工の進行により大きくな
るものの、パルス電流供給時においては、ワーク4の加
工面4a全域に亘り常に一定に維持することができ、加
工条件を均一にし得て、電極2の転写精度を高めること
ができ、鏡面状の光沢面が短時間に得られる。
As described above, in the finishing method by electrolytic machining according to the present invention, the electrode 2 is raised by a predetermined distance (L) after pulse current is supplied to enlarge the gap, and fresh electrolyte is poured into this gap. The electrode 2 is ejected to ensure that electrolytic products, etc. in the gap are removed, and then the electrode 2 is lowered by a predetermined distance (L) to always set the electrode 2 at the same position.
Although the machining gap between the workpiece 4 and the workpiece 4 increases as machining progresses, it can always be maintained constant over the entire machining surface 4a of the workpiece 4 when pulse current is supplied, and machining conditions can be made uniform. The transfer accuracy of the electrode 2 can be improved, and a mirror-like glossy surface can be obtained in a short time.

即ち、この発明によれば、従来の電極2を送りながら加
工する電解加工方法のように、電極2の送り方向(Z軸
方向)の加工間隙と、この方向と異なる、例えばX及び
Y方向の加工間隙とが異なる(電極2は一方向にのみ送
られ、その送り方向は常に一定の加工間隙に維持される
が、送り方向と直交する方向は加工の進行により加工間
隙が徐々に大きくなる)ことがなく、この加工間隙の均
一化は、特に静止液中で極間にパルス電流を供給して行
う電解仕上げ加工において、顕著な効果が得られること
が実験によって確認されている。
That is, according to the present invention, unlike the conventional electrolytic machining method in which the electrode 2 is machined while being fed, there is a machining gap in the feeding direction (Z-axis direction) of the electrode 2, and a machining gap in a direction different from this direction, for example, in the X and Y directions. The machining gap is different (the electrode 2 is fed only in one direction, and the feeding direction is always maintained at a constant machining gap, but in the direction perpendicular to the feeding direction, the machining gap gradually increases as machining progresses). Experiments have confirmed that this uniformity of the machining gap is particularly effective in electrolytic finishing, which is performed by supplying a pulsed current between the poles in a static liquid.

[発明の効果] この発明は上述の通りに構成したので、次に記載する効
果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

■電極とワークとの加工間隙を、加工面全域に亘り一定
に維持することができ、加工条件を均一化し得て、鏡面
状の光沢面等の高精度な表面品質が短時間に得られる。
- The machining gap between the electrode and the workpiece can be maintained constant over the entire machining surface, making the machining conditions uniform and achieving high-precision surface quality such as a mirror-like glossy surface in a short time.

■電極送り用の複雑なサーボ機構が不要となり、加工装
置のコストダウンが図れる。
■A complicated servo mechanism for electrode feeding is no longer required, reducing the cost of processing equipment.

【図面の簡単な説明】 第1図はこの発明の電解仕上げ加工装置の正面図、第2
図は同装置のブロック図、第3図は要部のブロック図、
第4図は仕上げ加工動作の一例を示すフローチャートで
ある。 1・・・電解仕上げ加工装置、2・・・電極、4・・・
ワーク、8・・・電源装置、12・・・制御装置、14
・・・電解液濾過装置、46・・・CPU、 特許出願人  静岡製6機株式会社 代表者鈴木重夫 第1図
[Brief Description of the Drawings] Figure 1 is a front view of the electrolytic finishing apparatus of the present invention, Figure 2 is a front view of the electrolytic finishing apparatus of the present invention;
The figure is a block diagram of the device, Figure 3 is a block diagram of the main parts,
FIG. 4 is a flowchart showing an example of the finishing operation. 1... Electrolytic finishing processing device, 2... Electrode, 4...
Work, 8... Power supply device, 12... Control device, 14
...Electrolyte filtration device, 46...CPU, Patent applicant: Shizuoka Seisaku6ki Co., Ltd. Representative Shigeo Suzuki Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)静止電解液中で対設した電極とワークとの極間に
パルス電流を供給してワークを仕上げ加工するものにお
いて、 イ、電極とワークとが所定間隙で対向配置する如く、電
極を所定位置に設定するステップと、ロ、パルス電流供
給後に電極を所定距離(L)上昇させ、電極とワークと
の間隙を拡大するステップと、 ハ、拡大した間隙に電解液を噴出して間隙の電解生成物
等を排除するステップと、 ニ、前記電極を所定距離(L)下降させて前記所定位置
に再設定するステップ、 とを具備する電解加工による仕上げ加工方法。
(1) In finishing processing of a workpiece by supplying a pulsed current between the poles of the electrode and the workpiece, which are placed opposite each other in a static electrolyte, a. B. Raise the electrode a predetermined distance (L) after supplying the pulse current to enlarge the gap between the electrode and the workpiece; C. Spray the electrolyte into the enlarged gap to close the gap. A finishing method by electrolytic machining, comprising the steps of: removing electrolytic products, etc.; and (d) lowering the electrode by a predetermined distance (L) and resetting it at the predetermined position.
JP16055188A 1988-06-28 1988-06-28 Finishing working through electrolytic working Pending JPH0265921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16055188A JPH0265921A (en) 1988-06-28 1988-06-28 Finishing working through electrolytic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16055188A JPH0265921A (en) 1988-06-28 1988-06-28 Finishing working through electrolytic working

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63004040 Division 1988-01-11 1988-01-11

Publications (1)

Publication Number Publication Date
JPH0265921A true JPH0265921A (en) 1990-03-06

Family

ID=15717437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16055188A Pending JPH0265921A (en) 1988-06-28 1988-06-28 Finishing working through electrolytic working

Country Status (1)

Country Link
JP (1) JPH0265921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210773A (en) * 2021-05-28 2021-08-06 厦门大学 Method and processing device for removing large allowance by generating electrolysis of high-hardness material internal spline

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044091A (en) * 1983-08-22 1985-03-08 Naoharu Hinuma Aeration and light condensing catalytic water purifying apparatus
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044091A (en) * 1983-08-22 1985-03-08 Naoharu Hinuma Aeration and light condensing catalytic water purifying apparatus
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210773A (en) * 2021-05-28 2021-08-06 厦门大学 Method and processing device for removing large allowance by generating electrolysis of high-hardness material internal spline

Similar Documents

Publication Publication Date Title
JPS62255013A (en) Electro-chemical machining device
KR930000297B1 (en) Electrolytic finishing method
JPH0265921A (en) Finishing working through electrolytic working
KR930007253B1 (en) Finishing method and machine employing electro-chemical machining
US4883568A (en) Finishing method employing electro-chemical process
US4863579A (en) Power supply system for electrolytic processing apparatus
US4861450A (en) Power supply system for electrolytic processing apparatus
CA1326882C (en) Power supply system for electrolytic processing apparatus
CA1325403C (en) Method for finishing a work
EP0314498B1 (en) Electrolytic finishing method
JPH02109635A (en) Electrolytic finishing method for sintered hard metal
JPH01188230A (en) Finishing method based on electrochemical machining and its device
JPH02106222A (en) Method of electrolytic finishing work
JPH0373221A (en) Electrolytic finishing
JPH01205919A (en) Finishing work through electrolytic working
JPH02152722A (en) Short-circuit foreseeing method in electrolytic finishing
JPS63283817A (en) Finishing method by electro-chemical machining
JPS63283818A (en) Finishing method by electro-chemical machining
JPH0343119A (en) Abnormality detection circuit for electrolysis finishing processing device
JPH02109636A (en) Electrolytic finishing method
JPH07100258B2 (en) Electrolytic finishing method
JPH03251316A (en) Power source device of electrochemical machine
JPH01228725A (en) Working method of electrolytic finish
JPH0271932A (en) Centering method for electrochemical finishing device
WO1990011863A1 (en) Method of predicting short-circuiting in electrolytic machining