JPS63283817A - Finishing method by electro-chemical machining - Google Patents
Finishing method by electro-chemical machiningInfo
- Publication number
- JPS63283817A JPS63283817A JP62119943A JP11994387A JPS63283817A JP S63283817 A JPS63283817 A JP S63283817A JP 62119943 A JP62119943 A JP 62119943A JP 11994387 A JP11994387 A JP 11994387A JP S63283817 A JPS63283817 A JP S63283817A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- workpiece
- machining
- processing
- finishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003754 machining Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims description 24
- 239000000126 substance Substances 0.000 title abstract 4
- 239000003792 electrolyte Substances 0.000 claims description 16
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 abstract description 14
- 238000007599 discharging Methods 0.000 abstract description 5
- 239000000047 product Substances 0.000 description 12
- 238000009760 electrical discharge machining Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007730 finishing process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 101100043261 Caenorhabditis elegans spop-1 gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H2300/00—Power source circuits or energization
- B23H2300/10—Pulsed electrochemical machining
- B23H2300/12—Positive and negative pulsed electrochemical machining
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、電解加工による仕上げ加工方法に係り、特
に難削金属等からなる被加工物の三次元形状の被加工面
を短時間かつ高精度に仕上げて鏡面状の光沢面を得るこ
とができる電解加工による仕上げ加工方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a finishing method using electrolytic machining, and in particular to a method for finishing a three-dimensionally shaped workpiece made of a difficult-to-cut metal in a short time and with high precision. The present invention relates to a finishing method using electrolytic machining that allows for finishing with high precision and obtaining a mirror-like glossy surface.
[従来の技術]
従来の金属加工方法としては、被加工物と電極との間隙
に硝酸ナトリウムや塩化ナトリウム等の電解液を満たし
、この電解液を高速で流すとともに、安定した電解作用
を阻害する電解生成物、すなわち溶出した金属化合物や
金属イオン及び水素ガス等を除去しながら、直流電流を
被加工物から電極に流して加工する電解加工方法(特開
昭61−71921号公報及び特開昭60−44228
号公報参照)と、被加工物と電極とを灯油系等の加工液
中で微小間隙をもって対向させ、かつこれらを適宜の電
源に接続して、前記間隙に瞬発する火花放電や過渡アー
ク放電を発生させ、該放電エネルギーにより被加工物を
加工する放電加工方法(特公昭60−26646号公報
及び特開昭60−177819号公報参照)が知られて
いる。[Conventional technology] Conventional metal processing methods involve filling the gap between the workpiece and the electrode with an electrolytic solution such as sodium nitrate or sodium chloride, flowing this electrolytic solution at high speed, and inhibiting stable electrolytic action. An electrolytic processing method in which a direct current is passed from the workpiece to the electrode while removing electrolytic products, that is, eluted metal compounds, metal ions, hydrogen gas, etc. 60-44228
The workpiece and the electrode are placed facing each other with a small gap in a machining liquid such as kerosene, and these are connected to an appropriate power source to prevent instantaneous spark discharge or transient arc discharge from occurring in the gap. There is a known electrical discharge machining method (see Japanese Patent Publication No. 60-26646 and Japanese Patent Application Laid-Open No. 60-177819) in which a workpiece is machined by the discharge energy generated.
[発明が解決しようとする問題点]
しかしながら、前者の電解加工方法にあっては、特に三
次元形状の底付き加工(凹窩状に形成された三次元構造
のものに対する加工をいう)において、被加工物に電極
の精密な転写を行うことが困難で、高精度の表面品質が
得られないという不都合があり、ま゛た、後者の放電加
工方法にあっては、良好な面粗度を得ることが困難で、
例えば鏡面仕上げ等の表面仕上げに多くの時間と労力を
要するという不都合があった。[Problems to be Solved by the Invention] However, in the former electrolytic processing method, particularly in processing with a three-dimensional bottom (meaning processing on a three-dimensional structure formed in the shape of a concave hole), There are disadvantages in that it is difficult to precisely transfer the electrode to the workpiece, and high-precision surface quality cannot be obtained.In addition, the latter electric discharge machining method has the disadvantage that it is difficult to precisely transfer the electrode to the workpiece. difficult to obtain,
For example, there is an inconvenience in that surface finishing such as mirror finishing requires a lot of time and effort.
そこで、本出願人はこれらの不都合を除去する電解加工
による仕上げ加工方法として、特願昭62−27(31
6号を出願したが、この仕上げ加工方法にあっては、被
加工物を陽極(プラス電位)とし電極を陰極(被加工物
に対してマイナス電位)とする所定のパルス電流を供給
している。Therefore, the present applicant has proposed a finishing method using electrolytic machining to eliminate these inconveniences, in Japanese Patent Application No. 62-27 (31
No. 6 was filed, but in this finishing method, a predetermined pulse current is supplied with the workpiece as an anode (positive potential) and the electrode as a cathode (negative potential with respect to the workpiece). .
ところで、電解加工による仕上げ加工方法にあっては、
一般的に本加工である放電加工に供した銅電極を使用す
るが、この銅電極の表面(以下電極面という)には、放
電加工時に使用する灯油系の加工液が高温に晒されて炭
化した炭素が付着して、グラファイト(黒鉛)の皮膜が
形成されている。このグラファイトの皮膜は電極の摩耗
防止には有効であるものの、この電極をそのまま電解加
工による仕上げ加工に使用した場合、次に示す様な不都
合がある。By the way, in the finishing method using electrolytic processing,
Generally, a copper electrode that has been subjected to electric discharge machining, which is the main machining process, is used, but the surface of this copper electrode (hereinafter referred to as the electrode surface) is exposed to high temperatures and carbonized by the kerosene-based machining fluid used during electric discharge machining. The carbon deposited thereon forms a graphite film. Although this graphite film is effective in preventing wear of the electrode, when this electrode is used as it is for finishing processing by electrolytic processing, there are the following disadvantages.
つまり、電極面に形成された皮膜が、仕上げ加工前の電
極と被加工物との芯出し作業や、仕上げ加工の初期に行
う電極と被加工物の接触(加工原点の検知)により損傷
し、この状態で仕上げ加工を行うと、電極面のグラファ
イト皮膜が純粋な銅の面より電気抵抗が大きいことから
、皮膜が損傷して銅が露出した部分の供給パルスの電流
密度が大きくなり、その近辺の加工が著しく進行する。In other words, the film formed on the electrode surface is damaged by the centering work between the electrode and the workpiece before finishing or the contact between the electrode and the workpiece (detection of the machining origin) during the initial stage of finishing. If finishing is performed in this state, the graphite film on the electrode surface has a higher electrical resistance than the pure copper surface, so the current density of the supply pulse increases in the area where the film is damaged and the copper is exposed, and the current density in the vicinity The processing progresses significantly.
したがって、被加工面各部の加工条件に著しい差異が生
じ、被加工面に縞模様が発生するなどして、鏡面状の光
沢面を得たい場合、その表面品質を著しく損なう、とい
う不都合があった。Therefore, there are significant differences in the processing conditions for each part of the workpiece surface, resulting in striped patterns on the workpiece surface, which significantly impairs the surface quality when a mirror-like glossy surface is desired. .
また、前記電極面の皮膜を手加工で除去する方法も考え
られるが、この方法にあっては、多大な労力を必要とす
るとともに、電極の形状精度を損なう恐れがあるという
不都合があった。It is also conceivable to manually remove the film on the electrode surface, but this method requires a great deal of labor and is disadvantageous in that it may impair the shape accuracy of the electrode.
[発明の目的]
そこでこの発明は、上記不都合を除去し、特に難削金属
等の被加工物の三次元形状の被加工面を短時間かつ高精
度に仕上げて鏡面状の光沢面を得ることができる電解加
工による仕上げ加工方法を実現するにある。[Purpose of the Invention] Therefore, the present invention aims to eliminate the above-mentioned disadvantages, and to obtain a mirror-like glossy surface by finishing the three-dimensionally shaped work surface of a workpiece such as a difficult-to-cut metal in a short time and with high precision. The purpose of this invention is to realize a finishing method using electrolytic machining.
[問題点を解決するための手段]
この目的を達成するためにこの発明は、放電加工によっ
て加工した被加工物と放電加工に使用した電極とを電解
液を介して対設するとともに、前記被加工物と電極間に
パルスを供給し、被加工物と電極間に生成した電解生成
物を間欠的に除去しながら仕上げ加工する仕上げ加工方
法において、前記電極を陽極とし前記被加工物を陰極と
するパルスを供給して加工する第1の加工工程と、該第
1の加工工程後に前記被加工物を陽極とし前記電極を陰
極とするパルスを供給して加工する第2の加工工程とか
らなることを特徴とする。[Means for Solving the Problems] In order to achieve this object, the present invention arranges a workpiece machined by electrical discharge machining and an electrode used in electrical discharge machining opposite to each other via an electrolytic solution, and In a finishing method in which a pulse is supplied between a workpiece and an electrode and finishing is performed while intermittently removing electrolytic products generated between the workpiece and the electrode, the electrode is an anode and the workpiece is a cathode. a first processing step in which a pulse is supplied to process the workpiece, and a second processing step in which a pulse is applied after the first processing step in which the workpiece is used as an anode and the electrode is used as a cathode. It is characterized by
[作用]
この発明の構成によれば、被加工物の仕上げ加工開始前
の第1の加工工程により、被加工物と電極間に供給する
パルスの極性を逆にした電解加工を施し、被加工物の放
電加工時に電極面に形成された皮膜を除去するため、仕
上げ加工である第2の加工工程時の電極面を均一な表面
状態とし得て、被加工面に縞模様が発生することがない
など、良好な表面品質が得られる。[Operation] According to the configuration of the present invention, in the first processing step before starting the finishing process of the workpiece, electrolytic machining is performed by reversing the polarity of the pulse supplied between the workpiece and the electrode, and In order to remove the film formed on the electrode surface during electrical discharge machining of objects, the electrode surface can be made into a uniform surface condition during the second machining process, which is finishing machining, and striped patterns can be prevented from occurring on the machined surface. Good surface quality can be obtained.
[実施例]
以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.
第1〜4図は、この発明の一実施例を示す。第1〜3図
において、1はこの発明に係る仕上げ加工方法を実施し
得る加工装置で、この加工装置1は、被加工物2を固定
する被加工物固定装置3、電極4を固定する電極固定装
置5、電極駆動部6の回転運動を往復運動に変換する駆
動変換部7、パルス電流を発生する電源装置8、モータ
駆動制御部9と加工条件制御部lOと電解液流制御部1
1とからなる制御装置12、被加工物2に関するデータ
等を入力する入力装置13、電解液濾過装置14、電解
法飛散防止カバー15等からなる。1 to 4 show one embodiment of this invention. In FIGS. 1 to 3, reference numeral 1 denotes a processing device capable of implementing the finishing method according to the present invention, and this processing device 1 includes a workpiece fixing device 3 for fixing a workpiece 2, and an electrode for fixing an electrode 4. A fixing device 5, a drive conversion section 7 that converts the rotational motion of the electrode drive section 6 into a reciprocating motion, a power supply device 8 that generates a pulse current, a motor drive control section 9, a processing condition control section 1O, and an electrolyte flow control section 1.
1, an input device 13 for inputting data regarding the workpiece 2, an electrolytic solution filtration device 14, an electrolytic method scattering prevention cover 15, and the like.
前記被加工物固定°装置3は、絶縁性の高いグラナイト
もしくはセラミックスからなり、例えば水平面上てX−
Y方向に移動可能な、もしくは加工装置lに三点支持さ
れて移動可能なテーブルで、放電加工によって加工した
被加工物2をボルト16等により固定する。また、前記
電極固定装置5は、その下部に設けたロッド17の下端
に、例えば純銅からなり前記放電加工時に使用した電極
4を、その電極面4aと前記被加工物2の被加工面2a
とが三次元方向に、一様な間隙18を保つように固定す
る。そして、前記電極固定装置5は、前記電極駆動部6
と駆動変換部7とにより前記間隙18を所定値に設定す
べく上下動する。すなわち、電極駆動部6のロータリー
エンコーダ20とタコジェネレータ21からの信号によ
り前記制御装置12のモータ駆動制御部9から出力され
る制御信号により、モータ19を回転制御し、このモー
タ19の回転運動を駆動変換部7により往復運動に変換
して、前記電極固定装置5を上下動させ、電極面4aと
被加工面2aとを所定の間隙18に設定する。The workpiece fixing device 3 is made of highly insulating granite or ceramics, and is, for example,
A workpiece 2 machined by electrical discharge machining is fixed with bolts 16 or the like using a table that is movable in the Y direction or is movable by being supported at three points on the machining device l. Further, the electrode fixing device 5 has an electrode 4 made of, for example, pure copper and used during the electrical discharge machining, attached to the lower end of a rod 17 provided at the lower part of the electrode fixing device 5.
and are fixed so as to maintain a uniform gap 18 in the three-dimensional direction. The electrode fixing device 5 includes the electrode driving section 6.
and the drive converter 7 move up and down to set the gap 18 to a predetermined value. That is, the rotation of the motor 19 is controlled by control signals output from the motor drive control section 9 of the control device 12 based on signals from the rotary encoder 20 and tacho generator 21 of the electrode drive section 6, and the rotational movement of the motor 19 is controlled. The drive conversion unit 7 converts the movement into a reciprocating motion, moves the electrode fixing device 5 up and down, and sets a predetermined gap 18 between the electrode surface 4a and the surface to be processed 2a.
前記被加工物2と電極4間に電流密度(単位面積当りの
平均電流)が70A/Cm2以下のパルス電流を供給す
る電源装置8は、加工条件制御部10からの制御信号に
より、被加工物2の表面積に従って計算した所定の電流
密度のパルス電流を発生するもので、直流電源部22と
充放電部23と充放電制御部24とを有し、例えば第4
図に示す如く構成する。The power supply device 8 supplies a pulse current with a current density (average current per unit area) of 70 A/Cm2 or less between the workpiece 2 and the electrode 4, and the power supply device 8 supplies the workpiece with a pulse current having a current density (average current per unit area) of 70 A/Cm2 or less. It generates a pulse current with a predetermined current density calculated according to the surface area of No.
It is configured as shown in the figure.
第4図において、直流電源部22は、変圧器25と整流
器26とからなり、変圧器25により電圧を所定値に降
下させ整流器26により整流して直流電流を得て、後述
する蓄電器27−1〜27−nに供給する。In FIG. 4, the DC power supply unit 22 includes a transformer 25 and a rectifier 26. The voltage is lowered to a predetermined value by the transformer 25 and rectified by the rectifier 26 to obtain a DC current. ~27-n.
また、充放電部23は、被加工物2と電極4との間隙1
8に電荷を放電する複数個の蓄電器27−1〜27−n
と、これらの各蓄電器27−1〜27−nに接続した、
直流電源部22側への電荷の逆流を阻止するダイオード
28−1〜28−〇と、放電側への電荷を放電させるべ
く開閉される放電スイッチ29−1〜29−nと、前記
各蓄電器27−1〜27−nを所定に充電すべく前記直
流電源部20からの電源を給断する充電スイッチ30と
からなる。Further, the charging/discharging section 23 has a gap 1 between the workpiece 2 and the electrode 4.
8, a plurality of capacitors 27-1 to 27-n
and connected to each of these capacitors 27-1 to 27-n,
Diodes 28-1 to 28-0 that prevent backflow of charges to the DC power supply section 22 side, discharge switches 29-1 to 29-n that are opened and closed to discharge charges to the discharge side, and each of the capacitors 27 -1 to 27-n, and a charging switch 30 for supplying and disconnecting power from the DC power supply section 20 to charge the batteries to a predetermined value.
この充放電部23を制御する充放電制御部24は、蓄電
器27−1〜27−nへ供給する充電電圧値を検出する
電圧検出器31と、前記加工条件制御部lOの充電電圧
設定部36で設定した設定充電電圧値と前記電圧検出器
31で検出した検出充電電圧値とを比較する電圧比較器
32と、前記被加工物2と電極4との間隙18に放電さ
れる電荷の電流値を検出する電流検出器35と、前記加
工条件制御部10の最小電流設定部39で設定した最小
電流値と前記電流検出器35で検出した放電電流値とを
比較する電流比較器34と、前記加工条件制御部10の
パルス発生部37と電流波形設定部38と前記電流比較
器34とからの入力により前記検出電流値が前記設定電
流値以上の場合には、前記各蓄電器27−1〜27−n
の電荷を放電側に所望に放電させるとともに、前記検出
電流値が前記設定電流値未満の場合には、前記各蓄電器
27−1〜27−nの電荷の放電を停止させるべく前記
各放電スイッチ29−1〜29−nに開閉駆動信号を出
力するゲート回路33と、被加工物2と電極4間に供給
するパルス電流の極性を、前記加工条件制御部10の極
性切換制御部40の制御信号により切換える極性切換器
41とを有している。A charging/discharging control unit 24 that controls the charging/discharging unit 23 includes a voltage detector 31 that detects charging voltage values supplied to the capacitors 27-1 to 27-n, and a charging voltage setting unit 36 of the processing condition control unit IO. a voltage comparator 32 that compares the set charging voltage value set with the detected charging voltage value detected by the voltage detector 31; and a current value of the charge discharged into the gap 18 between the workpiece 2 and the electrode 4. a current detector 35 that detects the current value, a current comparator 34 that compares the minimum current value set by the minimum current setting unit 39 of the machining condition control unit 10 and the discharge current value detected by the current detector 35; If the detected current value is equal to or greater than the set current value based on inputs from the pulse generator 37, current waveform setting unit 38, and current comparator 34 of the processing condition control unit 10, each of the capacitors 27-1 to 27 -n
The respective discharge switches 29 are configured to discharge the electric charges of the respective capacitors 27-1 to 27-n as desired to the discharge side, and to stop discharging the electric charges of the respective capacitors 27-1 to 27-n when the detected current value is less than the set current value. -1 to 29-n, and a control signal of the polarity switching control section 40 of the processing condition control section 10 to control the polarity of the pulse current supplied between the workpiece 2 and the electrode 4. It has a polarity switch 41 for switching.
また、この充放電制御部24を制御する制御装置12の
加工条件制御部IOは、前記各蓄電器27−1〜27−
nの充電電圧を設定する充電電圧設定部36と、所定時
間幅のパルスを発生するパルス発生部37と、被加工物
2と電極3間に放電する電荷の電流波形を設定する電流
波形設定部38と、最小電流値を設定する最小電流設定
部39と、前記極性切換器41を制御する極性切換制御
部40と、前記入力装置13の入力データに基づき加工
条件等を演算・処理する演算・処理部(以下CPUとい
う)46等からなる。Further, the machining condition control unit IO of the control device 12 that controls the charge/discharge control unit 24 controls each of the capacitors 27-1 to 27-
A charging voltage setting section 36 that sets the charging voltage of n, a pulse generating section 37 that generates a pulse with a predetermined time width, and a current waveform setting section that sets the current waveform of the charge discharged between the workpiece 2 and the electrode 3. 38, a minimum current setting section 39 that sets a minimum current value, a polarity switching control section 40 that controls the polarity switching device 41, and a calculation/processing section that calculates and processes processing conditions etc. based on the input data of the input device 13. It consists of a processing unit (hereinafter referred to as CPU) 46 and the like.
なお、第4図中符号44は放電スイッチ29−1〜29
−nの開時に逆起電力により各放電スイッチ29−1〜
29−nが破壊するのを防止するダイオードである。In addition, the reference numeral 44 in FIG. 4 indicates the discharge switches 29-1 to 29.
- Each discharge switch 29-1 ~ due to the back electromotive force when n is opened.
This is a diode that prevents the 29-n from being destroyed.
前記人力装置13は、被加工物の材質と表面積、仕上げ
加工しろと寸法精度の等級、仕上げ面粗度 ゛及び初期
電極間隙等を入力し、これらの各信号を制御装置12の
モータ駆動制御部9及び加工条件制御部10に出力する
。The human power device 13 inputs the material and surface area of the workpiece, the finishing margin and dimensional accuracy grade, the finished surface roughness, the initial electrode gap, etc., and sends these signals to the motor drive control section of the control device 12. 9 and the processing condition control section 10.
前記電解液濾過装置14は、加工で生じた電解生成物を
含む電解液42を濾過するもので、電解液流制御部11
からの制御信号に基づいて、電解液槽43へ電解液42
を一定の液圧で供給するとともに、加工中に被加工面2
aと電極面4a間に生成した電解生成物等を排除するた
めに、1パルスまたは数パルス毎に上昇動作する電極4
と同期して被加工物2と電極4間に新鮮な電解液42を
噴出する如く電磁弁45等を制御する。The electrolyte filtration device 14 filters an electrolyte 42 containing electrolytic products generated during processing, and the electrolyte flow control unit 11
Based on the control signal from the electrolyte tank 43, the electrolyte 42
is supplied with a constant hydraulic pressure, and the workpiece surface 2 is
The electrode 4 moves upward every pulse or every few pulses in order to eliminate electrolytic products generated between the electrode surface 4a and the electrode surface 4a.
In synchronization with this, the electromagnetic valve 45 and the like are controlled so as to spout fresh electrolyte 42 between the workpiece 2 and the electrode 4.
次に、この装置による仕上げ加工方法について説明する
。Next, a finishing method using this apparatus will be explained.
まず、被加工物固定装置3に放電加工によって所望形状
に加工した被加工物2を固定するとともに、電極固定装
置5のロッド17の下端に前記放電加工時に使用した電
極4を固定し、この電極4を下降してその電極面4aを
、被加工物2の被加工面2aに対向接触させ、電極4を
被加工物2とともに電解液槽43の電解液42内に浸漬
する。そして、初期電極間隙を保つ位置に電極4を上昇
し、電解液42が被加工面2aと電極面4a間に満ちた
ら、極性切換制御部40の指令に基づいて極性切換器4
1を作動させ、電極4を陽極側に被加工物2を陰極側に
切換え、そして、この状態で所定の電流密度のパルス電
流を被加工物2と電極4間に供給して電解加工(第1の
加工工程)を行い、電極面4aに形成されている例えば
グラファイトからなる皮膜を除去する。この電解加工を
入力装置13の入力データに基づいて前記CPU46で
予め計算した回数(1回ないし数回)行った後に、CP
U46から極性切換制御部40に制御信号を送り、極性
切換器41を作動させて被加工物2と電極4間に供給す
るパルス電流の極性を切換え、被加工物2を陽極側、電
極4を陰極側とする。First, the workpiece 2 machined into a desired shape by electrical discharge machining is fixed to the workpiece fixing device 3, and the electrode 4 used during the electrical discharge machining is fixed to the lower end of the rod 17 of the electrode fixing device 5. 4 is lowered to bring its electrode surface 4a into opposing contact with the surface 2a to be processed of the workpiece 2, and the electrode 4 and the workpiece 2 are immersed in the electrolyte solution 42 of the electrolyte bath 43. Then, the electrode 4 is raised to a position that maintains the initial electrode gap, and when the electrolytic solution 42 fills between the workpiece surface 2a and the electrode surface 4a, the polarity switch 4
1, the electrode 4 is switched to the anode side and the workpiece 2 is switched to the cathode side. In this state, a pulse current of a predetermined current density is supplied between the workpiece 2 and the electrode 4 to perform electrolytic machining. Processing step 1) is performed to remove a film made of, for example, graphite formed on the electrode surface 4a. After performing this electrolytic processing a pre-calculated number of times (one to several times) by the CPU 46 based on the input data of the input device 13, the CPU
A control signal is sent from U46 to the polarity switching control unit 40, and the polarity switching device 41 is operated to switch the polarity of the pulse current supplied between the workpiece 2 and the electrode 4, so that the workpiece 2 is placed on the anode side and the electrode 4 is placed on the anode side. On the cathode side.
そして、電極4を上昇して被加工面2aと被加工面4a
間に電解液42を噴出させることにより、除去した前記
皮膜などを排除し、その後電極4を再び下降して被加工
面2aに対向接触させ、この点を原点Aとし、初期電極
間隙を保つ位置に電極4を上昇させ、電解液42が被加
工面2aと電極面4a間に満ちたら、そこを加工原点と
して仕上げ加工(第2の加工工程)を開始する。Then, the electrode 4 is raised to form a surface to be processed 2a and a surface to be processed 4a.
By spouting the electrolytic solution 42 in between, the removed film and the like are removed, and then the electrode 4 is lowered again to face-to-face contact with the workpiece surface 2a, and this point is set as the origin A, and the initial electrode gap is maintained. When the electrode 4 is raised and the electrolytic solution 42 fills between the surface to be processed 2a and the electrode surface 4a, finishing processing (second processing step) is started using this as the processing origin.
仕上げ加工の前期には、加工条件制御部10の制御信号
により、電源装置8から所定の電流密度のパルス電流、
例えばパルスのオン時間が10m5ec以下のパルス電
流を被加工物2と電極4間に供給する。これにより、被
加工面2a素材が溶出する。In the first half of finishing machining, a pulse current of a predetermined current density is supplied from the power supply device 8 according to a control signal from the machining condition control unit 10.
For example, a pulsed current with a pulse on time of 10 m5ec or less is supplied between the workpiece 2 and the electrode 4. As a result, the material of the processed surface 2a is eluted.
所定のパルス電流を1回ないし数回供給した後、モータ
駆動制御部9の信号によりモータ19を駆動して電極4
を上昇させ、電極面4aを被加工面2aから離間させる
。この離間により、被加工面2aと電極面4a間の電解
生成物を電解液42とともに電解液濾過装置14の電磁
弁45等の動作により排除する。After supplying a predetermined pulse current once or several times, the motor 19 is driven by a signal from the motor drive control unit 9 to
is raised to separate the electrode surface 4a from the surface to be processed 2a. Due to this separation, electrolytic products between the processed surface 2a and the electrode surface 4a are removed together with the electrolytic solution 42 by the operation of the electromagnetic valve 45 of the electrolytic solution filtering device 14, etc.
電解生成物を排除した後は、電極4が下降し、電極面4
hが被加工面2aに接触する。これにより、前記原点A
と現位置とを制御装置12で比較して加工1回(1パル
スまたは数パルス毎の加工)当りの加工深さを測定する
。その後、前記被加工面2aと電極面4aが所定の間隙
18を保つように電極4が再び上昇し、電解液層43内
の電解生成物を含まない電解液42を被加工面2aと電
極面4a間に満たすとともに、前記電極4が所定位置(
電極面4aが被加工面2aと所定の間隙18を保つ位置
)に達してから、電解液が静まる1〜5秒後にパルス電
流を供給して次の加工が行う。なお、電解液層43には
1回ないし数回の電解加工で生成した電解生成物ととも
に排除する電解液42を補うように、電解液濾過装置1
4のクリーンタンクから新鮮な電解液42が供給される
。After removing the electrolytic products, the electrode 4 is lowered and the electrode surface 4
h comes into contact with the processed surface 2a. As a result, the origin A
and the current position are compared by the control device 12 to measure the machining depth per machining (machining every one pulse or several pulses). Thereafter, the electrode 4 is raised again so that a predetermined gap 18 is maintained between the surface to be processed 2a and the electrode surface 4a, and the electrolyte 42 that does not contain electrolytic products in the electrolyte layer 43 is transferred between the surface to be processed 2a and the electrode surface. 4a, and the electrode 4 is at a predetermined position (
After the electrode surface 4a reaches a position at which a predetermined gap 18 is maintained between the electrode surface 4a and the surface to be processed 2a, and the electrolytic solution has calmed down for 1 to 5 seconds, a pulse current is supplied to perform the next processing. The electrolyte filtration device 1 is provided in the electrolyte layer 43 so as to supplement the electrolyte 42 that is removed together with the electrolytic products generated in one or several electrolytic processes.
Fresh electrolyte 42 is supplied from the clean tank 4.
このように、所定の間隙18を設けて対向した被加工面
2aと電極面4aとの間に電解液42を満たし、被加工
物2と電極4との間に10m5ec以下の所定のパルス
電流を供給して、被加工面2a素材を電解液42内に溶
出させた後、被加工面2aと電極面4a間に生成した電
解生成物を排除し、再び電極面4aを被加工面2aに接
触させることにより、加ニー回当りの加工深さを測定し
、ぞの値を累積するという一連の仕上げ加工工程を制御
装置l2の信号により所定回数繰り返す。In this way, the electrolytic solution 42 is filled between the workpiece surface 2a and the electrode surface 4a, which face each other with a predetermined gap 18, and a predetermined pulse current of 10 m5ec or less is applied between the workpiece 2 and the electrode 4. After supplying and dissolving the material of the surface 2a to be processed into the electrolytic solution 42, the electrolytic products generated between the surface 2a and the electrode surface 4a are removed, and the electrode surface 4a is brought into contact with the surface 2a to be processed again. By doing so, a series of finishing steps of measuring the machining depth per knee and accumulating each value is repeated a predetermined number of times according to a signal from the control device 12.
前記加工深さの累積値が、入力装置13で入力された入
力データに基づいて加工条件制御部lOで計算した加工
深さの設定値と比較し、加工深さ累積値が加工深さ設定
値に対し、所定の差(例えば1μm)以内になった時に
、CPU46が電流波形設定部38に制御信号を出力し
′、電源装置8のパルスを電流密度が仕上げ加工前期の
電流密度の273を越える電流密度、例えばパルスのオ
ン時間が15〜60m5ecと長いパルス電流に切換え
る。そして、この一定の電流密度のパルス電流で前述し
たと同様の方法により所定回数の加工を行い仕上げ加工
を終了する。The cumulative value of the machining depth is compared with the set value of the machining depth calculated by the machining condition control unit IO based on the input data inputted by the input device 13, and the cumulative value of the machining depth is determined as the set value of the machining depth. When the difference is within a predetermined value (for example, 1 μm), the CPU 46 outputs a control signal to the current waveform setting unit 38, and the current density of the pulses from the power supply device 8 exceeds 273, which is the current density in the first half of the finishing process. The current density, for example, the pulse on time is changed to a long pulse current of 15 to 60 m5ec. Then, machining is performed a predetermined number of times using this pulsed current having a constant current density in the same manner as described above, and finishing machining is completed.
次に、この発明に係る電解加工における仕上げ加工方法
による一加工例を示す。Next, an example of processing using the finishing method in electrolytic processing according to the present invention will be shown.
電 極 純銅
被加工物材質 工具鋼(面粗度20μm)電解液
硝酸ナトリウム溶液(濃度40%)
第1の加工工程
パルスオン時間 15m5ec
電流密度40A/ c m2
第2の加工工程(仕上げ加工工程)
仕上げ加工前期
パルスオン時間 5m5ec
電流密度17A/ c m2
仕上げ加工後期
パルスオン時間 15m5ec
電流密度4OA/ c m2
仕上げ面粗度 Rmax:1μm以下仕上げ面
鏡面状の光沢面
このように、この発明に係る電解加工による仕上げ加工
方法にあっては、本加工である放電加工時に電極の表面
に形成されたグラファイト等からなる皮膜を、電極4を
陽極側とする第1の加工工程により除去し、その後被加
工物2を陽極とする第2の加工工程により仕上げ加工を
行うため、仕上げ加工時に電極面4aが全域に亘り均一
な状態となり、被加工面2a全域の加工条件を均一にし
得て、被加工面2aに縞模様が発生することがない等、
良好な表面品質が得られる。また、加工装置1に、所望
形状に加工された被加工物2と電極4とを取付け、仕上
げ条件等を入力装置13により入力して起動すれば、鏡
面状光沢を呈した三次元金属曲面が無人で短時間に得ら
れ、その表面は、内部応力の蓄積や金属組織の変イビも
ないし、機械的亀裂の侵入といった変質も全く見られず
、加工前の熱処理品質も損なわれることがない等、現在
の金型加工で最も省力化が遅れている仕上げ加工分野で
、品質向上と機械化に大きな効果が得られる。Electrode Pure copper Workpiece material Tool steel (surface roughness 20μm) Electrolyte Sodium nitrate solution (concentration 40%) First machining process pulse-on time 15m5ec Current density 40A/cm2 Second machining process (finishing process) Finishing Pulse-on time in the first half of machining 5m5ec Current density 17A/cm2 Pulse-on time in the latter half of finishing machining 15m5ec Current density 4OA/cm2 Finished surface roughness Rmax: 1μm or less Finished surface
Mirror-like glossy surface As described above, in the finishing method by electrolytic machining according to the present invention, the film made of graphite or the like formed on the surface of the electrode during the main machining, electrical discharge machining, is removed from the electrode 4 on the anode side. The electrode surface 4a is removed in the first processing step and then finished in the second processing step using the workpiece 2 as an anode. The processing conditions can be made uniform over the entire area 2a, and striped patterns will not occur on the processed surface 2a, etc.
Good surface quality is obtained. Furthermore, by attaching a workpiece 2 processed into a desired shape and an electrode 4 to the processing device 1, inputting finishing conditions etc. through the input device 13, and starting the processing device 1, a three-dimensional metal curved surface with a mirror-like luster can be produced. It can be obtained unattended and in a short time, and the surface has no accumulation of internal stress, no change in metal structure, no deterioration such as penetration of mechanical cracks, and the quality of heat treatment before processing is not impaired. , it will have a significant effect on quality improvement and mechanization in the field of finishing processing, where labor savings are the slowest in current mold processing.
なお、上記実施例においては、極性の切換えを、極性切
換制御部400指令に基づいて自動的に極性切換器41
が作動するようにしたが、この発明はこれに何ら限定さ
れず、仕上げ加工前に、例えば入力装置13に設けたス
イッチ等により手動で極性切換器41を作動させてもよ
く、極性を切換える手段も上記の実施例に限定されるも
のではなく、適宜の手段を採用し得る。In the above embodiment, polarity switching is automatically performed by the polarity switching device 41 based on a command from the polarity switching control section 400.
However, the present invention is not limited thereto, and the polarity switch 41 may be operated manually by, for example, a switch provided in the input device 13 before finishing. However, the present invention is not limited to the above embodiments, and any suitable means may be adopted.
また、上記実施例における電極面4aと被加工面2a間
の電解生成物を排除するサイクルは、1パルス毎に行う
のが被加工面の全域に亘って最も安定しているが、例え
ば前加工のパルスのオン時間が1m5ecという短い場
合は、1パルスの加工で発生する電解生成物が少ないの
で、数パルス毎に排除することもできる。Furthermore, in the above embodiment, the cycle for eliminating electrolytic products between the electrode surface 4a and the surface to be processed 2a is performed every pulse, which is most stable over the entire area of the surface to be processed. When the on-time of the pulse is as short as 1 m5 ec, there are few electrolytic products generated in one pulse processing, so that they can be removed every few pulses.
[発明の効果]
以上詳細に説明したように、この発明に係る電解加工に
よる仕上げ加工方法にあっては、放電加工によって加工
した被加工物と放電加工に使用した電極とを加工液を介
して対設するとともに、前記被加工物と電極間にパルス
電流を供給し、被加工物と電極間に生成した電解生成物
を間欠的に除去しながら仕上げ加工を行うに際し、前記
電極を陽極とし前記被加工物を陰極とするパルスを供給
して加工する第1の加工工程と、該第1の加工工程後に
前記被加工物を陽極とし前記電極を陰極とするパルスを
供給して仕上げ加工する第2の加工工程とて構成したの
で、仕上げ加工に使用する電極の表面に形成されている
皮膜を除去し、電極面を均一な状態として仕上げ加工を
行うため、被加工面全域に亘り加工条件を均一にし得て
、被加工面に縞模様の発生等がなく、高精度かつ微小面
粗度の鏡面状光沢を呈した三次元金属表面を短時間に得
ることができる。また内部応力の蓄積や金属組織の変化
がなく機械的亀裂の侵入等の変質が全く見られず、加工
前の熱処理品質も損なわない表面を得ることができ、省
力化が遅れている金型加工分野での品質向上と機械化を
達成することができる。[Effects of the Invention] As explained in detail above, in the finishing method by electrolytic machining according to the present invention, the workpiece machined by electrical discharge machining and the electrode used for electrical discharge machining are connected via machining fluid. In addition, when performing finishing processing while supplying a pulse current between the workpiece and the electrode and intermittently removing electrolytic products generated between the workpiece and the electrode, the electrode is used as an anode. A first machining step in which a pulse is supplied with the workpiece as a cathode for machining; and after the first machining step, a final machining step is performed in which a pulse is supplied with the workpiece as an anode and the electrode as a cathode for final machining. Since the second processing step is configured, the processing conditions are adjusted over the entire surface to be processed in order to remove the film formed on the surface of the electrode used for finishing and to perform finishing with the electrode surface in a uniform state. It is possible to obtain a three-dimensional metal surface that is uniform, has no striped pattern on the processed surface, and exhibits a mirror-like luster with high precision and minute surface roughness in a short time. In addition, it is possible to obtain a surface that does not accumulate internal stress or change the metal structure, shows no deterioration such as the penetration of mechanical cracks, and does not impair the quality of heat treatment before processing. Quality improvement and mechanization in the field can be achieved.
第1図はこの発明を実施する仕上げ加工装置を示す正面
図、第2図は同装置の側面図、第3図は同装置の概略構
成図、第4図は電源装置を示すブロック図である。
1・・・加工装置、2・・・被加工物、40・電極、6
・・・電極駆動部、7・・・駆動変換部、8・・・電源
装置、9・・・モータ駆動制御部、lO・・・加工条件
制御部、11・・・加工液流制御部、12・・・制御装
置、13・・・人力装置、14・・・加工液濾過装置、
40・・・極性切換制御部、41・・・極性切換器、4
6・・・CPU。
第1111
第2図FIG. 1 is a front view showing a finishing device for implementing the present invention, FIG. 2 is a side view of the device, FIG. 3 is a schematic configuration diagram of the device, and FIG. 4 is a block diagram showing a power supply device. . DESCRIPTION OF SYMBOLS 1... Processing device, 2... Workpiece, 40, Electrode, 6
... Electrode drive unit, 7... Drive conversion unit, 8... Power supply device, 9... Motor drive control unit, lO... Processing condition control unit, 11... Processing liquid flow control unit, 12... Control device, 13... Human power device, 14... Processing liquid filtration device,
40...Polarity switching control section, 41...Polarity switching device, 4
6...CPU. 1111 Figure 2
Claims (1)
た電極とを電解液を介して対設するとともに、前記被加
工物と電極間にパルスを供給し、被加工物と電極間に生
成した電解生成物を間欠的に除去しながら仕上げ加工す
る仕上げ加工方法において、前記電極を陽極とし前記被
加工物を陰極とするパルスを供給して加工する第1の加
工工程と、該第1の加工工程後に前記被加工物を陽極と
し前記電極を陰極とするパルスを供給して加工する第2
の加工工程とからなる電解加工による仕上げ加工方法。A workpiece machined by electric discharge machining and an electrode used for electric discharge machining are placed opposite each other via an electrolyte, and a pulse is supplied between the workpiece and the electrode to generate electrolysis between the workpiece and the electrode. In a finishing method in which a product is finished while being intermittently removed, a first processing step of processing by supplying a pulse with the electrode as an anode and the workpiece as a cathode, and the first processing step Afterwards, a second process is performed by supplying a pulse that uses the workpiece as an anode and the electrode as a cathode.
A finishing method using electrolytic processing, which consists of the following processing steps.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119943A JPS63283817A (en) | 1987-05-15 | 1987-05-15 | Finishing method by electro-chemical machining |
US07/182,808 US4842702A (en) | 1987-04-23 | 1988-04-18 | Method for finishing a work |
KR1019880004478A KR920007643B1 (en) | 1987-04-23 | 1988-04-20 | Method for finishing work |
CA000564638A CA1325403C (en) | 1987-04-23 | 1988-04-20 | Method for finishing a work |
EP88303601A EP0289215A3 (en) | 1987-04-23 | 1988-04-21 | Electrolytic finishing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62119943A JPS63283817A (en) | 1987-05-15 | 1987-05-15 | Finishing method by electro-chemical machining |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63283817A true JPS63283817A (en) | 1988-11-21 |
Family
ID=14774013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62119943A Pending JPS63283817A (en) | 1987-04-23 | 1987-05-15 | Finishing method by electro-chemical machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63283817A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198716A (en) * | 1989-01-24 | 1990-08-07 | Shizuoka Seiki Co Ltd | Electrolytic finishing method |
CN104227158A (en) * | 2014-07-31 | 2014-12-24 | 章华 | Machining method of double-flap type check-valve supporting-seat square positioning slot |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5211940A (en) * | 1975-07-18 | 1977-01-29 | Agency Of Ind Science & Technol | Hologram regeneration apparatus |
JPS5953123A (en) * | 1982-09-14 | 1984-03-27 | Mitsubishi Electric Corp | Electric discharge machining device |
-
1987
- 1987-05-15 JP JP62119943A patent/JPS63283817A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5211940A (en) * | 1975-07-18 | 1977-01-29 | Agency Of Ind Science & Technol | Hologram regeneration apparatus |
JPS5953123A (en) * | 1982-09-14 | 1984-03-27 | Mitsubishi Electric Corp | Electric discharge machining device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198716A (en) * | 1989-01-24 | 1990-08-07 | Shizuoka Seiki Co Ltd | Electrolytic finishing method |
CN104227158A (en) * | 2014-07-31 | 2014-12-24 | 章华 | Machining method of double-flap type check-valve supporting-seat square positioning slot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6558231B1 (en) | Sequential electromachining and electropolishing of metals and the like using modulated electric fields | |
US3616343A (en) | Electrochemical machining method | |
JPS62255013A (en) | Electro-chemical machining device | |
JPH01257520A (en) | Machining method for electrolyte finishing | |
JPS63283817A (en) | Finishing method by electro-chemical machining | |
US4883568A (en) | Finishing method employing electro-chemical process | |
JPS63283818A (en) | Finishing method by electro-chemical machining | |
KR920007643B1 (en) | Method for finishing work | |
JPS63306824A (en) | Finish machining method by electro-chemical machining | |
JPS63196321A (en) | Finishing method by electro-chemical machining and device therefore | |
US4861450A (en) | Power supply system for electrolytic processing apparatus | |
JPS63267118A (en) | Finishing method by electrochemical machining | |
JP2879124B2 (en) | Finishing method by electrolytic processing | |
JPS63306825A (en) | Machining gap control device for electro-chemical machine | |
SU841887A1 (en) | Method and apparatus for electroerosion treatment of metals | |
JPH01121123A (en) | Finishing erosion method by electro-chemical machining | |
JPH01135418A (en) | Finishing method by electrochemical machining | |
Crichton et al. | Theoretical, experimental and computational aspects of the electrochemical arc machining process | |
JPS63267120A (en) | Finishing method by electrochemical machining | |
KR900009195A (en) | Electro finish processing method | |
JPH0265921A (en) | Finishing working through electrolytic working | |
JPH01252317A (en) | Electrolytic finish-machining method | |
JPH02106222A (en) | Method of electrolytic finishing work | |
JPH01228725A (en) | Working method of electrolytic finish | |
JPH07100259B2 (en) | Finishing method by electrolytic processing |