JPS63267120A - Finishing method by electrochemical machining - Google Patents

Finishing method by electrochemical machining

Info

Publication number
JPS63267120A
JPS63267120A JP62100291A JP10029187A JPS63267120A JP S63267120 A JPS63267120 A JP S63267120A JP 62100291 A JP62100291 A JP 62100291A JP 10029187 A JP10029187 A JP 10029187A JP S63267120 A JPS63267120 A JP S63267120A
Authority
JP
Japan
Prior art keywords
machining
finishing
electrode
workpiece
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62100291A
Other languages
Japanese (ja)
Inventor
Yohei Kuwabara
桑原 陽平
Teruo Asaoka
浅岡 輝雄
Yasuhiro Iwasaki
康宏 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP62100291A priority Critical patent/JPS63267120A/en
Priority to US07/111,237 priority patent/US4800006A/en
Priority to CA000550499A priority patent/CA1321978C/en
Priority to EP87309502A priority patent/EP0266180B1/en
Priority to DE8787309502T priority patent/DE3783013T2/en
Priority to KR1019870012019A priority patent/KR910000511B1/en
Publication of JPS63267120A publication Critical patent/JPS63267120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To form a three-dimensional form surface of hard-cut metals into mirror-finishing form by setting current density at the half period to less than 2/3 of that at the latter period, in case of a method for finishing as removing an electrolytic product formed between a workpiece and a tool electrode. CONSTITUTION:At the first period of finishing work, a pulse current of 5A/ cm<2>-20A/cm<2> in current density is fed to a gap between a workpiece 2 and an electrode 4 from a power unit 8 by a control signal out of a working condition control part 10, thus the workpiece is machined. And, after raw material is eluted, an electrolytic product is removed together with dielectric fluid 41 by operation of a solenoid valve 50. Next, the fresh dielectric fluid 41 is fill up, a series of processes is repeated by a signal of a controller 12. Afterward, when machining depth accumulated value becomes within the specified difference to the setting value, it is changed over to the pulse current of more than about 30A/cm<2> in current density. With this constitution, such a three-dimensional metal curved surface that showed a mirror-like gloss of highly accurate and fine surface roughness is securable in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解加工による仕上げ加工方法に係り、特
に難削金属等からなる被加工物の三次元形状の被加工面
を短時間かつ高精度に仕上げて鏡面状の光沢面を得るこ
とができる電解加工による仕上げ加工方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a finishing method using electrolytic machining, and in particular to a method for finishing a three-dimensionally shaped workpiece made of a difficult-to-cut metal in a short time and with high precision. The present invention relates to a finishing method using electrolytic machining that allows for finishing with high precision and obtaining a mirror-like glossy surface.

[従来の技術] 従来の金属加工方法としては、電解加工方法及び放電加
工方法が知られている。前者の電解加工方法としては、
被加工物と加工電極との間隙に硝酸ナトリウムや塩化ナ
トリウム等の電解液を満たし、この電解液を高速で流す
とともに、安定した電解作用を阻害する電解生成物、す
なわち溶出した金属化合物や金属イオン及び水素ガス等
を除去しながら、直流電流を被加工物から加工電極に流
して加工するものが、例えば特開昭61−71921号
公報及び特開昭60−44228号公報に開示されてい
る。
[Prior Art] As conventional metal processing methods, electrolytic machining methods and electric discharge machining methods are known. The former electrolytic processing method is
The gap between the workpiece and the processing electrode is filled with an electrolytic solution such as sodium nitrate or sodium chloride, and this electrolytic solution is flowed at high speed to remove electrolytic products that inhibit stable electrolytic action, such as eluted metal compounds and metal ions. For example, JP-A-61-71921 and JP-A-60-44228 disclose a method in which a DC current is passed from a workpiece to a processing electrode while removing hydrogen gas and the like.

また、後者の放電加工方法としては、被加工物と加工電
極とを水、ケロシン等の加工液中で微小間隙をもって対
向させ、かつこれらを適宜の電源に接続して、前記間隙
に瞬発する火花放電や過渡アーク放電を発生させ、該放
電エネルギーにより被加工物を加工するものが、例えば
特公昭6〇−26646号公報及び特開昭60−177
819号公報に開示されている。
In the latter electric discharge machining method, the workpiece and the machining electrode are opposed to each other with a small gap in a machining liquid such as water or kerosene, and they are connected to an appropriate power source, and sparks are generated instantaneously in the gap. For example, Japanese Patent Publication No. 60-26646 and Japanese Unexamined Patent Application Publication No. 60-177 disclose methods that generate electrical discharge or transient arc discharge and process a workpiece using the electrical discharge energy.
It is disclosed in Publication No. 819.

[発明が解決しようとする問題点コ しかしながら、前者の電解加工方法にあっては、機械加
工手段として致命的な欠陥がある。すなわち、特に三次
元形状の底付き加工(凹窩状に形成された三次元構造の
ものに対する加工をいう)において、複雑な輪郭形状を
有する被加工物と加工電極の間隙に電解液を一様な流速
で流すのが不可能で電解液の供給に差が生じ、位置によ
って電解生成物の濃度が変わり、また、前記間隙に高い
液圧を作用させても電解液の流入口と排出口とでは電解
生成物の濃度が変わる。そのため、一様な密度の電流を
与えても、前記間隙の各部分で加工条件、特に加工の進
行速度が変わって間隙寸法に差異が生じ、被加工物に加
工電極の精密な転写を行うことが困難で、高精度の表面
品質が得られないという不都合があった。
[Problems to be Solved by the Invention] However, the former electrolytic machining method has a fatal flaw as a machining means. In other words, especially in bottom machining of three-dimensional shapes (machining of three-dimensional structures formed in the shape of concave holes), the electrolyte is uniformly applied to the gap between the workpiece, which has a complex contour, and the machining electrode. It is impossible to flow the electrolyte at a constant flow rate, resulting in differences in the supply of electrolyte, the concentration of electrolyzed products changes depending on the position, and even if high liquid pressure is applied to the gap, the inlet and outlet of the electrolyte The concentration of electrolyzed products changes. Therefore, even if a current with a uniform density is applied, the machining conditions, especially the machining progress speed, change in each part of the gap, resulting in differences in the gap dimensions, making it difficult to accurately transfer the machining electrode to the workpiece. However, it is difficult to obtain high-precision surface quality.

また、素材形状から全ての加工を電解加工で行うと、多
量の電解生成物を含む電解液が発生してその汚水処理に
時間とコストを要するという不都合があり、特にクロム
を含むステンレス鋼の加工では、有害な6価クロムが生
じて前記不都合は一層顕著であった。
In addition, if all machining from the shape of the material is done by electrolytic machining, an electrolytic solution containing a large amount of electrolytic products will be generated, which requires time and cost to dispose of the wastewater, which is particularly inconvenient when machining stainless steel containing chromium. In this case, harmful hexavalent chromium was produced, and the above-mentioned disadvantages were even more remarkable.

一方、後者の放電加工方法においては、面粗度をRma
x : 20μm程度にまで仕上げるのには比較的高能
率であるが、それ以上の仕上げ面粗度に到達させるには
IA以下の微小電流での加工となり、特に表面積の大き
な被加工物では、仕上げ時間が長くかかり非能率である
とともに、表面積が大きいと被加工物の被加工面と加工
電極間の静電容量が大きくなり、放電電流を微小に絞り
ぎれずに良好な面粗度を得ること力1困難であるという
不都合があった。
On the other hand, in the latter electric discharge machining method, the surface roughness is Rma
x: Relatively high efficiency for finishing to about 20 μm, but to achieve a finished surface roughness higher than that, a microcurrent of less than IA is required, especially for workpieces with a large surface area. In addition to being time-consuming and inefficient, if the surface area is large, the capacitance between the surface of the workpiece and the machining electrode becomes large, making it difficult to narrow down the discharge current to a minute level to obtain good surface roughness. There was an inconvenience that it was difficult to use.

また、加工された表面は、絶縁油を用いた通常の放電加
工では、硬化した変質層が生じるとともに熱応力による
微細亀裂が深く侵入し、また純水を用いたワイヤー放電
加工では軟化層が生じるなど、両放電加工とも表面品質
が好ましくなく、そのため、表面品質に高精度や長寿命
を要求する使用条件にあっては、形状精度が損なわれる
のを承知で、手動による表面研摩工程を行っており、表
面仕上げに多くの時間と労力を要するという不都合があ
った。
In addition, in normal electric discharge machining using insulating oil, a hardened altered layer is created and micro-cracks due to thermal stress penetrate deeply into the machined surface, and in wire electric discharge machining using pure water, a softened layer is created. The surface quality of both types of electrical discharge machining is unfavorable. Therefore, under conditions of use that require high precision and long service life for the surface quality, manual surface polishing is performed, even though the shape accuracy will be compromised. This has the disadvantage that surface finishing requires a lot of time and effort.

[発明の目的コ そこでこの発明は、上記不都合を除去し、特に難削金属
等の液加、工物の三次元形状の被加工面を短時間かつ高
精度に仕上げて鏡面状の光沢面を得ることができる電解
加工による仕上げ加工方法を実現するにある。
[Purpose of the invention] Therefore, this invention eliminates the above-mentioned inconveniences, and provides a method for finishing three-dimensionally shaped surfaces of workpieces, especially by liquid machining of difficult-to-cut metals, in a short period of time and with high precision, to create a mirror-like glossy surface. The objective is to realize a finishing method using electrolytic machining that can obtain the desired results.

[問題点を解決するための手段] この目的を達成するためにこの発明は、加工液を介して
対設した被加工物と加工電極間にパルス電流を供給する
とともに、前記被加工物と加工電極間に生成した電解生
成物を間欠的に除去しながら仕上げ加工する仕上げ加工
方法において、前記パルス電流の電流密度を、仕上げ加
工の前期と後期とで異ならせるとともに、仕上げ加工前
期の電流密度を仕上げ加工後期の電流密度の2/3以下
に設定することを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention supplies a pulse current between a workpiece and a machining electrode that are disposed opposite to each other via a machining fluid, and In a finishing method that performs finishing while intermittently removing electrolytic products generated between electrodes, the current density of the pulsed current is made different between the first and second stages of finishing, and the current density in the first half of finishing is changed. It is characterized by setting the current density to 2/3 or less of the current density in the latter half of the finishing process.

[作用] この発明の構成によれば、仕上げ加工前期の電流密度の
低いパルス電流により高精度かつ微小面粗度の表面品質
を得ることができ、仕上げ加工後期の電流密度が高いパ
ルス電流により面粗度を変えることなく鏡面状の光沢面
を得ることができる。
[Function] According to the configuration of the present invention, surface quality with high precision and micro surface roughness can be obtained by using a pulsed current with a low current density in the early stage of finishing, and surface quality with high current density can be obtained in the latter half of finishing. A mirror-like glossy surface can be obtained without changing the roughness.

[実施例コ 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜6図は、この発明の一実施例を示す。第1〜3図
において、1はこの発明に係る仕上げ加工方法を実施し
得る仕上げ加工装置で、この装置1は、被加工物2を固
定する被加工物固定装置3、電極4を固定する電極固定
装置5、電極駆動部6の回転運動を往復運動に変換する
駆動変換部7、パルス電流を発生する電源装置8、モー
タ駆動制御部9と加工条件制御部10と加工液流制御部
11とからなる制御装置12、加工条件を入力する入力
装置13、加工液濾過装置14、加工液飛散防止カバー
15等からなる。
1 to 6 show one embodiment of this invention. In FIGS. 1 to 3, reference numeral 1 denotes a finishing device capable of implementing the finishing method according to the present invention, and this device 1 includes a workpiece fixing device 3 for fixing a workpiece 2, and an electrode for fixing an electrode 4. A fixing device 5, a drive conversion section 7 that converts the rotational motion of the electrode drive section 6 into a reciprocating motion, a power supply device 8 that generates a pulse current, a motor drive control section 9, a machining condition control section 10, and a machining fluid flow control section 11. The control device 12 includes a control device 12, an input device 13 for inputting machining conditions, a machining fluid filtration device 14, a machining fluid scattering prevention cover 15, and the like.

前記被加工物固定装置3は、絶縁性の高いグラナイトも
しくはセラミックスからなり、例えば水平面上でX−Y
方向に移動可能なテーブルで、被加工物2をポル)16
等により固定する。また、前記電極固定装置5は、その
下部に設けたロッド17の下端に、例えば純銅もしくは
グラファイトからなる電極4を、その電極面4aと前記
被加工物2の被加工面2aとが三次元方向に一様な間隙
18を保つように固定する。そして、前記電極固定装置
5は、電極駆動手段を構成する前記電極駆動部6と駆動
変換部7とにより前記間隙18を所定値に設定すべく上
下動する。すなわち、電極駆動部6のロータリーエンコ
ーダ20とタコジェネレータ21からの信号により前記
制御装置12のモータ駆動制御部9から出力される制御
信号により、モータ19を回転制御し、このモータ19
の回転運動を駆動変換部7により往復運動に変換して、
前記電極固定装置5を上下動させ、電極面4aと被加工
面2aとを所定の間隙18に設定する。
The workpiece fixing device 3 is made of highly insulating granite or ceramics, and is, for example,
A table that can be moved in the direction (pol) 16
Fix it by etc. Further, the electrode fixing device 5 has an electrode 4 made of, for example, pure copper or graphite attached to the lower end of a rod 17 provided at its lower part, so that the electrode surface 4a and the processed surface 2a of the workpiece 2 are aligned in a three-dimensional direction. and fix it so that a uniform gap 18 is maintained. The electrode fixing device 5 is moved up and down to set the gap 18 to a predetermined value by the electrode drive section 6 and drive conversion section 7, which constitute electrode drive means. That is, the rotation of the motor 19 is controlled by control signals output from the motor drive control section 9 of the control device 12 based on signals from the rotary encoder 20 and the tacho generator 21 of the electrode drive section 6, and the motor 19 is rotated.
The rotational motion of is converted into a reciprocating motion by the drive converter 7,
The electrode fixing device 5 is moved up and down to set a predetermined gap 18 between the electrode surface 4a and the surface to be processed 2a.

前記被加工物2と電極4間に電流密度が70A/cm”
以下の所定のパルス電流を供給する電流供給手段として
の電源装置8は、加工条件制御部10からの制御信号に
より、被加工物20表面積に従って計算した電流密度の
パルス電流を発生するもので、直流電源部22と充放電
部23とを有し、例えは第4図に示す如く構成する。第
4図において、充放電部23は、放電部24と充電部2
5とを有し、放電部24は、蓄電器26−1〜26−n
とダイオード27−1〜27−nと放電スイッチ28−
1〜28−n等からなり、充電部25は、電圧検出器2
9と電圧比較器31と充電スイッチ32等からなる。ま
た直流電源部22は、変圧器33と整流器34とからな
り、直流電流を前記蓄電器26−1〜26−nに供給す
る。
The current density between the workpiece 2 and the electrode 4 is 70A/cm"
The power supply device 8, which serves as a current supply means for supplying the following predetermined pulse current, generates a pulse current with a current density calculated according to the surface area of the workpiece 20 in response to a control signal from the processing condition control unit 10, and is a direct current. It has a power source section 22 and a charge/discharge section 23, and is configured as shown in FIG. 4, for example. In FIG. 4, the charging/discharging section 23 includes a discharging section 24 and a charging section 2.
5, and the discharge section 24 has power storage devices 26-1 to 26-n.
, diodes 27-1 to 27-n, and discharge switch 28-
1 to 28-n, etc., and the charging section 25 includes the voltage detector 2
9, a voltage comparator 31, a charging switch 32, etc. Further, the DC power supply unit 22 includes a transformer 33 and a rectifier 34, and supplies DC current to the capacitors 26-1 to 26-n.

この電源装置8を制御する加工条件制御部10は、前記
V電器26−1〜26−nの充電電圧を設定する充電電
圧設定器30と、被加工物2と電極4との間隙18に放
電する電荷の電流波形を設定する電流波形設定器35と
、放電する電荷の所定時間幅のパルスを発生するパルス
発生器36と、前記放電スイッチ28−1〜28−nに
開閉信号を出力するゲート回路37等からなる。
A processing condition control unit 10 that controls the power supply device 8 includes a charging voltage setting device 30 that sets charging voltages of the V electric appliances 26-1 to 26-n, and a charging voltage setting device 30 that sets charging voltages of the V electric devices 26-1 to 26-n, and a charging voltage setting device 30 that discharges electricity into the gap 18 between the workpiece 2 and the electrode 4. A current waveform setting device 35 that sets the current waveform of the charge to be discharged, a pulse generator 36 that generates a pulse of a predetermined time width of the charge to be discharged, and a gate that outputs an opening/closing signal to the discharge switches 28-1 to 28-n. It consists of circuit 37 etc.

前記人力装置13は、被加工物の材質と表面積、仕上げ
加工しろと寸法精度の等級、仕上げ面粗度及び初期電極
間隙等を入力し、これらの各信号を制御装置12のモー
タ駆動制御部9及び加工条件制御部10に出力する。
The human power device 13 inputs the material and surface area of the workpiece, the finishing margin and dimensional accuracy grade, the finished surface roughness, the initial electrode gap, etc., and sends these signals to the motor drive control section 9 of the control device 12. and output to the processing condition control section 10.

前記加工液濾過装置14は、加工で生じた電解生成物を
含む加工液41を濾過するもので、例えば第6図の如く
構成する。すなわち、加工液濾過装置14は、加工液槽
40からの電解生成物多く含んだ戻り加工液を貯留する
ダーティタンク42と、このダーティタンク42の加工
液を電磁ポンプ43で汲み上げフィルタ44を通してか
ら遠心分離する遠心分離ja45と、この遠心分離機4
5で分離した電解生成物を含まない加工液を貯留するク
リーンタンク46と、このクリーンタンク46の加工液
を汲み上げる電磁ポンプ47と、加工液槽40への液圧
を調整するための絞り弁48.49と、クリーンタンク
46からの加工液を被加工物2と電極4の間隙に噴出さ
せることにより、該間隙に生じた電解生成物等を排する
電磁弁50と、加工液槽40へ供給する加工液の液圧を
測定指示する液・圧計51等からなる。なお、図中52
.53はダーティタンク42の液面を検出する上限フロ
ートスイッチ及び下限フロートスイッチ、54は遠心分
離機45を駆動するモータである。
The machining fluid filtration device 14 filters the machining fluid 41 containing electrolytic products generated during machining, and is configured as shown in FIG. 6, for example. That is, the machining fluid filtration device 14 includes a dirty tank 42 that stores the returned machining fluid containing a large amount of electrolytic products from the machining fluid tank 40, and the machining fluid in the dirty tank 42 is pumped up by an electromagnetic pump 43, passed through a filter 44, and then centrifuged. Centrifuge ja45 to separate and this centrifuge 4
A clean tank 46 that stores the machining fluid that does not contain electrolytic products separated in step 5, an electromagnetic pump 47 that pumps up the machining fluid from the clean tank 46, and a throttle valve 48 that adjusts the fluid pressure to the machining fluid tank 40. .49, a solenoid valve 50 that discharges electrolysis products generated in the gap by jetting the machining fluid from the clean tank 46 into the gap between the workpiece 2 and the electrode 4, and supplying the machining fluid to the machining fluid tank 40. It consists of a liquid/pressure gauge 51 etc. that measures and instructs the liquid pressure of the machining liquid. In addition, 52 in the figure
.. 53 is an upper limit float switch and a lower limit float switch that detect the liquid level of the dirty tank 42; 54 is a motor that drives the centrifugal separator 45;

この加工液濾過装置14を制御する加工液流制御部11
は、加工条件制御部10からの制御信号に基づいて、加
工液槽40へ加工液を一定の液圧で供給するとともに、
加工中に被加工面2aと電極面4a間に生成した電解生
成物等を排除するために、1パルスまたは数パルス毎に
上昇動作する電極4と同期して被加工物2と電極4間に
新鮮な加工液を噴出する如く電磁ポンプ43.47、絞
り弁48.49及び電磁弁50等を制御する。
Processing fluid flow control section 11 that controls this processing fluid filtration device 14
supplies machining fluid at a constant pressure to the machining fluid tank 40 based on a control signal from the machining condition control unit 10,
In order to eliminate electrolytic products generated between the workpiece surface 2a and the electrode surface 4a during machining, the electrode 4 moves upward every pulse or several pulses, and in synchronization with the workpiece 2 and the electrode 4. The electromagnetic pumps 43, 47, throttle valves 48, 49, electromagnetic valves 50, etc. are controlled so as to spout fresh machining fluid.

次に、この装置による仕上げ加工方法について説明する
Next, a finishing method using this apparatus will be explained.

仕上げ加工に際しては、電極固定装置50ロツド17の
下端に電極4を取付け、この電極4を下降してその電極
面4aを、電解加工あるいは放電加工により所望形状に
加工され、被加工物固定装置3に固定された、例えば熱
処理を行った特殊鋼等からなる被加工物2の被加工面2
aに対向接触させ、電極4を被加工物2とともに加工液
槽40の加工液41内に浸漬する。そしてこの位置を原
点Aとし、初期電極間隙に保つ位置に電極4を上昇し、
加工液が被加工面2aと電極面4a間に満ちたら、そこ
を加工原点として仕上げ加工を開始する。
During finishing, the electrode 4 is attached to the lower end of the rod 17 of the electrode fixing device 50, and the electrode 4 is lowered and its electrode surface 4a is machined into a desired shape by electrolytic machining or electrical discharge machining, and then the workpiece fixing device 3 A workpiece surface 2 of a workpiece 2 made of, for example, heat-treated special steel, fixed to the
a, and the electrode 4 and the workpiece 2 are immersed in the machining liquid 41 of the machining liquid tank 40. Then, taking this position as the origin A, raise the electrode 4 to a position that maintains the initial electrode gap,
When the machining liquid fills between the surface to be machined 2a and the electrode surface 4a, finishing machining is started using this as the machining origin.

仕上げ加工前期(仕上げ加工開始から後述する加工深さ
の累積値が所定値になるまで)は、加工条件制御部10
0制御信号により、電源装置8から電流密度が5A/c
m2〜20A/cm2(例えば17A/cm2)で、後
述する仕上げ加工後期の電流密度の三分の二(2/3)
以下で、かつパルスのオンタイム(第5図のton)が
例えば5msec(1msecは1/1000秒)程度
(但し10msec以下)のパルス電流を被加工物2と
電極4間に供給する。
During the first half of finishing machining (from the start of finishing machining until the cumulative value of machining depth, which will be described later, reaches a predetermined value), the machining condition control unit 10
0 control signal, the current density from the power supply 8 is 5A/c.
m2 to 20A/cm2 (e.g. 17A/cm2), two-thirds (2/3) of the current density in the later stage of finishing, which will be described later.
A pulsed current with a pulse on time (ton in FIG. 5) of about 5 msec (1 msec is 1/1000 second) (however, 10 msec or less) is supplied between the workpiece 2 and the electrode 4.

これにより、被加工面2a素材が溶出する。所定のパル
ス電流を1回ないし数回供給した後、モータ駆動制御部
9の信号によりモータ19を駆動して電極4を上昇させ
、電極面4aを被加工面2aから離間させる。この離間
により、被加工面2aと電極面4a間の電解生成物を加
工液とともに後述する加工液濾過装置14の電磁弁50
等の動作により排除する。
As a result, the material of the processed surface 2a is eluted. After supplying a predetermined pulse current once or several times, the motor 19 is driven by a signal from the motor drive control section 9 to raise the electrode 4 and separate the electrode surface 4a from the surface to be processed 2a. Due to this separation, the electrolytic products between the processed surface 2a and the electrode surface 4a are removed together with the processing fluid by the electromagnetic valve 50 of the processing fluid filtration device 14, which will be described later.
Eliminate by such actions.

電解生成物を排除した後は、電極4が下降し、電極面4
aが被加工面2aに接触する。これにより、前記原点A
と現位置とを制御装置12で比較して加工1回(1パル
スまたは数パルス毎の加工)当りの加工深さを測定する
。その後、前記被加工面2aと電極面4aが所定の間隙
を保つように電極4が再び上昇し、加工液層40内の電
解生成物を含まない加工液を被加工面2aと電極面4a
間に満たす。なお、この場合、加工液N40には1回な
  。
After removing the electrolytic products, the electrode 4 is lowered and the electrode surface 4
a contacts the processed surface 2a. As a result, the origin A
and the current position are compared by the control device 12 to measure the machining depth per machining (machining every one pulse or several pulses). Thereafter, the electrode 4 is raised again so that a predetermined gap is maintained between the surface to be processed 2a and the electrode surface 4a, and the machining fluid that does not contain electrolytic products in the machining liquid layer 40 is transferred between the surface to be machined 2a and the electrode surface 4a.
Fill in between. In this case, the machining fluid N40 is applied only once.

いし数回の電解加工で生成した電解生成物とともに排除
する加工液を補うように、加工液濾過装置14のクリー
ンタンク46から新鮮な加工液が供給される。
Fresh machining fluid is supplied from the clean tank 46 of the machining fluid filtration device 14 to supplement the machining fluid that is removed together with the electrolytic products generated in several electrolytic machining cycles.

このように、所定の間隙18を設けて対向した被加工面
2aと電極面4aとの間に電解生成物を含まない加工液
を満たし、被加工物2と電極4との間に所定のパルス電
流を供給して、被加工面2a素材を加工液41内に溶出
させ、被加工面2aと電極面4a間に生成した電解生成
物を排除し、再び電極面4aを被加工面2aに接触させ
ることにより、加工1回当りの加工深さを測定し、その
値を累積するという一連の工程を制御装置12の信号に
より繰り返す。
In this way, a machining fluid containing no electrolytic products is filled between the workpiece surface 2a and the electrode surface 4a, which face each other with a predetermined gap 18, and a predetermined pulse is applied between the workpiece 2 and the electrode 4. A current is supplied to dissolve the material of the processed surface 2a into the processing liquid 41, eliminate the electrolytic products generated between the processed surface 2a and the electrode surface 4a, and bring the electrode surface 4a into contact with the processed surface 2a again. By doing so, a series of steps of measuring the machining depth per machining and accumulating the values is repeated according to a signal from the control device 12.

前記加工深さの累積値が、入力装置13で入力した入力
データに基づいて加工条件制御部lOで計算された加工
深さの設定値と比較し、加工深さ累積値が加工深さ設定
値に対し、所定の差(例えば1μm)以内になった時に
、加工条件制御部lOの制御信号により電源装置8のパ
ルス電流の電流密度を30A/cm2以上(例えば4O
A/cm”)でパルスのオンタイムtonが5msec
程度(10msec以下)のパルス電流に切換える。こ
の場合仕上げ加工前期と後期のパルス電流のオンタイム
tonは、必要に応じて10m5eC以内で切換えるこ
ともできる。
The cumulative value of the machining depth is compared with the set value of the machining depth calculated by the machining condition control unit IO based on the input data inputted by the input device 13, and the cumulative value of the machining depth is determined as the set value of the machining depth. , when the difference is within a predetermined value (for example, 1 μm), the current density of the pulse current of the power supply device 8 is set to 30 A/cm2 or more (for example, 4 O
A/cm”) and the pulse on-time ton is 5 msec.
(10 msec or less) pulse current. In this case, the on-time ton of the pulse current in the first half and the second half of the finishing process can be switched within 10 m5eC if necessary.

そして、このパルス電流で1回ないし数回の電解加工を
行うが、その際、パルス電流のパルス波形は矩形波に近
いほうが好ましく、特に仕上げ面に光沢を発生させる加
工においては、第5図(A)に示すようにパルス波形の
終端部イで30A/cm2以上の電流密度を維持させる
ことが必要であり、第5図(B)のようにパルス波形の
中間部口で必要以上の電流密度が達成されていても、終
端部イで30A/cm2以下となるパルス波形では光沢
が得られないことが実験によって確認されている。
Then, electrolytic machining is performed once or several times using this pulsed current. At that time, it is preferable that the pulse waveform of the pulsed current be close to a rectangular wave. Especially in machining that produces gloss on the finished surface, As shown in A), it is necessary to maintain a current density of 30 A/cm2 or more at the end of the pulse waveform, and as shown in Figure 5 (B), it is necessary to maintain a current density of 30 A/cm2 or more at the end of the pulse waveform. It has been confirmed through experiments that even if this is achieved, gloss cannot be obtained with a pulse waveform of 30 A/cm2 or less at the terminal end A.

この−回ないし数回の仕上げ加工後に、前述したと同様
、被加工面2aと電極面4aとの間の電解生成物を加工
液濾過装置14により排除する。この場合、電解生成物
を排除するサイクルは、印加するパルスのオンタイム(
但し、−回の加工に数パルスを加える場合は、パルスの
オフタイムも含む)が仕上げ前期と同じてあれば、電流
密度の大きさに依存する。なお、パルス電流を切換える
タイミングの検出は、上記の加工深さの累積値と加工深
さ設定値との比較による検出に限らず、例えば加工しろ
から加工終了するまでのクーロン量を計算してこの値に
より検出制御することもできる。
After this finishing process is completed one or more times, the electrolytic products between the processed surface 2a and the electrode surface 4a are removed by the processing fluid filtering device 14, as described above. In this case, the cycle for eliminating electrolysis products is determined by the on-time of the applied pulse (
However, if several pulses are added to the second machining process (including the off-time of the pulses), it depends on the magnitude of the current density, provided that the pulse off time is the same as in the first half of finishing. Note that the detection of the timing to switch the pulse current is not limited to detection by comparing the cumulative value of the machining depth and the machining depth set value as described above, but also by calculating the coulomb amount from the machining allowance to the end of machining, and detecting this value. Detection can also be controlled by

ここで、加工液濾過装置14の動作について説明する。Here, the operation of the machining fluid filtration device 14 will be explained.

加工液槽40から戻る電解生成物を含んだ加工液は、ダ
ーティタンク42に貯留され、その液面レベルは、上・
下のフロートスイッチ52.53で検出されて加工液流
制御部11に入力される。加工液流制御部11は、ダー
ティタンク42内の液面レベルが所定値に達したら、即
ち液面レベルが上・下のフロートスイッチ52.53間
にある時、電磁ポンプ43に駆動信号を出力し、ダーテ
ィタンク42内の加工液を汲み上げ、フィルタ44を通
して遠心分離機45に送出する。
The machining fluid containing electrolytic products returned from the machining fluid tank 40 is stored in a dirty tank 42, and its liquid level is above and below.
It is detected by the lower float switches 52 and 53 and input to the machining fluid flow control section 11. The processing liquid flow control unit 11 outputs a drive signal to the electromagnetic pump 43 when the liquid level in the dirty tank 42 reaches a predetermined value, that is, when the liquid level is between the upper and lower float switches 52 and 53. Then, the processing fluid in the dirty tank 42 is pumped up and sent to the centrifuge 45 through the filter 44.

遠心分離機45は、加工液流制御部11の制御信号によ
りモータ54が回転し、加工液を分離する。そして、分
離され電解生成物を含まない加工液は、クリーンタンク
46に貯留され、加工条件制御部10からの信号により
、加工液流制御部11が電磁ポンプ47、絞り弁48.
49、電磁弁50に制御信号を送り、加工液がクリーン
タンクから汲み上げられて加工液槽40に流入する。
In the centrifugal separator 45, a motor 54 rotates in response to a control signal from the machining fluid flow control section 11 to separate the machining fluid. The separated machining fluid that does not contain electrolytic products is stored in a clean tank 46 , and the machining fluid flow control section 11 controls the electromagnetic pump 47 , the throttle valve 48 .
49. Send a control signal to the solenoid valve 50, and the machining fluid is pumped up from the clean tank and flows into the machining fluid tank 40.

この場合、クリーンタンク46と加工液槽40との間に
液圧を測定指示する液圧計51と、紋り弁48.49を
設け、液圧計の液圧が加工液流制御部11の設定値に対
し低い場合は、加工液槽40側の紋り弁48の開閉度を
大きくするとともに、クリーンタンク46側の絞り弁4
9の開閉度を小さくして、加工液が加工液槽40に多く
流入するようにし、液圧計51の液圧が前記設定値に対
し高い場合は、絞り弁49の開閉度を大きくするととも
に、紋り弁48の開閉度を小さくして、加工液がクリー
ンタンク46に多く戻るようにする。また、クリーンタ
ンク46と加工液槽40間に設けられる電磁弁50は、
電極4の上昇動作と同期した加工液流制御部11からの
制御信号により、クリーンタンク46からの加工液を被
加工物2と電極40間隙に噴出し、該間隙の電解生成物
を含む加工液を排除する如く動作する。
In this case, between the clean tank 46 and the machining liquid tank 40, a hydraulic pressure gauge 51 for instructing to measure the hydraulic pressure and a crest valve 48, 49 are provided, and the hydraulic pressure of the hydraulic pressure gauge is set to the setting value of the machining fluid flow control unit 11. If it is lower than that, increase the opening/closing degree of the throttle valve 48 on the processing liquid tank 40 side, and
The degree of opening and closing of the throttle valve 49 is decreased to allow more machining fluid to flow into the machining liquid tank 40, and when the hydraulic pressure of the hydraulic pressure gauge 51 is higher than the set value, the degree of opening and closing of the throttle valve 49 is increased. The opening/closing degree of the stop valve 48 is made small so that more of the machining fluid returns to the clean tank 46. Moreover, the solenoid valve 50 provided between the clean tank 46 and the processing liquid tank 40 is
In response to a control signal from the machining fluid flow control unit 11 synchronized with the upward movement of the electrode 4, the machining fluid from the clean tank 46 is spouted into the gap between the workpiece 2 and the electrode 40, and the machining fluid containing electrolytic products in the gap is It works to eliminate.

このように、加工液流制御部11は、クリーンタンク4
6から加工液槽40に流入する加工液の液圧が常に一定
になる如く制御するとともに、電極4の上昇動作と同期
して、被加工物2と電極4間の電解生成物を含む加工液
を排除する如く制御する次に、この発明に係る電解加工
における仕上げ加工装置による加工例を示す。
In this way, the machining fluid flow control section 11 controls the clean tank 4
The pressure of the machining fluid flowing into the machining fluid tank 40 from the workpiece 2 is controlled to be constant at all times, and the machining fluid containing electrolytic products between the workpiece 2 and the electrode 4 is controlled in synchronization with the upward movement of the electrode 4. Next, an example of processing using the finishing apparatus in electrolytic processing according to the present invention will be described.

電 極      純銅 被加工物材質    工具鋼(面粗度20μm)電解液
       硝酸ナトリウム溶液(濃度40%) 仕上げ加工前期 パルスオンタイム 5msec 電流密度 17A/Cm2 仕上げ加工後期 パルスオンタイム 5msec 電流密度 40A/cm2 仕上げ面粗度    Rmax:3μm以下仕上げ面 
     鏡面状の光沢面 なお、仕上げ加工前ttnのパルス電流の電流密度は、
被加工物の材質によりある程度変化させ得るが、仕上げ
面粗度がRmax:3μmを必要としない場合は、作業
能率の面からパルスのオンタイムがより長く、電流密度
がより高いパルス電流を用いるのが好ましい。
Electrode Pure copper Workpiece material Tool steel (surface roughness 20μm) Electrolyte Sodium nitrate solution (concentration 40%) Pulse-on time in the first half of finishing process 5msec Current density 17A/Cm2 Pulse-on time in the second half of finishing process 5msec Current density 40A/cm2 Finishing Surface roughness Rmax: 3μm or less finished surface
Mirror-like glossy surface Note that the current density of the ttn pulse current before finishing is
Although it can be changed to some extent depending on the material of the workpiece, if the finished surface roughness does not require Rmax: 3 μm, it is recommended to use a pulsed current with a longer pulse on time and higher current density in terms of work efficiency. is preferred.

また、電極を被加工面から離間させ、電極面と被加工面
間の電解生成物を排除するサイクルも、1パルス毎に行
うのが被加工面の全面にわたって最も安定しているが、
例えば仕上げ加工前期のパルスのオンタイムが1mse
cという短い場合は、1パルスの加工で発生する電解生
成物が少ないので、数回毎に排除することもてきる。
In addition, the cycle of separating the electrode from the surface to be machined and eliminating electrolytic products between the electrode surface and the surface to be machined is performed every pulse, which is most stable over the entire surface to be machined.
For example, the pulse on time in the first half of finishing processing is 1mse.
In the case of a short pulse c, there are few electrolytic products generated by one pulse of processing, so it is possible to remove them every few times.

なお、上記実施例においては、パルス電流の電流密度を
、仕上げ加工前期には5A/cm2〜20A/am2の
所定値(例えば17A/cm2)に設定し、仕上げ加工
後期には30A/cm”以上の所定値(例えば40A/
 c m2)に設定したが、この発明はこれに何ら限定
されず、仕上げ加工前期または後1!Hのパルス電流の
電流密度を複数種類に設定してもよい。すなわち、例え
ば仕上げ加工の前期には17A/cm”のパルス電流を
供給し、後期には30A/cm2のパルス電流を所定時
間供給した後に40A/cm2のパルス電流を供給した
り、あるいは、仕上げ加工の前期には15A/cm2と
20A/+:m”のパルス電流を供給し、後期には30
A/cm2と40A/cm2と60A/cm2のパルス
電流を仕上げ状態に応じて適宜供給して加工するように
してもよい。また、パルス電流のオンタイムtonにつ
いても同様に設定し得る。
In the above embodiment, the current density of the pulse current is set to a predetermined value of 5 A/cm2 to 20 A/am2 (e.g. 17 A/cm2) in the first half of the finishing process, and 30 A/cm" or more in the latter half of the finishing process. predetermined value (for example, 40A/
cm2), but the present invention is not limited thereto, and can be used in the first or second half of finishing. The current density of the H pulse current may be set to multiple types. That is, for example, in the first half of finishing machining, a pulse current of 17 A/cm2 is supplied, and in the latter half, a pulse current of 30 A/cm2 is supplied for a predetermined period of time, and then a pulse current of 40 A/cm2 is supplied; Pulse currents of 15A/cm2 and 20A/+:m were supplied in the first half of the period, and 30
Processing may be performed by appropriately supplying pulse currents of A/cm2, 40 A/cm2, and 60 A/cm2 depending on the finishing state. Furthermore, the on-time ton of the pulse current can also be set in the same manner.

このように、この発明に係る電解加工による仕上げ加工
方法にあっては、仕上げ加工装置に、所望形状に加工さ
れた例えば熱処理を行った特殊鋼等からなる被加工物と
電極とを取付け、仕上げ条件等を入力装置により入力し
て起動すれば、仕上げ加工前期の電流密度が5A/cm
2〜20A/cm2のパルス電流で高精度かつ微小面粗
度の表面品質が得られ、仕上げ加工後期の電流密度が3
0A/cm2以上のパルス電流で面粗度を損なうことな
く鏡面状光沢を呈した三次元金属曲面が無人で短時間に
得られる。また、その表面は、内部応力の蓄積や金属M
i織の変化もないし、機械的亀裂の侵入といった変質も
全く見られず、加工前の熱処理品質も損なわれることが
ない等、現在の金型加工で最も省力化が遅れている仕上
げ加工分野で、品質向上とv1械化に大きな効果が得ら
れる。また、加工液濾過装置により、電解生成物を多く
含んだ加工液を簡単かつ安価に処理することができる。
As described above, in the finishing method by electrolytic machining according to the present invention, a workpiece made of heat-treated special steel or the like that has been processed into a desired shape and an electrode are attached to the finishing device, and the finishing process is carried out by If you input the conditions etc. using the input device and start it up, the current density in the first half of finishing processing will be 5A/cm.
High precision and surface quality with minute surface roughness can be obtained with a pulse current of 2 to 20 A/cm2, and the current density in the latter stage of finishing is 3.
A three-dimensional metal curved surface exhibiting mirror-like luster can be obtained unattended and in a short time without impairing surface roughness using a pulse current of 0 A/cm2 or more. In addition, the surface is susceptible to internal stress accumulation and metal M
There is no change in the weave, no deterioration such as the penetration of mechanical cracks, and the quality of heat treatment before processing is not impaired, making it suitable for finishing in the field of finishing, where labor savings are the slowest in current mold processing. , a great effect can be obtained on quality improvement and v1 mechanization. Furthermore, the machining fluid filtration device allows processing fluid containing a large amount of electrolytic products to be treated simply and inexpensively.

なお、この発明は、金型加工分野に限らず、半導体生産
のシリコン単結晶やガリウムヒソ基材の仕上げ加工、及
び磁気記憶装置のアルミニュウム・ディスクの単結晶ダ
イヤモンドによる鏡面加工等のように、機械的加工によ
る表面の僅かな内部応力が問題となっている分野での仕
上げ加工にも応用することかできる。また、自動搬送装
置と組み合せて、量産されるハイポイド・ギヤー等の熱
処理後の仕上げ加工に用いることも勿論可能である。
This invention is applicable not only to the field of mold processing, but also to mechanical applications such as the finishing of silicon single crystals and gallium histobase materials in semiconductor production, and the mirror finishing of aluminum disks in magnetic storage devices using single crystal diamond. It can also be applied to finishing machining in fields where slight internal stress on the surface due to machining is a problem. In addition, it is of course possible to use it in combination with an automatic conveyance device for finishing processing of mass-produced hypoid gears and the like after heat treatment.

[発明の効果コ 以上詳細に説明したように、この発明に係る電解加工に
よる仕上げ加工方法にあっては、加工液を介して対設し
た被加工物と加工電極間にパルス電流を供給するととも
に、前記被加工物と加工電極間に生成した電解生成物を
間欠的に除去しながら仕上げ加工を行うに際し、前記パ
ルス電流の電流密度を、仕上げ加工の前期と後期とで異
ならせるとともに、仕上げ加工前期の電流密度を仕上げ
加工後期の273(三分の二)以下に設定するようにし
たので、高精度かつ微小面粗度の鏡面状光沢を呈した三
次元金属曲面が短時間に得られるとともに、内部応力の
蓄積や金属Mi織の変化がなく機械的亀裂の侵入等の変
質が全く見られず、加工前の熱処理品質も損なわない表
面を得ることができ、省力化が遅れている金型加工分野
での′品質向上と機械化を達成することができる。また
電解生成物を多量に含んだ汚水処理が簡単かつ安価にて
きる等の効果を奏する。
[Effects of the Invention] As explained in detail above, in the finishing method by electrolytic machining according to the present invention, a pulse current is supplied between the workpiece and the machining electrode disposed opposite to each other via the machining fluid, and , when performing finishing machining while intermittently removing electrolytic products generated between the workpiece and the machining electrode, the current density of the pulse current is made different between the early and late stages of finishing machining, and Since the current density in the first stage is set to 273 (two-thirds) or less of the latter stage of finishing, a three-dimensional metal curved surface with high precision and mirror-like luster with minute surface roughness can be obtained in a short time. , it is possible to obtain a surface that does not accumulate internal stress or change the metal Mi weave, shows no deterioration such as penetration of mechanical cracks, and does not impair the quality of heat treatment before processing, making it possible to create molds that have been slow to save labor. It is possible to achieve quality improvement and mechanization in the processing field. Further, it has the advantage that wastewater containing a large amount of electrolyzed products can be treated easily and inexpensively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施する仕上げ加工装置を示す正面
図、第2図は同装置の側面図、第3図は同装置の概略構
成図、第4図は電流供給手段を示すブロック図、第5図
はパルス電流の波形図、第6図は加工液濾過装置の概略
構成図である。 1・・・仕上げ加工装置、2・・・被加工物、2a・・
・被加工面、3・・・被加工物固定装置、4・・・電極
、5・・・電極固定装置、6・・・電極駆動部、7・・
・駆動変換部、8・・・電源装置、9・・・モータ駆動
制御部、lO・・・加工条件制御部、11・・・加工液
流制御部、12・・・制御装置、13・・・入力装置、
14・・・加工液濾過装置。 特許出願人  静岡製機株式会社  111.2゜代表
者 鈴 木 重、芙)5 第1図 第2図
FIG. 1 is a front view showing a finishing device for implementing the present invention, FIG. 2 is a side view of the device, FIG. 3 is a schematic configuration diagram of the device, and FIG. 4 is a block diagram showing a current supply means. FIG. 5 is a waveform diagram of a pulse current, and FIG. 6 is a schematic diagram of a machining fluid filtration device. 1... Finishing device, 2... Workpiece, 2a...
- Work surface, 3... Workpiece fixing device, 4... Electrode, 5... Electrode fixing device, 6... Electrode drive unit, 7...
- Drive conversion unit, 8... Power supply device, 9... Motor drive control unit, lO... Machining condition control unit, 11... Machining liquid flow control unit, 12... Control device, 13...・Input device,
14... Processing liquid filtration device. Patent applicant Shizuoka Seiki Co., Ltd. 111.2゜Representative Shige Suzuki, Fu) 5 Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)加工液を介して対設した被加工物と加工電極間に
パルス電流を供給するとともに、前記被加工物と加工電
極間に生成した電解生成物を間欠的に除去しながら仕上
げ加工する仕上げ加工方法において、前記パルス電流の
電流密度を仕上げ加工の前期と後期とで異ならせるとと
もに、仕上げ加工前期の電流密度を仕上げ加工後期の電
流密度の2/3以下に設定することを特徴とする、電解
加工による仕上げ加工方法。
(1) Finishing is performed by supplying a pulse current between the workpiece and the machining electrode that are placed opposite each other via the machining fluid, and intermittently removing electrolytic products generated between the workpiece and the machining electrode. The finishing method is characterized in that the current density of the pulsed current is made different between the first and second stages of finishing, and the current density in the first half of finishing is set to 2/3 or less of the current density in the latter half of finishing. , a finishing method using electrolytic processing.
(2)前記仕上げ加工前期におけるパルス電流の電流密
度を5A/cm^2以上20A/cm^2以下とした特
許請求の範囲第1項記載の電解加工による仕上げ加工方
法。
(2) The finishing method by electrolytic machining according to claim 1, wherein the current density of the pulse current in the first half of the finishing process is 5 A/cm^2 or more and 20 A/cm^2 or less.
(3)前記仕上げ加工前期におけるパルス電流のオンタ
イムを10msec以下とした特許請求の範囲第1項も
しくは第2項記載の電解加工による仕上げ加工方法。
(3) The finishing method by electrolytic machining according to claim 1 or 2, wherein the on-time of the pulse current in the first half of the finishing step is 10 msec or less.
JP62100291A 1986-10-30 1987-04-23 Finishing method by electrochemical machining Pending JPS63267120A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62100291A JPS63267120A (en) 1987-04-23 1987-04-23 Finishing method by electrochemical machining
US07/111,237 US4800006A (en) 1986-10-30 1987-10-22 Electrolytic finishing system and method
CA000550499A CA1321978C (en) 1986-10-30 1987-10-28 Electrolytic finishing system
EP87309502A EP0266180B1 (en) 1986-10-30 1987-10-28 Electrolytic finishing method
DE8787309502T DE3783013T2 (en) 1986-10-30 1987-10-28 ELECTROLYTIC FINISHING PROCESS.
KR1019870012019A KR910000511B1 (en) 1986-10-30 1987-10-29 Electrolytic finishing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100291A JPS63267120A (en) 1987-04-23 1987-04-23 Finishing method by electrochemical machining

Publications (1)

Publication Number Publication Date
JPS63267120A true JPS63267120A (en) 1988-11-04

Family

ID=14270075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100291A Pending JPS63267120A (en) 1986-10-30 1987-04-23 Finishing method by electrochemical machining

Country Status (1)

Country Link
JP (1) JPS63267120A (en)

Similar Documents

Publication Publication Date Title
EP0266180B1 (en) Electrolytic finishing method
JPS63196321A (en) Finishing method by electro-chemical machining and device therefore
KR930000297B1 (en) Electrolytic finishing method
KR910006552B1 (en) Electrolytic finishing method
JPS63267120A (en) Finishing method by electrochemical machining
JPH0530567B2 (en)
JPS63306824A (en) Finish machining method by electro-chemical machining
JPS63283818A (en) Finishing method by electro-chemical machining
KR920007643B1 (en) Method for finishing work
KR910006553B1 (en) Electrolytic finishing method
JPS63267118A (en) Finishing method by electrochemical machining
US4883568A (en) Finishing method employing electro-chemical process
JPS63283817A (en) Finishing method by electro-chemical machining
JPH01188230A (en) Finishing method based on electrochemical machining and its device
JPS63306825A (en) Machining gap control device for electro-chemical machine
JPH07100259B2 (en) Finishing method by electrolytic processing
JPH01135418A (en) Finishing method by electrochemical machining
JPH01121123A (en) Finishing erosion method by electro-chemical machining
JPS63318213A (en) Three dimensional electrolytic finishing device
SU841887A1 (en) Method and apparatus for electroerosion treatment of metals
JPH012819A (en) Processing tank of electrolytic processing equipment
JPH01306127A (en) Electric treatment method for metal
JPH02106222A (en) Method of electrolytic finishing work
JPH01115516A (en) Electrochemical machine
JPH01321121A (en) Electric machining method for metal