JPH01188230A - Finishing method based on electrochemical machining and its device - Google Patents

Finishing method based on electrochemical machining and its device

Info

Publication number
JPH01188230A
JPH01188230A JP63012993A JP1299388A JPH01188230A JP H01188230 A JPH01188230 A JP H01188230A JP 63012993 A JP63012993 A JP 63012993A JP 1299388 A JP1299388 A JP 1299388A JP H01188230 A JPH01188230 A JP H01188230A
Authority
JP
Japan
Prior art keywords
electrode
area
machining
workpiece
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63012993A
Other languages
Japanese (ja)
Inventor
Yohei Kuwabara
桑原 陽平
Teruo Asaoka
浅岡 輝雄
Shogo Yoshioka
省吾 吉岡
Haruki Sugiyama
治樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP63012993A priority Critical patent/JPH01188230A/en
Priority to DE8888310159T priority patent/DE3879372T2/en
Priority to US07/264,103 priority patent/US4880509A/en
Priority to EP88310159A priority patent/EP0314498B1/en
Priority to KR1019880014178A priority patent/KR910006553B1/en
Publication of JPH01188230A publication Critical patent/JPH01188230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve the surface roughness of a finished work to steadily obtain a highly accurate surface quality in a short time by establishing electrical energy per unit area according to the size of an area to be mashined, namely less for a large area than a small one. CONSTITUTION:A power source of an electrochemical finishing device 1 is turned on, and an input device 13 aligns an electrode 2 with a work 4, and inputs parameters such as a gap between the electrodes, an area to be machined, mulching depth, and the roughness of a surface 4a to be finished before finishing. Next, a machining condition control section 10 establishes electrical energy per unit area according to the size of the area to be machined, namely less for a large area than a small one, and applies pulse voltage from a power source device 8 to the electrode 2. The electrode 2 is then raised through a motor driving control section 9, and the electromagnetic valve of an electrolyte filtering device 14 is actuated to make the electrolyte blow off through a nozzle 80 for the removal of an electrolytic product. The above-mentioned operations are repeated to finish the work 4. Thus a high quality finished surface such as a glossy face can be easily obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、電解加工による仕上げ加工方法及び電解仕
上げ加工装置に係り、特に三次元形状の被加工面を短時
間かつ高精度に仕上げて、鏡面状の光沢面が得られる電
解加工による仕上げ加工方法及び電解仕上げ加工装置に
関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a finishing method and an electrolytic finishing device using electrolytic machining, and particularly for finishing a three-dimensionally shaped work surface in a short time and with high precision. The present invention relates to an electrolytic finishing method and an electrolytic finishing apparatus that provide a mirror-like glossy surface.

[従来の技術] 従来の金属加工方法として電解加工方法が知られている
。この電解加工方法は、被加工物と電極との間隙に硝酸
ナトリウムや塩化ナトリウム等の電解液を満たし、この
電解液を高速で流すとともに、安定した電解作用を阻害
する電解生成物、即ち溶出した金属化合物や金属イオン
及び水素ガス等を除去しながら、直流電流を被加工物か
ら電極に流して加工するものである。(特開昭61−7
1921号公報及び特開昭60−44228号公報参照
) [発明が解決しようとする課題] しかしながら、この電解加工方法にあっては、機械加工
手段として致命的な欠陥がある。即ち、特に三次元形状
の底付き加工(凹窩状に形成された三次元構造のものに
対する加工をいう)において、被加工物と電極との間隙
が仮に一定であったとしても、電解液の流入口の位置、
流入口からの距離あるいは被加工物の三次元形状の被加
工面の屈曲度等により間隙の流路抵抗が変化し、電解液
を間隙に−様な流速で流すのが不可能である。
[Prior Art] An electrolytic processing method is known as a conventional metal processing method. In this electrolytic processing method, the gap between the workpiece and the electrode is filled with an electrolytic solution such as sodium nitrate or sodium chloride, and this electrolytic solution is flowed at high speed. This process involves passing a direct current from the workpiece to the electrode while removing metal compounds, metal ions, hydrogen gas, etc. (Unexamined Japanese Patent Publication No. 61-7
1921 and Japanese Patent Laid-Open No. 60-44228) [Problems to be Solved by the Invention] However, this electrolytic machining method has a fatal flaw as a machining means. In other words, especially in bottom processing of a three-dimensional shape (meaning processing of a three-dimensional structure formed in the shape of a concave hole), even if the gap between the workpiece and the electrode is constant, the amount of electrolyte location of the inlet,
The flow path resistance of the gap changes depending on the distance from the inlet or the degree of curvature of the three-dimensional surface of the workpiece, making it impossible to flow the electrolytic solution into the gap at a similar flow rate.

したがって、間隙に生成される電解生成物の排除が位置
によって異なり、加工の進行状況に差異が生じて被加工
物に電極の精密な転写を行うことが困難で、光沢面等の
高精度な表面品質を得たい場合、別の研磨工程を必要と
するなど、被加工面の仕上げに多くの時間と労力がかか
るという不都合があった。
Therefore, the removal of electrolytic products generated in the gap differs depending on the position, causing differences in the progress of processing and making it difficult to accurately transfer the electrode to the workpiece. If quality is desired, another polishing process is required, which is disadvantageous in that it takes a lot of time and effort to finish the surface to be machined.

そこで当山願人は、これらの不都合を除去するものとし
て、電解液を静止状態として電極と被加工物との極間に
、仕上げ加工の前期には低電流密度のパルス電流を供給
して被加工面の面粗度を向上させるとともに、この加工
中に高電流密度のパルス電流を間欠的に供給して、加工
中に被加工面に生成する酸化皮膜を除去し、また仕上げ
加工の後期には高電流密度のパルス電流を供給して光沢
面を得る電解加工による仕上げ加工方法を出願(特願昭
62−117486号参照)した。
Therefore, in order to eliminate these inconveniences, Kanto Toyama devised a solution that could be applied to the workpiece by keeping the electrolyte in a static state and supplying a pulsed current with a low current density between the electrode and the workpiece during the early stage of finishing. In addition to improving the surface roughness of the surface, pulsed current with high current density is intermittently supplied during this machining to remove the oxide film that forms on the processed surface during machining, and in the later stages of finishing. An application was filed (see Japanese Patent Application No. 117486/1986) for a finishing method using electrolytic processing to obtain a glossy surface by supplying a pulsed current with a high current density.

しかしながら、この電解加工による仕上げ加工方法にあ
っては、仕上げ加工前期の低電流密度のパルス電流によ
り被加工面の面粗度を向上させ得るが、加工面積の大小
によって面粗度向上にバラツキが発生し、特に加工面積
が大面積の場合に高精度な表面品質が安定して得られな
いという不都合があった。
However, in this finishing method using electrolytic machining, the surface roughness of the processed surface can be improved by using a pulsed current with a low current density in the early stage of finishing, but the improvement in surface roughness varies depending on the size of the processing area. This has caused the problem that highly accurate surface quality cannot be stably obtained, especially when the processing area is large.

そこで、この発明の目的は、被加工部の加工面積の大小
にかかわらず被加工面の面粗度を向上させ得て、高精度
な表面品質を短時間に安定して得ることができる電解加
工による仕上げ加工方法及び電解仕上げ加工装置を実現
するにある。
Therefore, the purpose of the present invention is to improve the surface roughness of the processed surface regardless of the size of the processed area, and to achieve electrolytic processing that can stably obtain high-precision surface quality in a short time. The purpose of the present invention is to realize a finishing method and an electrolytic finishing device.

[課題を解決するための手段] この目的を達成するために、この出願の第1発明は、静
止した電解液を介して対設した電極と被加工物との極間
にパルス状の電気エネルギーを供給するステップと、前
記被加工物の加工面積を設定するステップと、前記加工
面積の大小に応じて前記電気エネルギーを変化させ、単
位面積当りの電気エネルギーを、加工面積が大面積の場
合には小面積の場合より小さく設定するステップと、前
記極間に生成した電解生成物を排除するステップとを具
備することを特徴とし、第2発明は、加工面積の大小に
応じて変化させる電気エネルギーを、0.06クーロン
/cm2〜0.3クーロン/Cm2の範囲にしたことを
特徴とする。また、第3発明は、静止した電解液を介し
て対設した被加工物と電極との極間にパルス状の電気エ
ネルギーを供給するパルス供給手段と、前記被加工物の
加工面積を設定する加工面積設定手段と、前記加工面積
の大小に応じて前記電気エネルギーを変化させ、単位面
積当りの電気エネルギーを、加工面積が大面積の場合に
は小面積の場合より小さくする如く前記パルス供給手段
を制御する制御手段と、前記極間に生成した電解生成物
を排除する電解生成物排除手段とを具備することを特徴
とする。
[Means for Solving the Problem] In order to achieve this object, the first invention of this application applies pulsed electrical energy between an electrode and a workpiece that are disposed opposite each other via a stationary electrolyte. and setting the machining area of the workpiece, and changing the electrical energy according to the size of the machining area, and adjusting the electrical energy per unit area when the machining area is large. is characterized by comprising the steps of setting the area smaller than in the case of a small area, and removing electrolytic products generated between the electrodes, and the second invention is characterized in that the electric energy is changed depending on the size of the machining area. is in the range of 0.06 coulombs/cm2 to 0.3 coulombs/cm2. Further, a third invention provides a pulse supply means for supplying pulsed electrical energy between poles of a workpiece and an electrode disposed opposite each other via a stationary electrolytic solution, and setting a processing area of the workpiece. a machining area setting means; and a pulse supplying means for changing the electrical energy according to the size of the machining area so that the electric energy per unit area is smaller when the machining area is large than when the machining area is small. It is characterized by comprising a control means for controlling the electrolytic product, and an electrolytic product removing means for removing the electrolytic product generated between the electrodes.

[作 用] この発明の構成によれば、被加工物の加工面積が例えば
1cm2程度の小面積の場合は、電流密度とパルス幅か
らなるより大きなパルス状の電気エネルギー、例えば0
.3クーロン/cm2の電気工ネルギーにより、また、
加工面積が例えば3000m2と大面積の場合は、より
小さな電気エネルギー、例えば0.06クーロン/cm
2の電気エネルギーにより、被加工面の面粗度を短時間
に向上させる。
[Function] According to the configuration of the present invention, when the processing area of the workpiece is small, for example, about 1 cm2, a larger pulse-like electric energy consisting of current density and pulse width, for example 0.
.. With electrician energy of 3 coulombs/cm2,
If the processing area is large, e.g. 3000 m2, smaller electrical energy, e.g. 0.06 coulombs/cm
The electrical energy of step 2 improves the surface roughness of the processed surface in a short time.

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜7図は、この発明の一実施例を示すものである。1 to 7 show one embodiment of this invention.

第1.2図において、電解仕上げ加工装置lは、電極2
を固定する電極固定装置3、被加工物4を固定する被加
工物固定装置5、電極駆動部6の回転運動を往復運動に
変換する駆動変換部7、パルス電流を発生する電源装置
8、モータ駆動制御部9と加工条件制御部lOと電解液
流制御部11等からなる制御装置12、被加工物4に関
する各種データ等を入力する人力装置13、電解液を濾
過する電解液濾過装置14、及び加工槽15等からなる
In Figure 1.2, the electrolytic finishing device l has an electrode 2
an electrode fixing device 3 that fixes the workpiece 4, a workpiece fixing device 5 that fixes the workpiece 4, a drive conversion section 7 that converts the rotational motion of the electrode drive section 6 into reciprocating motion, a power supply device 8 that generates a pulse current, and a motor. A control device 12 consisting of a drive control section 9, a processing condition control section IO, an electrolyte flow control section 11, etc., a manual device 13 for inputting various data regarding the workpiece 4, an electrolyte filtration device 14 for filtering the electrolyte, It consists of a processing tank 15, etc.

前記電極固定装置3は、その下部に設けたロッド16の
下端に、例えば純銅もしくはグラファイトからなる電極
2を、その電極面2aと被加工物4の被加工面4aとが
三次元方向に−様な間隙17を保つように固定する。そ
して、前記電極固定装置3は、電極駆動部6と駆動変換
部7とにより前記間隙17を所定値に設定すべく上下動
する。即ち、電極駆動部6のロータリーエンコーダ18
とタコジェネレータ19からの信号により前記モータ駆
動制御部9から出力される制御信号により、モータ2゜
を回転制御して、前記電極固定装置3を上下動させ、電
極面2aと被加工面4aとを所定の間隙17に設定する
The electrode fixing device 3 has an electrode 2 made of, for example, pure copper or graphite attached to the lower end of a rod 16 provided at its lower part, so that the electrode surface 2a and the processed surface 4a of the workpiece 4 are aligned three-dimensionally. It is fixed so that a gap 17 is maintained. The electrode fixing device 3 is moved up and down by the electrode driving section 6 and the drive conversion section 7 to set the gap 17 to a predetermined value. That is, the rotary encoder 18 of the electrode drive unit 6
A control signal output from the motor drive control section 9 in response to a signal from the tachogenerator 19 controls the rotation of the motor 2° to move the electrode fixing device 3 up and down, thereby separating the electrode surface 2a and the workpiece surface 4a. is set to a predetermined gap 17.

前記被加工物固定装置5は、絶縁性の高いグラナイトも
しくはセラミックス製のテーブルで、電解加工装置10
X−Yテーブル21のXテーブル(図示せず)上に加工
槽15の底板とともにボルト等により固定する。また、
この被加工物固定装置5の上面には被加工物4がボルト
22等により固定され、これにより、被加工物4、被加
工物固定装置5、加工槽15がX−Yf−プル21の移
動用ツマミ23.240回転操作によりX方向及びX方
向に一体的に移動する。
The workpiece fixing device 5 is a table made of highly insulating granite or ceramics, and is connected to the electrolytic processing device 10.
It is fixed together with the bottom plate of the processing tank 15 on the X table (not shown) of the X-Y table 21 with bolts or the like. Also,
The workpiece 4 is fixed to the upper surface of the workpiece fixing device 5 by bolts 22, etc., and the workpiece 4, the workpiece fixing device 5, and the processing tank 15 are moved by the X-Yf-pull 21. By rotating the knobs 23 and 240, they move integrally in the X direction and the X direction.

前記電極2と被加工物4との極間に、所定のパルス状の
電気エネルギー(単位面積当りのクーロン量)を供給す
るパルス供給手段としての電源装置8と、この電源装置
8を制御する前記制御装置12の加工条件制御部10は
、例えば第3図に示す如く構成する。
A power supply device 8 serves as a pulse supply means for supplying a predetermined pulsed electrical energy (amount of coulombs per unit area) between the electrode 2 and the workpiece 4, and the power supply device 8 controls the power supply device 8. The processing condition control section 10 of the control device 12 is configured as shown in FIG. 3, for example.

即ち、電源装置8は直流電源部25と充放電部26とで
構成され、直流電源部25は、変圧器27と整流器28
とからなり、変圧器27により電圧を所定値に降下させ
整流器28により整流して直流電流を得て、後述する蓄
電器29−1〜29−nに供給する。
That is, the power supply device 8 includes a DC power supply unit 25 and a charging/discharging unit 26, and the DC power supply unit 25 includes a transformer 27 and a rectifier 28.
The voltage is lowered to a predetermined value by a transformer 27 and rectified by a rectifier 28 to obtain a direct current, which is supplied to capacitors 29-1 to 29-n, which will be described later.

また、充放電部26は、極間に電荷を放電する複数個の
蓄電器29−1〜29−nと、これらの各蓄電器29−
1〜29−nに接続し直流電源部25側への電荷の逆流
を阻止するダイオード30−1〜30−nと、放電側へ
の電荷を放電させるべく開閉される放電スイッチ31−
1〜31−nと、前記各蓄電器29−1〜29−nを所
定に充電すべく前記直流電源部25からの電源を給断す
る充電スイッチ32とからなる。
The charging/discharging unit 26 also includes a plurality of capacitors 29-1 to 29-n that discharge charges between electrodes, and each of these capacitors 29-
Diodes 30-1 to 30-n connected to diodes 30-1 to 29-n to prevent backflow of charges to the DC power supply section 25 side, and a discharge switch 31-n that is opened and closed to discharge charges to the discharge side.
1 to 31-n, and a charging switch 32 for supplying and disconnecting power from the DC power supply unit 25 to charge each of the capacitors 29-1 to 29-n to a predetermined value.

この電源装置8は、後述する加工条件制御部10の制御
信号により、被加工物4の加工面積Sの大小に応じて1
5 (A/ c m2) X4 (ms e c ) 
=0.06クーロン/Cm2から、100 (A/cm
2) X100 (ms e c) =lOクーロン/
cm2の加工エネルギーを前記極間に供給し得るもので
ある。
This power supply device 8 is operated according to the size of the machining area S of the workpiece 4 by a control signal from a machining condition control section 10, which will be described later.
5 (A/cm2) X4 (ms e c)
=0.06 coulomb/Cm2 to 100 (A/cm
2) X100 (ms e c) = 1O coulomb/
It is possible to supply machining energy of cm 2 to the space between the electrodes.

前記充放電部26を制御する加工条件制御部10は、蓄
電器29−1〜29−nの充電電圧値を検出する電圧検
出器33と、この電圧検出器33で検出した充電電圧値
とD/A変換器34からの出力値とを比較する電圧比較
器35と、この電圧比較器35からの出力信号により前
記蓄電器29−1〜29−nの充電の完了及び開始を検
出する充電検出器36と、極間に放電される電荷の電流
値を検出する電流検出器37と、この電流検出器37で
検出した電流値のピーク値をホールドするピークホール
ド回路38と、このピークホールド回路38でホールド
したピーク電流値とD/A変換器39の出力値とを比較
する電流比較器40と、所定時間幅のパルスを発生する
パルス発生器41と極間に放電する電荷の電流波形を設
定する電流波形設定器42からの入力信号により前記各
放電スイッチ31−1〜31nに開閉駆動信号を出力す
るゲート回路43と、前記各蓄電器29−1〜29−n
へ供給する充電電圧値を設定しその信号を前記D/A変
換器34に出力する充電電圧設定器44と、極間に流れ
る電流値を設定しその信号を前記D/A変換器39に出
力する電流設定器45と、前記入力装置13の人力デー
タ等に基づき加工条件等を演算・処理するCPU46と
、電極2と被加工物4の接触を検知する接触検知器47
等からなる。なお、図中符号48は放電スイッチ311
〜31−nの開時に逆起電力により各放電スイッチ31
−1〜31−nが破壊するのを防止するダイオードであ
る。
The machining condition control unit 10 that controls the charge/discharge unit 26 includes a voltage detector 33 that detects the charging voltage values of the capacitors 29-1 to 29-n, and a voltage detector 33 that detects the charging voltage values detected by the voltage detector 33 and D/ A voltage comparator 35 that compares the output value from the A converter 34, and a charging detector 36 that detects the completion and start of charging of the capacitors 29-1 to 29-n based on the output signal from the voltage comparator 35. , a current detector 37 that detects the current value of the charge discharged between the poles, a peak hold circuit 38 that holds the peak value of the current value detected by this current detector 37, and a peak hold circuit 38 that holds the current value detected by this current detector 37. A current comparator 40 that compares the peak current value and the output value of the D/A converter 39, a pulse generator 41 that generates a pulse with a predetermined time width, and a current that sets the current waveform of the charge discharged between the electrodes. A gate circuit 43 that outputs an opening/closing drive signal to each of the discharge switches 31-1 to 31n based on an input signal from the waveform setting device 42, and each of the capacitors 29-1 to 29-n.
a charging voltage setter 44 that sets a charging voltage value to be supplied to and outputs the signal to the D/A converter 34; and a charging voltage setting device 44 that sets a current value flowing between the electrodes and outputs the signal to the D/A converter 39. a current setting device 45 that operates, a CPU 46 that calculates and processes machining conditions based on the human power data of the input device 13, and a contact detector 47 that detects contact between the electrode 2 and the workpiece 4.
Consists of etc. Note that the reference numeral 48 in the figure indicates the discharge switch 311.
~31-n is opened, each discharge switch 31 is
This is a diode that prevents -1 to 31-n from being destroyed.

なお、ここで、蓄電器29−1〜29−nが充放電する
際の前記CPU46の制御について説明する。まずCP
U46は、予め入力装置13によって人力された被加工
物4の加工面積S等に基づき、加ニー回(1パルスもし
くは数パルスによる加工をいう)当りの電気エネルギー
を、予め定めた演算式により算出するとともに、この電
気エネルギーを得るに必要なパルス電流のピーク電流密
度を算出する。
Note that the control of the CPU 46 when the capacitors 29-1 to 29-n are charged and discharged will be explained here. First, CP
U46 calculates the electric energy per kneading cycle (referring to machining using one pulse or several pulses) using a predetermined calculation formula based on the machining area S of the workpiece 4 manually entered in advance using the input device 13. At the same time, the peak current density of the pulse current required to obtain this electrical energy is calculated.

そしてこのピーク電流密度に対応する充電電圧値を、記
憶装置に入力されている特性表により算出し、加工条件
制御部10の充電電圧設定器44に出力する。
Then, a charging voltage value corresponding to this peak current density is calculated based on the characteristic table input to the storage device, and outputted to the charging voltage setter 44 of the processing condition control section 10.

そして、蓄電器29−1〜29−nが所定の充電電圧値
で充電されると、充電完了信号が充電検出器36カ)ら
入力される。この信号によりCPU46は、パルス発生
器41及び電流波形設定器42に制御信号を出力してゲ
ート回路43をオンさせて、放電スイッチ31−1〜3
1−nを選択的にオンさせ、極間に所定のパルス電流を
供給する。そして、このパルス電流の電流値が電流検出
器37により検出され、その時のピーク値がピーク71
クールド回路38によりホールドされる。このホールド
されたピーク値と、前記電流設定器45のデジタル信号
をD/A変換器39でアナログ変換した信号値とが電流
比較器40て比較され、その結果がCPU46に人力さ
れる。
When the capacitors 29-1 to 29-n are charged with a predetermined charging voltage value, a charging completion signal is input from the charging detector 36). Based on this signal, the CPU 46 outputs a control signal to the pulse generator 41 and the current waveform setter 42 to turn on the gate circuit 43 and discharge switches 31-1 to 31-1.
1-n is selectively turned on, and a predetermined pulse current is supplied between the electrodes. The current value of this pulse current is detected by the current detector 37, and the peak value at that time is the peak 71.
It is held by the cooled circuit 38. This held peak value is compared with a signal value obtained by converting the digital signal from the current setting device 45 into an analog signal by the D/A converter 39 in a current comparator 40, and the result is inputted to the CPU 46.

CPU46は、電流比較器40の比較結果に基づき、充
電電圧設定器44の設定電圧値の補正(ピーク電流値が
設定電流値以下の場合には設定電圧値を増加、ピーク電
流値が設定電流値より大きい場合は設定電圧値を減少)
を行い、供給するパルス電流のピーク電流値が常に所定
値となるように制御する。
Based on the comparison result of the current comparator 40, the CPU 46 corrects the set voltage value of the charging voltage setter 44 (increases the set voltage value when the peak current value is less than the set current value; If it is larger, reduce the set voltage value)
The peak current value of the supplied pulse current is controlled to always be a predetermined value.

加工面積設定手段としての前記入力装置13は、加工面
積S1仕上げ加工しろ等の被加工物4に関する各種デー
タ、及び加工条件等を入力するもので、例えば第4図に
示す如く、デイスプレィ装置13aと、キーボード13
bと、操作ボタン部13cとからなる。以下これについ
て説明する。
The input device 13 as a machining area setting means inputs various data regarding the workpiece 4 such as the machining area S1 and finishing machining margin, machining conditions, etc. For example, as shown in FIG. , keyboard 13
b, and an operation button section 13c. This will be explained below.

キーボード13bは、手動運転モードを選択し電極2の
芯出し、電解液の排出、残留電荷の放出等の作業時に押
すrMANJ  (マニュアル)キー50、電極2の芯
出し作業モードを選択するrJOGJ(ジョグ)キー5
1及びrsTEPJ  (ステップ)キー52、手動運
転または自動運転モード時の全ての動作を中断し、初期
状態(電源が投入された状態)に戻すrR5TJ  (
リセット)キー53、前記rJOGJキー51とrsT
EPJキー52との組み合わせて電極2の上昇及び下降
スヒード、距離を設定するrHIGf(」 (ハイ)キ
ー54、rMID」(ミドル)キー55、rLOWJ 
 (ロー)キー56、電極2の芯出し作業時に使用し、
電極2が被加工物4に接しているときは電極2を上昇さ
せ、被加工物4から離間している時は、電極2を下降さ
せるrDTHRJ  (デイザ−)キー57、加工槽1
5からの電解液の排出及び循環時に使用するrDRAI
NJ(ドレイン)キー581、蓄電器29−1〜29−
nの残留電荷を放出するrDcHGJ  (ディスチャ
ージ)キー59、自動運転モードを選択するrAUTO
J  (オート)キー60、加工に必要な入力画面を選
択するrPTRN」 (パターン)キー61、自動運転
を開始するための「RUN」 (ラン)キー62、自動
運転を中止するrsTOPJ  (ストップ)キー63
、各種パラメータを入力する「テン」キー64等からな
る。
The keyboard 13b is used to select the manual operation mode and press the rMANJ (manual) key 50 when performing operations such as centering the electrode 2, discharging the electrolyte, and releasing residual charge, and the rJOGJ (jog) key 50 that selects the electrode 2 centering operation mode. ) key 5
1 and rsTEPJ (step) key 52, interrupts all operations during manual operation or automatic operation mode and returns to the initial state (power-on state) rR5TJ (
reset) key 53, the rJOGJ key 51 and rsT
rHIGf (high) key 54, rMID (middle) key 55, rLOWJ to set the raising and lowering speed and distance of the electrode 2 in combination with the EPJ key 52
(Low) key 56, used when centering the electrode 2,
When the electrode 2 is in contact with the workpiece 4, the electrode 2 is raised, and when it is separated from the workpiece 4, the electrode 2 is lowered rDTHRJ (dither) key 57, processing tank 1
rDRAI used when draining and circulating electrolyte from 5
NJ (drain) key 581, capacitors 29-1 to 29-
rDcHGJ (discharge) key 59 to discharge residual charge of n, rAUTO to select automatic operation mode
J (auto) key 60, rPTRN (pattern) key 61 to select the input screen necessary for machining, "RUN" key 62 to start automatic operation, rsTOPJ (stop) key to cancel automatic operation 63
, and "numeric" keys 64 for inputting various parameters.

また、前記操作ボタン部13cは、電解仕上げ加工装置
lの電源を投入するための「パワーボタン」65と、電
源を遮断する「パワーオフボタン」66と、rUPJ 
 (アップ)ボタン67と、rDWNJ  (ダウン)
ボタン68とからなる。この「UP」ボタン67とrD
WNJボタン68は、前記「JOG」キー51がオンし
ている場合、ボタン67.68を押し続けた時間だけ電
極2(Z軸)が上昇及び下降し、前記rSTEPJキー
52がオンしている場合は、ボタン67.68を押すと
一定の距離だけ電極2が上昇及び下降する。また、前記
「パワーオフボタン」66は、右に回転させることによ
り遮断状態がリセットされる。
Further, the operation button section 13c includes a "power button" 65 for turning on the power of the electrolytic finishing processing apparatus l, a "power off button" 66 for cutting off the power, and rUPJ.
(up) button 67 and rDWNJ (down)
It consists of a button 68. This "UP" button 67 and rD
When the "JOG" key 51 is on, the WNJ button 68 moves the electrode 2 (Z-axis) up and down for the length of time that the buttons 67 and 68 are held down, and when the rSTEPJ key 52 is on, When the buttons 67, 68 are pressed, the electrode 2 is raised and lowered by a certain distance. Further, the cut-off state of the "power off button" 66 is reset by rotating it to the right.

電解生成物排除手段としての前記電解液濾過装置14は
、加工で生じた電解生成物を含む電解液を濾過するもの
で、例えば第5図の如く構成する。
The electrolytic solution filtration device 14, which serves as an electrolytic product removal means, filters an electrolytic solution containing electrolytic products generated during processing, and is configured as shown in FIG. 5, for example.

即ち、電解液濾過装置14は、加工槽15からの電解生
成物を多く含んだ戻り電解液を電磁弁71を介して貯留
するダーティタンク72と、このダーティタンク72の
電解液をポンプ73で汲み上げて遠心分離処理する遠心
分離機74と、この遠心分離8174で分離処理した電
解生成物を含まない電解液を貯留するクリーンタンク7
5と、このクリーンタンク75に内蔵され、ヒータ83
とモータ84によって回転するファン(図示せず)とを
具備する液温調整器76と、前記クリーンタンク75の
電解液を汲み上げるポンプ77と、この汲み上げた電解
液をフィルタ78を通してから加工槽15へ供給するた
めの電磁弁79と、フィルタ78を通した電解液を、電
極2と被加工物4との間隙に噴出ノズル80によって噴
出させ、該間隙に生じた電解生成物等を排除するための
電磁弁81と、前記フィルタ78を通した電解液を液温
調整器76に戻す紋り弁82等からなる。
That is, the electrolyte filtration device 14 includes a dirty tank 72 that stores the returned electrolyte containing a large amount of electrolytic products from the processing tank 15 via a solenoid valve 71, and a pump 73 that pumps up the electrolyte in the dirty tank 72. a centrifugal separator 74 that performs centrifugal separation, and a clean tank 7 that stores the electrolytic solution that does not contain electrolyzed products separated by the centrifugal separation 8174.
5, and a heater 83 built into this clean tank 75.
and a fan (not shown) rotated by a motor 84; a pump 77 that pumps up the electrolyte from the clean tank 75; and a pump 77 that pumps up the electrolyte from the clean tank 75, and passes the pumped electrolyte through a filter 78 before entering the processing tank 15. A solenoid valve 79 for supplying the electrolytic solution through a filter 78 is ejected by a jet nozzle 80 into the gap between the electrode 2 and the workpiece 4, and the electrolytic solution generated in the gap is removed. It consists of an electromagnetic valve 81, a stop valve 82 for returning the electrolytic solution that has passed through the filter 78 to the liquid temperature regulator 76, and the like.

なお、第5図中85.86はボタン73.77の駆動モ
ータ、87.88はダーティタンク72の液面を検出す
る上限フロートスイッチ及び下限フロートスイッチ、8
9は加工槽15内の液面を検出するフロートスイッチ、
90は遠心分離機74を駆動するモータである。
In addition, 85.86 in FIG. 5 is a drive motor for the button 73.77, 87.88 is an upper limit float switch and a lower limit float switch for detecting the liquid level of the dirty tank 72,
9 is a float switch that detects the liquid level in the processing tank 15;
90 is a motor that drives the centrifugal separator 74.

この電解液濾過装置14を制御する電解液流制御部11
は、加工条件制御部10からの制御信号に基づいて、加
工槽15内に電解液を供給するとともに、加工中に電極
面2aと被加工面4a間に生成した電解生成物等を排除
するために、電極2と被加工物4間に新鮮な電解液(液
温調整されフィルタ78を通した電解液)を噴出ノズル
80によって噴出する如く、電磁弁79.81、ポンプ
73.77等を制御す、  る。
Electrolyte flow control section 11 that controls this electrolyte filtration device 14
is for supplying an electrolytic solution into the machining tank 15 based on a control signal from the machining condition control unit 10, and for eliminating electrolytic products generated between the electrode surface 2a and the workpiece surface 4a during machining. Then, solenoid valves 79, 81, pumps 73, 77, etc. are controlled so that fresh electrolyte (temperature-adjusted electrolyte that has passed through filter 78) is spouted between electrode 2 and workpiece 4 by jet nozzle 80. do.

次に、この電解仕上げ加工装置1による仕上げ加工動作
の一例について第6図のフローチャートにより説明する
Next, an example of the finishing operation performed by the electrolytic finishing apparatus 1 will be explained with reference to the flowchart shown in FIG.

仕上げ加工に際しては、電極固定装置3のロッド16の
下端に、例えば被加工物4を放電加工する際に使用した
電極2を、あるいはワイヤーカット放電加工により切り
抜かれた残部を電極2として固定するとともに、被加工
物固定装置5に被加工物4をそれぞれ取付け、「パワー
ボタン」65を押して電解仕上げ加工装置1の電源を投
入する(100)。そして前記人力装置13のrDcH
GJキー59を押して、蓄電器29−1〜29−nに残
留している電荷を放出しく101) 、電極2と被加工
物4の芯出しを行う(102)。その後、電極間隙δ、
加工面積S1加工深さ(加工取り代)、被加工面4aの
加工前面粗度等のパラメータと、電極2の駆動方法、電
゛解液噴流の与え方等の加工条件を入力する(103)
During finishing, for example, the electrode 2 used when electrical discharge machining the workpiece 4 or the remainder cut out by wire-cut electrical discharge machining is fixed to the lower end of the rod 16 of the electrode fixing device 3 as the electrode 2. , each of the workpieces 4 is attached to the workpiece fixing device 5, and the "power button" 65 is pressed to turn on the electrolytic finishing apparatus 1 (100). and rDcH of the human power device 13
Press the GJ key 59 to discharge the charges remaining in the capacitors 29-1 to 29-n (101), and center the electrode 2 and workpiece 4 (102). After that, the electrode gap δ,
Input parameters such as machining area S1 machining depth (machining allowance), machining front roughness of workpiece surface 4a, and machining conditions such as driving method of electrode 2 and method of applying electrolyte jet (103)
.

パラメータ等を人力し、前記rRUN」キー62を押す
と、電極2が下降して被加工面4aに接触しく104)
 、この位置を前記接触検知器47で検出して原点Aと
する。そして、rDRAIN」キー58を押して電解液
濾過装置14の電磁弁79を作動させて、クリーンタン
ク75から電解液を加工槽15内に供給する(105)
。電解液が供給されると、加工槽15内のフロートスイ
ッチ89がオンして、運転が開始され(106) 、C
PU46が入力装置13によって入力された被加工物4
の加工面積Sに基づき、極間に供給するパルス電流の電
気エネルギーを予め記憶装置に記憶させである特性表に
より算出するとともに、この電気エネルギーを得るに必
要な蓄電器29−1〜29−nの充電電圧値、パルス幅
(単一パルス電流のオンタイム)、パルス供給回数N1
〜N3等を換算表等により算出する(107)。
When the parameters etc. are entered manually and the rRUN key 62 is pressed, the electrode 2 descends and comes into contact with the surface to be processed 4a (104).
, this position is detected by the contact detector 47 and set as the origin A. Then, press the "rDRAIN" key 58 to operate the electromagnetic valve 79 of the electrolyte filtration device 14, and supply the electrolyte from the clean tank 75 into the processing tank 15 (105).
. When the electrolyte is supplied, the float switch 89 in the processing tank 15 is turned on and operation is started (106).
Workpiece 4 into which PU 46 is input by input device 13
Based on the machining area S of Charging voltage value, pulse width (on time of single pulse current), number of pulse supply N1
~N3, etc. are calculated using a conversion table or the like (107).

そして、電極2を上昇さ、せて、入力装置13で人力し
た電極間隙δを維持する位置に電極を設定しく108)
 、電解液が電極面2aと被加工面4a間に満ち、電解
液が静止(電解液の流れ・動きが略停止した状態をいう
)したら(109) 、電源装置8から所定の電気エネ
ルギーが得られるピーク電流密度jpxとパルス幅to
n1を有する面粗度向上用の単一のパルス電流(以下箱
1のパルス電流という)を電極2と被加工物4の極間に
供給する(110)。
Then, raise the electrode 2 and set the electrode at a position that maintains the electrode gap δ manually input using the input device 108).
, when the electrolytic solution fills between the electrode surface 2a and the workpiece surface 4a and the electrolytic solution is stationary (referring to the state where the flow and movement of the electrolytic solution has almost stopped) (109), a predetermined electrical energy is obtained from the power supply device 8. peak current density jpx and pulse width to
A single pulse current (hereinafter referred to as the pulse current of box 1) for improving surface roughness having n1 is supplied between the electrode 2 and the workpiece 4 (110).

なお、実験によると、第1のパルス電流による電気エネ
ルギーは、加工面積Sが300 c m”の場合、ピー
ク電流密度jP1が15A/ c m”でパルス幅t。
According to experiments, when the processing area S is 300 cm'', the electrical energy generated by the first pulse current has a peak current density jP1 of 15 A/cm'' and a pulse width t.

nlが4m5ecの、15 (A/ c m2) X 
4 (m se c ) =0.06クーロン/cm2
の電気エネルギーにより、また加工面積Sが1cm2の
場合、jPtが60A/cm2でtonlが5m5ec
の、60X5=0゜3クーロン/cm”の電気エネルギ
ーによって、被加工面4aの面粗度を著しく向上させる
ことができ、加工面積Sが1〜300cm2の範囲にお
いては、電気エネルギーと加工面積Sが略反比例の関係
にあることが確認された。
15 (A/c m2) X with nl of 4m5ec
4 (m sec ) =0.06 coulomb/cm2
When the processing area S is 1cm2, jPt is 60A/cm2 and tonnl is 5m5ec.
The surface roughness of the surface 4a to be machined can be significantly improved by electrical energy of 60X5=0°3 coulomb/cm", and when the machining area S is in the range of 1 to 300 cm2, the electrical energy and the machining area S It was confirmed that there is a substantially inversely proportional relationship.

極間に第1のパルス電流を供給した後、モータ駆動制御
部9の信号によりモータ20を駆動して電極2を上昇さ
せ(111) 、電極面2aを被加工面4aから離間さ
せ、電極面2aと被加工面4a間の溶出した電解生成物
を電解液とともに電解液濾過装置14の電磁弁81の動
作により、噴出ノズル8゜から電解液を噴出して排除す
る(112)。
After supplying the first pulse current between the electrodes, the motor 20 is driven by a signal from the motor drive control section 9 to raise the electrode 2 (111), and the electrode surface 2a is separated from the workpiece surface 4a, and the electrode surface The electrolytic products eluted between the electrolytic solution 2a and the processed surface 4a are ejected together with the electrolytic solution by ejecting the electrolytic solution from the ejection nozzle 8° by operating the electromagnetic valve 81 of the electrolytic solution filtering device 14 (112).

電解生成物を排除した後は、電極2が下降し、電極面2
aが被加工面4aに接触しく113) 、接触検知器4
7でその位置を検出する。この位置と前記原点AとをC
PU46で比較して加工1回当りの加工深さを測定し、
これを累積する(114)。そして、この累積値と入力
装置13によって予め設定した設定値とを比較しく11
5) 、加工深さの累積値が設定値に対し所定の差(例
えば1μm)に達していない場合は、加工回数が所定回
数N1か否かを判断する(116)。この判断(116
)でNoの場合はステップ(108)に戻り、判断(1
16)でYES、になるまで繰り返す。
After removing the electrolysis products, the electrode 2 is lowered and the electrode surface 2
a comes into contact with the workpiece surface 4a (113), contact detector 4
7 to detect the position. This position and the origin A are
The machining depth per machining process was measured by comparing with PU46,
This is accumulated (114). Then, compare this cumulative value with a preset value set by the input device 13.
5) If the cumulative value of the machining depth does not reach a predetermined difference (for example, 1 μm) from the set value, it is determined whether the number of machining times is the predetermined number N1 (116). This judgment (116
), if No, return to step (108) and make judgment (1
Repeat until 16) becomes YES.

前記ステップ(116)でYESの場合、つまり第1の
パルス電流による加工を所定回数N1回行った場合は、
CPU46が充電電圧設定部44に制御信号を出力して
、電源装置8から供給されるパルス電流を、前記第1の
パルス電流より高い電気エネルギーが得られるピーク電
流密度jP2とパルス幅t on2とを有する酸化皮膜
除去用の単一のパルス電流(以下箱2のパルス電流とい
う)に切換える(117)とともに、電極2を上昇させ
て前記ステップ(108)と同一位置に電極2を設定す
る(118)。この場合、電極2と被加工物4の間隙は
加工の進行により大きくなる。そして、電極2aと被加
工面4a間の電解液が静止したら(119)、前記第2
のパルス電流を電極2と被加工物4間に供給しく120
) 、−回もしくは数回の加工で被加工面2aに生成し
た酸化皮膜等を被加工面2aから剥離するとともに、電
極2を上昇させ(121)前記電磁弁81の動作により
酸化皮膜等を排除する(122)。なお、この第2のパ
ルス電流は、前記第1のパルス電流に、ピーク電流密度
で5〜IOA/cm2、パルス幅で10〜15m s 
e cを加えた値が最適である。
If YES in step (116), that is, if machining with the first pulse current has been performed a predetermined number of times N1,
The CPU 46 outputs a control signal to the charging voltage setting unit 44 to set the pulse current supplied from the power supply device 8 to a peak current density jP2 and a pulse width t on2 that provide higher electrical energy than the first pulse current. (117), and at the same time, raise the electrode 2 and set it at the same position as in the step (108) (118). . In this case, the gap between the electrode 2 and the workpiece 4 increases as the machining progresses. Then, when the electrolyte between the electrode 2a and the surface to be processed 4a becomes stationary (119), the second
A pulse current of 120 is supplied between the electrode 2 and the workpiece 4.
) The oxide film etc. that have been generated on the work surface 2a during the machining process - or several times is peeled off from the work surface 2a, and the electrode 2 is raised (121) The oxide film etc. is removed by the operation of the electromagnetic valve 81. (122). Note that this second pulse current has a peak current density of 5 to IOA/cm2 and a pulse width of 10 to 15 m s in addition to the first pulse current.
The value obtained by adding e c is optimal.

被加工面4aの酸化皮膜等を排除すると、電極2を下降
(123)させるとともに、所定の加工回数N2である
か否かを判断(124)する。この判断(124)でN
oの場合はステップ(118)に戻り、第2のパルス電
流による加工を所定回数N2回行う。ステップ(124
)でYESの場合は、電源装置8から供給されるパルス
電流を前記第1のパルス電流に切換え(125)でステ
ップ(108)へ移り面粗度向上のための加工を行う。
Once the oxide film and the like on the processed surface 4a are removed, the electrode 2 is lowered (123) and it is determined whether the predetermined number of processing times N2 has been reached (124). In this judgment (124), N
In the case of o, the process returns to step (118) and processing using the second pulse current is performed a predetermined number of times N2. Step (124
), the pulse current supplied from the power supply device 8 is switched to the first pulse current (125), and the process moves to step (108), where processing is performed to improve the surface roughness.

この一連の加工により加工深さの累積値が設定値と比較
し、累積値が加工深さの設定値に対し、所定の差量内に
なった時に、ステップ(115)でYESとなり、加工
条件制御部100制御信号により電源装置8から供給さ
れるパルス電流を加工面積Sに応じた所定の電気エネル
ギーが得られるピーク電流密度jP3とパルス幅t O
n3とを有する光沢面形成用の単一のパルス電流(以下
箱3のパルスという)に切換える( 126)。そして
、この第3のパルス電流で前述したステップ(118)
〜(124)と同様の加工を所定回数N3回繰り返しく
127)〜(133) 、全ての仕上げ加工を終了する
(134)。
Through this series of machining, the cumulative value of the machining depth is compared with the set value, and when the cumulative value is within a predetermined difference with respect to the set value of the machining depth, YES is determined in step (115), and the machining conditions are The pulse current supplied from the power supply device 8 according to the control signal of the control unit 100 is set to a peak current density jP3 and a pulse width tO at which a predetermined electrical energy corresponding to the processing area S is obtained.
(126). Then, the step (118) described above with this third pulse current
Processing similar to steps 124 to 124 is repeated a predetermined number of times N3 (127) to 133, and all finishing processing is completed (134).

この第3のパルス電流は、ピーク電流密度が30〜50
A/cm2でパルス幅が20〜60m s e cが最
適である。
This third pulse current has a peak current density of 30 to 50
A pulse width of 20 to 60 msec at A/cm2 is optimal.

前記第1〜第3のパルス電流による加工中、前記入力装
置13のデイスプレィ装置13aには、例えば第7図に
示す表示が行われる。即ち、入力した電極間隙δ(例え
ばG A P 100μm)、加工面積S (AREA
25cm2) 、加工取り代(D E P TH1μm
)、加工前面粗度(BEFORE30μm)と、前記ス
テップ(107)算出した各パルス電流による加工回数
N1〜N3の残加工回数(COUNT=123)及び加
工積算時間(TIMEOI:23:450・1時間23
分45秒)が表示される。
During machining using the first to third pulse currents, the display device 13a of the input device 13 displays, for example, the display shown in FIG. 7. That is, the input electrode gap δ (for example, G A P 100 μm), the machining area S (AREA
25cm2), machining allowance (D E P TH1μm
), machining front surface roughness (BEFORE 30 μm), remaining machining number of machining times N1 to N3 by each pulse current calculated in step (107) (COUNT=123), and machining cumulative time (TIMEOI: 23:450・1 hour 23)
minute 45 seconds) is displayed.

なお、上記実施例においては、加工面積の設定を入力装
置13によって行ったが、この発明はこれに何ら限定さ
れず、例えば極間に基準電圧を供給した時の電流値を前
記電流検出器37で検出し、この電流値と予め実験等に
より求めた換算式とに基づき、CPU46で自動的に算
出して設定してもよい。
In the above embodiment, the machining area was set using the input device 13, but the present invention is not limited thereto. For example, the current value when a reference voltage is supplied between the electrodes is input to the current detector 37. The current value may be detected and automatically calculated and set by the CPU 46 based on this current value and a conversion formula determined in advance through experiments or the like.

次に、この発明に係る電解加工による仕上げ加工方法及
び電解仕上げ加工装置lによって、次の条件で加工した
加工例を示す。
Next, an example of machining performed under the following conditions using the electrolytic finishing method and electrolytic finishing apparatus I according to the present invention will be shown.

電極   純銅 被加工物材質    工具鋼 電極間隙      0・1mm 加工液       硝酸ナトリウム溶液(濃度40%
) (以下同頁余白) このように、この発明に係る電解加工による仕上げ加工
方法及び電解仕上げ加工装置1にあっては、被加工物4
の加工面積Sが大面積、例えば300cm”の場合は、
より小さな電気エネルギー、例えば0.06クーロン/
Cm2の電気エネルギーで、また、加工面積Sが小面積
、例えば1cm2の場合は、より大きな電気エネルギー
、例えば0.3り一ロン/cm2の電気エネルギーで仕
上げ加工するため、加工面積Sの大小にかかわらず、被
加工面4aの面粗度を向上させ得るが、その理由として
は次のことが考えられる。
Electrode Pure copper Workpiece material Tool steel Electrode gap 0.1mm Machining fluid Sodium nitrate solution (concentration 40%)
) (Hereinafter, same page margin) As described above, in the electrolytic finishing method and electrolytic finishing apparatus 1 according to the present invention, the workpiece 4
If the processing area S is large, for example 300 cm,
Smaller electrical energy, e.g. 0.06 coulomb/
Cm2 of electric energy, and if the machining area S is small, for example 1 cm2, finishing machining is performed with larger electric energy, for example 0.3 ron/cm2, so the size of the machining area S Regardless, the surface roughness of the processed surface 4a can be improved, and the reason for this can be considered as follows.

即ち、電極2と被加工物4間にパルス状の電気エネルギ
ーを供給すると、電極面2aに水素ガスが生成され、こ
の瞬時のガス発生による体積膨張で間隙に衝撃圧が加わ
るが、この衝撃圧は、加工面積Sが小面積の場合は、仮
に被加工面4aの中心部でガス発生があったとしても、
圧力が周辺に抜けてしまう。したがって、加工面積Sが
小面積の場合はより大きな電気エネルギーを供給しても
、間隙の電解液にガス発生による衝撃圧が及ぶことがな
く、被加工面の面粗度を短時間に向上させ得る。
That is, when pulsed electrical energy is supplied between the electrode 2 and the workpiece 4, hydrogen gas is generated on the electrode surface 2a, and an impact pressure is applied to the gap due to volume expansion due to this instantaneous gas generation. If the processing area S is small, even if gas is generated at the center of the processing surface 4a,
Pressure escapes to the surrounding area. Therefore, when the machining area S is small, even if larger electrical energy is supplied, the electrolyte in the gap will not be subjected to impact pressure due to gas generation, and the surface roughness of the workpiece surface can be improved in a short time. obtain.

しかしながら、加工面積Sが大面積の場合は、電解液の
粘性による間隙の流路抵抗が大きく、ガス発生による瞬
時の衝撃圧が間隙内に維持され、この圧力により、電極
2と被加工物4間の電解液が急激に運動し、被加工面4
aに生成した電解生成物を遊動させる。したがって、よ
り大きな電気エネルギーを供給すると、間隙内に遊動す
る電解生成物の影響を受けて、被加工面4aの安定した
面粗度向上を期待できない。ところが、この発明のよう
に、より小さな電気エネルギーを供給すれば、被加工面
4aの凹凸部の凸部付近と凹部付近とで電解生成物の遊
動状態が異なり、凸部付近での電解生成物の遊動が多く
なるため、電解液の更新(噴出ノズル80からの電解液
の噴出)を行う程、凸部付近での更新効果が大きく、そ
の位置はど選択的に電流が流れて凸部付近の加工が促進
されることになり、被加工面4aの面粗度が向上するこ
とになる。
However, when the processing area S is large, the flow path resistance in the gap due to the viscosity of the electrolyte is large, and instantaneous impact pressure due to gas generation is maintained in the gap, and this pressure causes the electrode 2 and the workpiece to The electrolyte between them moves rapidly, and the workpiece surface 4
The electrolyzed products generated in a are allowed to migrate. Therefore, if larger electrical energy is supplied, stable improvement in surface roughness of the processed surface 4a cannot be expected due to the influence of electrolytic products floating in the gap. However, if smaller electric energy is supplied as in the present invention, the floating state of the electrolytic products will be different between the convex portions and the concave portions of the uneven portion of the processed surface 4a, and the electrolytic products will be separated from the electrolytic products near the convex portions. The more the electrolyte is renewed (spraying the electrolyte from the jet nozzle 80), the greater the renewal effect will be in the vicinity of the convex part, and the current will selectively flow to that position, causing the electrolyte to flow around the convex part. As a result, the surface roughness of the processed surface 4a is improved.

なお、上記実施例においては、電流密度をピーク電流密
度で説明したが、平均電流密度でもよいことはもちろん
であり、また、この発明は金型加工分野に限らず、半導
体生産のシリコン単結晶やガリウムヒソ基材の仕上げ加
工、及び磁気記憶装置のアルミニュウム・ディスクの単
結晶ダイヤモンドによる鏡面加工等のように、機械的加
工による表面の僅かな内部応力が問題となっている分野
での仕上げ加工にも応用することができる。
In the above embodiments, the current density was explained in terms of peak current density, but it goes without saying that average current density may also be used. Also, this invention is not limited to the field of mold processing, but is applicable to silicon single crystals in semiconductor production. It is also suitable for finishing in fields where slight internal stress on the surface due to mechanical processing is a problem, such as finishing of gallium histobase materials and mirror finishing of aluminum disks in magnetic storage devices using single crystal diamond. It can be applied.

[発明の効果] 以上詳細に説明したように、この発明に係る電解加工に
よる仕上げ加工方法及び電解仕上げ加工装置にあっては
、被加工物の加工面積に応じて極間に供給するパルス状
の電気エネルギーを変化させ、単位面積当りの電気エネ
ルギーを、加工面積が大面積の場合には小面積の場合よ
り小さくしたので、加工面積の大小にかかわらず被加工
面の面粗度を向上させることができ、光沢面等の高品質
の被加工面が容易に得られ、省力化が遅れている金型加
工分野での品質向上と機械化を達成することができる等
の効果を奏する。
[Effects of the Invention] As explained in detail above, in the electrolytic finishing method and electrolytic finishing apparatus according to the present invention, pulsed pulses are supplied between the machining holes according to the machining area of the workpiece. By changing the electrical energy, the electrical energy per unit area is made smaller when the processing area is large than when processing a small area, so the surface roughness of the processed surface can be improved regardless of the size of the processing area. It is possible to easily obtain a high-quality processed surface such as a glossy surface, and it is possible to achieve quality improvement and mechanization in the field of mold processing, where labor saving has been slow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電解仕上げ加工装置の正面図、第2
図は同装置のブロック図、第3図は要部のブロック図、
第4図は人力装置の正面図、第5図は電解液濾過装置の
概略構成図、第6図は仕上げ加工動作の一例を示すフロ
ーチャート、第7図はデイスプレィ装置の表示を示す図
である。 1・・・電解仕上げ加工装置、2・・・電極、4・・・
被加工物、4a・・・被加工面、8・・・電源装置、9
・・・モータ駆動制御部、lO・・・加工条件制御部、
11・・・電解液流制御部、12・・・制御装置、13
・・・入力装置、14・・・電解液濾過装置、46・・
・CPU。 特許出願人  静岡製機株式会社 代表者鈴木重夫 第1図
Figure 1 is a front view of the electrolytic finishing apparatus of the present invention, Figure 2
The figure is a block diagram of the device, Figure 3 is a block diagram of the main parts,
FIG. 4 is a front view of the human-powered device, FIG. 5 is a schematic diagram of the electrolyte filtration device, FIG. 6 is a flowchart showing an example of finishing operation, and FIG. 7 is a diagram showing the display of the display device. 1... Electrolytic finishing processing device, 2... Electrode, 4...
Workpiece, 4a... Processing surface, 8... Power supply device, 9
...Motor drive control section, lO...Machining condition control section,
11... Electrolyte flow control section, 12... Control device, 13
...Input device, 14... Electrolyte filtration device, 46...
・CPU. Patent applicant: Shizuoka Seiki Co., Ltd. Representative Shigeo Suzuki Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)次のステップを具備する電解加工による仕上げ加
工方法。 A、静止した電解液を介して対設した電極と被加工物と
の極間にパルス状の電気エネルギーを供給するステップ
。 B、前記被加工物の加工面積を設定するステップ。 C、前記加工面積の大小に応じて前記電気エネルギーを
変化させ、単位面積当りの電気エネルギーを、加工面積
が大面積の場合には小面積の場合より小さく設定するス
テップ。 D、前記極間に生成した電解生成物を排除するステップ
(1) A finishing method using electrolytic machining, which includes the following steps: A. A step of supplying pulsed electrical energy between the opposing electrodes and the workpiece via a stationary electrolyte. B. Setting the processing area of the workpiece. C. Changing the electrical energy according to the size of the processing area, and setting the electrical energy per unit area to be smaller when the processing area is large than when the processing area is small. D. Eliminating electrolysis products generated between the electrodes.
(2)請求項(1)において、加工面積の大小に応じて
変化させる電気エネルギーを、0.06クーロン/cm
^2〜0.3クーロン/cm^2としたことを特徴とす
る電解加工による仕上げ加工方法。
(2) In claim (1), the electric energy to be changed depending on the size of the processing area is 0.06 coulomb/cm.
A finishing method by electrolytic machining, characterized in that ^2 to 0.3 coulombs/cm^2.
(3)次の構成を具備する電解仕上げ加工装置。 イ、静止した電解液を介して対設した被加工物と電極と
の極間にパルス状の電気エネルギーを供給するパルス供
給手段。 ロ、前記被加工物の加工面積を設定する加工面積設定手
段。 ハ、前記加工面積の大小に応じて前記電気エネルギーを
変化させ、単位面積当りの電気エネルギーを、加工面積
が大面積の場合には小面積の場合より小さくする如く前
記パルス供給手段を制御する制御手段。 ニ、前記極間に生成した電解生成物を排除する電解生成
物排除手段。
(3) An electrolytic finishing device having the following configuration. (b) Pulse supply means for supplying pulsed electrical energy between the poles of the workpiece and the electrode, which are placed opposite each other via a stationary electrolyte. B. Machining area setting means for setting the machining area of the workpiece. C. Control for controlling the pulse supply means such that the electrical energy is changed according to the size of the processing area, and the electrical energy per unit area is smaller when the processing area is large than when the processing area is small. means. D. Electrolytic product removal means for removing electrolytic products generated between the electrodes.
JP63012993A 1987-10-30 1988-01-23 Finishing method based on electrochemical machining and its device Pending JPH01188230A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63012993A JPH01188230A (en) 1988-01-23 1988-01-23 Finishing method based on electrochemical machining and its device
DE8888310159T DE3879372T2 (en) 1987-10-30 1988-10-28 ELECTROLYTIC PRODUCTION PROCESS.
US07/264,103 US4880509A (en) 1987-10-30 1988-10-28 Electrolytic finishing method and apparatus
EP88310159A EP0314498B1 (en) 1987-10-30 1988-10-28 Electrolytic finishing method
KR1019880014178A KR910006553B1 (en) 1987-10-30 1988-10-29 Electrolytic finishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012993A JPH01188230A (en) 1988-01-23 1988-01-23 Finishing method based on electrochemical machining and its device

Publications (1)

Publication Number Publication Date
JPH01188230A true JPH01188230A (en) 1989-07-27

Family

ID=11820731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012993A Pending JPH01188230A (en) 1987-10-30 1988-01-23 Finishing method based on electrochemical machining and its device

Country Status (1)

Country Link
JP (1) JPH01188230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531417A (en) * 2002-05-24 2005-10-20 フェデラル−モーグル コーポレイション Method and apparatus for electrochemical machining
JP2013528127A (en) * 2010-06-10 2013-07-08 ハーヴェスト プレシジョン コンポーネンツ,インコーポレイテッド Electrochemical machining method and apparatus
CN106392214A (en) * 2016-10-21 2017-02-15 河南理工大学 Periodic flow closure control device for pulse jet flows

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926413A (en) * 1982-08-03 1984-02-10 ニチバン株式会社 Bundling device
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926413A (en) * 1982-08-03 1984-02-10 ニチバン株式会社 Bundling device
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531417A (en) * 2002-05-24 2005-10-20 フェデラル−モーグル コーポレイション Method and apparatus for electrochemical machining
US7850831B2 (en) 2002-05-24 2010-12-14 Federal Mogul World Wide, Inc. Method and apparatus for electrochemical machining
JP2013528127A (en) * 2010-06-10 2013-07-08 ハーヴェスト プレシジョン コンポーネンツ,インコーポレイテッド Electrochemical machining method and apparatus
CN106392214A (en) * 2016-10-21 2017-02-15 河南理工大学 Periodic flow closure control device for pulse jet flows

Similar Documents

Publication Publication Date Title
JPS62255013A (en) Electro-chemical machining device
JPH01188230A (en) Finishing method based on electrochemical machining and its device
EP0266180B1 (en) Electrolytic finishing method
KR910008243B1 (en) Electro-chemical machine
KR930007253B1 (en) Finishing method and machine employing electro-chemical machining
KR910006552B1 (en) Electrolytic finishing method
KR930000297B1 (en) Electrolytic finishing method
US4883568A (en) Finishing method employing electro-chemical process
KR910006553B1 (en) Electrolytic finishing method
JPH07108486B2 (en) Finishing method and device by electrolytic processing
JPS63283818A (en) Finishing method by electro-chemical machining
JPH02106222A (en) Method of electrolytic finishing work
JPH0265921A (en) Finishing working through electrolytic working
JPH01316129A (en) Finishing work through electrolytic working
JPH07100259B2 (en) Finishing method by electrolytic processing
JPS63267120A (en) Finishing method by electrochemical machining
JPH01252317A (en) Electrolytic finish-machining method
JPH02109636A (en) Electrolytic finishing method
JPH01306127A (en) Electric treatment method for metal
JPH01205919A (en) Finishing work through electrolytic working
JPS63283817A (en) Finishing method by electro-chemical machining
JPH01135418A (en) Finishing method by electrochemical machining
JPH01240218A (en) Method for finishing by electro-chemical machining
JPS63306825A (en) Machining gap control device for electro-chemical machine
JPH01115516A (en) Electrochemical machine