JPH0263543A - Liquid vapor raw material supply device - Google Patents

Liquid vapor raw material supply device

Info

Publication number
JPH0263543A
JPH0263543A JP21705788A JP21705788A JPH0263543A JP H0263543 A JPH0263543 A JP H0263543A JP 21705788 A JP21705788 A JP 21705788A JP 21705788 A JP21705788 A JP 21705788A JP H0263543 A JPH0263543 A JP H0263543A
Authority
JP
Japan
Prior art keywords
pressure
mixed gas
liquid
carrier gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21705788A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Ueno
上野 芳康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21705788A priority Critical patent/JPH0263543A/en
Publication of JPH0263543A publication Critical patent/JPH0263543A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To restrain the fluctuations of pressure and the flow rate just after the start of growing and to improve the quality of crystal surface by controlling the pressure difference between the main flow and the by-pass flow to be very small in comparison with the error of pressure gauge. CONSTITUTION:Vessels 21, 22 storing liquids, a carrier gas supply system supplying carrier gas into the liquid, and mixed gas sending-out parts which send out the mixed gas consisting of the carrier gas and the vapor of the liquid contained in the carrier gas are provided. Moreover, the main flow line 15 and the by-pass line 16 are provided and the former receives the mixed gas sent out of the mixed gas sending-out parts through valves 6, 19 and introduces it to a reaction chamber, and the latter receives the mixed gas sent out of the mixed gas sending-out parts through valves 7, 20 and introduces it to an exhausting system. The pressure difference between the main flow line 15 and the by-pass line 16 is detected by a flow rate meter 14, and either of pressures of the main flow line and the by-pass line is controlled by means 10, 11 so that the pressure difference becomes zero.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液体の蒸気を原料として半導体結晶の成長を
行なう場合、或いは化学薬品を合成する場合等に用いら
れる液体蒸気原料供給装置に関する。(従来の技術) 液体の蒸気を原料とし、その蒸気流量を制御して反応室
に送り込み、結晶の成長や化学薬品の合成を行なうこと
は従来から行なわれてきている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a liquid vapor raw material supply device used when growing semiconductor crystals using liquid vapor as a raw material or when synthesizing chemicals. (Prior Art) It has been conventionally practiced to use liquid vapor as a raw material, control the flow rate of the vapor, and send it into a reaction chamber to grow crystals or synthesize chemicals.

近年では特に半導体の結晶成長法に於て有機金属化合物
の蒸気を原料とする有機金属熱分解気相エピタキシャル
法(MOVPE法)が広く行なわれている。本方法では
、有機金属の蒸気流量を厳密に制御する必要があり、こ
の制御性が結晶の品質を大きく左右する。
In recent years, metal-organic pyrolysis vapor phase epitaxial method (MOVPE method), which uses the vapor of an organometallic compound as a raw material, has been widely used especially in semiconductor crystal growth methods. In this method, it is necessary to strictly control the flow rate of organic metal vapor, and this controllability greatly influences the quality of the crystal.

ここで減圧MOVPE法を想定し第2図に従来の液体原
料供給装置を示す、キャリアガス供給入口1からキャリ
アガス(N2.N2.Arなど)を導入し、マスフロー
コントローラ2でその流量を制御する。マスフローコン
トローラは気体流量制御機構の一例として示した。マス
フローコントローラ2によって一定の流量に制御された
キャリアガスは液体原料4を通り液体原料の一定の蒸気
圧を含んでバルブ6を経て本流15に入り、ニードルバ
ルブ17を経て反応室人口12へ送られる。マスフロー
コントローラの制御性、液体原料蒸気圧の安定性を高め
るために結晶成長の前後には液体原料蒸気を含んだキャ
リアガスはバルブ7を通してバイパス16へ棄てられる
。つまり、結晶の成長前待機中はバルブ6が閉、バルブ
7が開の状態にあり、成長の開始の際にバルブ7が開、
バルブ6が閏の状態になる。結晶の成長を停止する際に
は再びバルブ6が閉、バルブ7が開となる。これらの一
連のバルブ操作の際に一定流量のキャリアガスが液体原
料4を安定に通過していることが重要である。
Here, assuming the reduced pressure MOVPE method, a conventional liquid raw material supply device is shown in FIG. . The mass flow controller is shown as an example of a gas flow rate control mechanism. The carrier gas, which is controlled at a constant flow rate by the mass flow controller 2, passes through the liquid raw material 4, contains a constant vapor pressure of the liquid raw material, enters the main stream 15 via the valve 6, and is sent to the reaction chamber 12 via the needle valve 17. . In order to improve the controllability of the mass flow controller and the stability of the liquid raw material vapor pressure, the carrier gas containing the liquid raw material vapor is discharged to the bypass 16 through the valve 7 before and after crystal growth. In other words, while waiting before crystal growth, valve 6 is closed and valve 7 is open, and when crystal growth starts, valve 7 is opened.
The valve 6 is in the leap state. When stopping crystal growth, valve 6 is closed again and valve 7 is opened. During these series of valve operations, it is important that a constant flow rate of the carrier gas is stably passed through the liquid raw material 4.

以上に述べたバルブ操作手順を第3図(a)に示す、2
種類の結晶層を連続的に成長する場合のバルブの操作手
順についても第3図(b)に示す。
The valve operation procedure described above is shown in Figure 3(a).
FIG. 3(b) also shows the operation procedure of the valve when different types of crystal layers are continuously grown.

本流15及びバイパス16には液体原料を通過したキャ
リアガスにマスフローコントローラ10.11で流量を
制御された十分な量のキャリアガスを加えてそれぞれ反
応室と排気系へ送られる。
A sufficient amount of carrier gas whose flow rate is controlled by a mass flow controller 10.11 is added to the carrier gas that has passed through the liquid raw material to the main stream 15 and the bypass 16, and the mixture is sent to the reaction chamber and the exhaust system, respectively.

ここで、液体原料内部、本流、バイパスの圧力制御R構
について述べる。液体原料内部およびその周辺は系内部
の高機密性を保つために大気圧よりも少し高い圧力(〜
800 T o r r )に保たれている。一方、反
応室は70T o r r程度の減圧下で反応が行なわ
れる。これらの圧力差はニードルバルブ17によって与
えられ、本流上流の圧力が圧力計8により監視される。
Here, the pressure control R structure inside the liquid raw material, the main flow, and the bypass will be described. The pressure inside and around the liquid raw material is slightly higher than atmospheric pressure (~
800 Torr). On the other hand, the reaction is carried out in the reaction chamber under reduced pressure of about 70 Torr. These pressure differences are provided by the needle valve 17, and the pressure upstream of the main stream is monitored by the pressure gauge 8.

成長前後のバルブ操作により本流に流れ込むキャリアガ
ス総流量が変動するから、圧力計8と設定圧力の間に生
じる圧力差をマスフローコントローラ10にフィードバ
ックして本流上流の圧力を一定に保っている0以上の圧
力設定サーボamを図中に点線で示した。
Since the total flow rate of the carrier gas flowing into the main stream fluctuates due to valve operations before and after growth, the pressure difference generated between the pressure gauge 8 and the set pressure is fed back to the mass flow controller 10 to keep the pressure upstream of the main stream constant. The pressure setting servo am is shown by a dotted line in the figure.

先に述べた通り、成長開始におけるバルブ操作の際に液
体原料を通過するキャリアガスの流量および液体原料蒸
気圧を一定に保つために本流15とバイパス16は常に
等しい圧力に保たれていることが望マしい、そこで、バ
イパス16についても圧力計9とマスフローコントロー
ラ11によってサーボ制御がなされ、バイパス16は本
流15に等しい圧力に設定されている。
As mentioned above, the main flow 15 and the bypass 16 are always kept at the same pressure in order to keep the flow rate of the carrier gas passing through the liquid raw material and the vapor pressure of the liquid raw material constant during valve operation at the start of growth. Desirably, therefore, the bypass 16 is also servo-controlled by the pressure gauge 9 and the mass flow controller 11, and the bypass 16 is set at the same pressure as the main flow 15.

(発明が解決しようとする課題) 第2図の液体蒸気原料供給装置において、圧力計9.1
0の指示値には実際には1〜2To r rの誤差があ
る。この圧力誤差のために、例えば本流圧力がバイパス
圧力よりも高い場合には、成長開始に伴い液体原料を通
過したキャリアガス(バブリングガスと通称されている
)をバイパス16から本流15に切り換えた時に過渡的
な逆流を生じる。
(Problem to be Solved by the Invention) In the liquid vapor raw material supply device shown in FIG.
The indicated value of 0 actually has an error of 1 to 2 Torr. Due to this pressure error, for example, when the main flow pressure is higher than the bypass pressure, when the carrier gas (commonly called bubbling gas) that has passed through the liquid raw material at the start of growth is switched from the bypass 16 to the main flow 15, Produces transient reflux.

このようなキャリアガスの逆流は特に液体原料容器21
.22に対して致命的なダメージを与えてしま。
Such backflow of carrier gas is especially caused by the liquid raw material container 21.
.. This caused fatal damage to 22.

う、バイパス圧力が本流圧力よりも高い場合には、成長
停止の際に同様の逆流が起きる。そこで、従来の装置で
液体蒸気原料を反応室に供給する際には、バイパス(本
流)バルブを閉じてから本流(バイパス)バルブを開く
までの間に短い遅れ時間Δ丁を設けて液体原料容器21
.22内に3 T o r r程度の圧力をためて逆流
を防いでいる。
If the bypass pressure is higher than the main flow pressure, a similar backflow occurs during growth arrest. Therefore, when supplying liquid vapor raw material to the reaction chamber using conventional equipment, a short delay time ΔT is provided between closing the bypass (main flow) valve and opening the main flow (bypass) valve. 21
.. A pressure of about 3 Torr is built up in 22 to prevent backflow.

そこで、成長開始直後には第4図に示すような圧力の緩
和時間の間には圧力と流量の変動が続き、反応室に送ら
れる原料の盃も変動する。図中ΔPは本流とバイパスと
の圧力差を示す。
Therefore, immediately after the start of growth, the pressure and flow rate continue to fluctuate during the pressure relaxation time as shown in FIG. 4, and the flow rate of the raw material sent to the reaction chamber also fluctuates. In the figure, ΔP indicates the pressure difference between the main flow and the bypass.

以上に述べた圧力と流量の変動は第3図(b)に示した
ような2以上の異なる組成を持つ層を成長するなめに液
体原料を切り換える際にも生じる。
The above-mentioned fluctuations in pressure and flow rate also occur when changing the liquid source to grow layers having two or more different compositions as shown in FIG. 3(b).

これらの圧力と流量の変動は質の高い結晶界面を得る上
で重大な障害となる。
These pressure and flow rate fluctuations are a serious obstacle to obtaining high quality crystal interfaces.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する手段は、
液体を蓄える容器と、前記液体中にキャリアガスを供給
するキャリアガス供給系と、前記液体中を通過した前記
キャリアガスとこのキャリアガスに含まれる前記液体の
蒸気との混合気体を前記容器から導き出す混合気体導出
部と、該混合気体導出部から導き出される前記混合気体
を第1のバルブを介して受け、反応室へ導く本流ライン
と、前記混合気体導出部から導き出される前記混合気体
を第2のバルブを介して受け、排気系へ導くバイパスラ
インとを備える液体蒸気原料供給装置であって、 前記本流ラインとバイパスラインとの間の圧力差を検出
する手段と、前記圧力差に応じ該圧力差が零Gq、なる
方向に前記本流ラインまたはバイパスラインのうちの少
なくとも一方の圧力を制御する手段とを備えることを特
徴とする。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems are as follows:
a container for storing a liquid; a carrier gas supply system for supplying a carrier gas into the liquid; and a gas mixture of the carrier gas that has passed through the liquid and the vapor of the liquid contained in the carrier gas to be guided out of the container. a mixed gas outlet, a main line that receives the mixed gas led out from the mixed gas outlet via a first valve and guides it to the reaction chamber; A liquid vapor raw material supply device comprising: a bypass line that receives the raw material via a valve and leads to an exhaust system, comprising: means for detecting a pressure difference between the main line and the bypass line; and a means for detecting a pressure difference between the main line and the bypass line; and means for controlling the pressure in at least one of the main line and the bypass line in a direction such that Gq becomes zero Gq.

(作用) 本発明では、バルブ切り換えに伴い本流に生ずる圧力と
流量の変動を最小に抑えるために、本流とバイパスとを
つなぐブリッジラインを設け、該ブリッジラインを流れ
るキャリアガスの向きと流量によって本流とバイパスと
の間の圧力差をモニタして、バイパスのマスフローコン
トローラにその圧力差をフィードバックすることによっ
て本流とバイパスとの圧力差をゼロに保つ。
(Function) In the present invention, in order to minimize fluctuations in pressure and flow rate that occur in the main flow due to valve switching, a bridge line is provided that connects the main flow and the bypass, and the direction and flow rate of the carrier gas flowing through the bridge line is The pressure difference between the main flow and the bypass is maintained at zero by monitoring the pressure difference between the main flow and the bypass and feeding the pressure difference back to the mass flow controller of the bypass.

(実施例) 以下に実施例を挙げ本発明を一層詳しく説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

第1図は本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

本実線間においては本流15の圧力制御は第2図の従来
装置と同様に圧力計8とマスフローコントローラ10に
より行なう0本実施例においては本流15とバイパス1
6との間にブリッジラインを設け、その中間に流動計1
4を取り付けている。バイパス16の圧力は、流量計1
4の値が±Oとなるようにマスフローコントローラ11
にフィードバックをかけて制御する。このようにバイパ
ス16の圧力を制御すれば、本流15の圧力において設
定値からの誤差が有るか無いかにかかわらず、本流15
−バイパス16間の圧力差を最小に抑えることができる
。この実施例のその他の部分の構成および動作は第2図
の従来の装置と同じである。
Between this solid line, the pressure control of the main flow 15 is performed by the pressure gauge 8 and the mass flow controller 10 as in the conventional device shown in FIG.
A bridge line is provided between Rheometer 6 and Rheometer 1 in between.
4 is installed. The pressure of the bypass 16 is determined by the flowmeter 1
Mass flow controller 11 so that the value of 4 is ±O.
control by applying feedback. If the pressure of the bypass 16 is controlled in this way, regardless of whether there is an error in the pressure of the main flow 15 from the set value, the pressure of the main flow 15 will be controlled.
- the pressure difference between the bypasses 16 can be minimized; The structure and operation of other parts of this embodiment are the same as the conventional device shown in FIG.

(発明の効果) 本発明の装置においては、本流−バイパス間圧力差ΔP
を圧力計誤差に比べて著しく小さく抑えることにより、
バルブ閉−開操作の際に必要な遅れ時間5丁を充分に短
くすることができる。従って、半導体結晶の成長に本発
明の装置を採用することにより、成長開始直後の圧力と
?LMの変動が抑えられ結晶界面の品質を高めることが
できる。
(Effect of the invention) In the device of the invention, the main flow-bypass pressure difference ΔP
By keeping the error significantly smaller than the pressure gauge error,
The delay time required for closing and opening the valve can be sufficiently shortened. Therefore, by employing the apparatus of the present invention for growing semiconductor crystals, it is possible to reduce the pressure immediately after the start of growth. Fluctuations in LM are suppressed and the quality of the crystal interface can be improved.

特に、本発明の装置による結晶成長は、超薄膜層の界面
や多重量子井戸構造(MQW)の界面品質の改善に大き
な効果をもたらす。
In particular, crystal growth using the apparatus of the present invention has a great effect on improving the interface quality of ultra-thin film layers and multiple quantum well structures (MQW).

イパス、8.9は圧力計、14は流量計−21,22は
液体原料容器をそれぞれ示す。
8.9 is a pressure gauge, 14 is a flow meter, and 21 and 22 are liquid raw material containers, respectively.

Claims (1)

【特許請求の範囲】 液体を蓄える容器と、前記液体中にキャリアガスを供給
するキャリアガス供給系と、前記液体中を通過した前記
キャリアガスとこのキャリアガスに含まれる前記液体の
蒸気との混合気体を前記容器から導き出す混合気体導出
部と、該混合気体導出部から導き出される前記混合気体
を第1のバルブを介して受け、反応室へ導く本流ライン
と、前記混合気体導出部から導き出される前記混合気体
を第2のバルブを介して受け、排気系へ導くバイパスラ
インとを備える液体蒸気原料供給装置において、 前記本流ラインとバイパスラインとの間の圧力差を検出
する手段と、前記圧力差に応じ該圧力差が零になる方向
に前記本流ラインまたはバイパスラインのうちの少なく
とも一方の圧力を制御する手段とを備えることを特徴と
する液体蒸気原料供給装置。
[Claims] A container for storing a liquid, a carrier gas supply system for supplying a carrier gas into the liquid, and a mixture of the carrier gas passed through the liquid and the vapor of the liquid contained in the carrier gas. a mixed gas lead-out part that leads the gas out of the container; a main line that receives the mixed gas led out from the mixed gas lead-out part via a first valve and leads it to the reaction chamber; A liquid vapor raw material supply device comprising a bypass line that receives a mixed gas via a second valve and leads it to an exhaust system, comprising means for detecting a pressure difference between the main line and the bypass line, and a means for detecting a pressure difference between the main line and the bypass line; A liquid vapor raw material supply device comprising means for controlling the pressure of at least one of the main line and the bypass line in a direction in which the pressure difference becomes zero.
JP21705788A 1988-08-31 1988-08-31 Liquid vapor raw material supply device Pending JPH0263543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21705788A JPH0263543A (en) 1988-08-31 1988-08-31 Liquid vapor raw material supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21705788A JPH0263543A (en) 1988-08-31 1988-08-31 Liquid vapor raw material supply device

Publications (1)

Publication Number Publication Date
JPH0263543A true JPH0263543A (en) 1990-03-02

Family

ID=16698153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21705788A Pending JPH0263543A (en) 1988-08-31 1988-08-31 Liquid vapor raw material supply device

Country Status (1)

Country Link
JP (1) JPH0263543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340992A (en) * 1989-07-10 1991-02-21 Fuji Electric Co Ltd Gas supply device
US5540059A (en) * 1994-02-28 1996-07-30 Shin-Etsu Quartz Products Co., Ltd. Method and apparatus for supplying gaseous raw material
US7183646B2 (en) 1994-03-11 2007-02-27 Silicon Bandwidth, Inc. Semiconductor chip carrier affording a high-density external interface
JP2021037434A (en) * 2019-08-30 2021-03-11 株式会社東芝 Steam supply device, steam supply method and test device using steam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340992A (en) * 1989-07-10 1991-02-21 Fuji Electric Co Ltd Gas supply device
US5540059A (en) * 1994-02-28 1996-07-30 Shin-Etsu Quartz Products Co., Ltd. Method and apparatus for supplying gaseous raw material
US7183646B2 (en) 1994-03-11 2007-02-27 Silicon Bandwidth, Inc. Semiconductor chip carrier affording a high-density external interface
JP2021037434A (en) * 2019-08-30 2021-03-11 株式会社東芝 Steam supply device, steam supply method and test device using steam

Similar Documents

Publication Publication Date Title
US4783343A (en) Method for supplying metal organic gas and an apparatus for realizing same
JP2006222133A (en) Method of supplying material gas, and apparatus thereof
CA2591663A1 (en) Metal-organic vaporizing and feeding apparatus, metal-organic chemical vapor deposition apparatus, metal-organic chemical vapor deposition method, gas flow rate regulator, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JPH0263543A (en) Liquid vapor raw material supply device
JPS6328875A (en) Method for introducing gas
JPS61264722A (en) Manufacture of semiconductor device
JP3908625B2 (en) Substrate processing equipment
JP2646647B2 (en) Low pressure vapor phase growth equipment
JP2004363271A (en) Method for supplying semiconductor production device with raw material
JPS60131968A (en) Vapor growth deposition device
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JP2581117B2 (en) Vapor phase growth equipment
JPS6251209A (en) Vapor growth apparatus
JPH06318116A (en) Gas flow rate controller
JPS6027119A (en) Vapor growth device of semiconductor
JP2002313731A (en) Organic metal vapor growth equipment
JPH04240198A (en) Vapor phase growth method for thin film
KR940012531A (en) Method for manufacturing dielectric thin film having high dielectric constant and apparatus therefor
JPH04324623A (en) Device and method for vapor phase growth
JPH01115119A (en) Device for supplying raw material in form of liquid vapor
JP3707079B2 (en) Compound semiconductor thin film growth method
JP2681939B2 (en) Low pressure MOCVD equipment
JPH0196922A (en) Semiconductor manufacture equipment
JPH01255214A (en) Apparatus for supplying liquid raw material
JPH01220821A (en) Gas controlling method for vapor growth equipment