JPH0263297B2 - - Google Patents

Info

Publication number
JPH0263297B2
JPH0263297B2 JP55130933A JP13093380A JPH0263297B2 JP H0263297 B2 JPH0263297 B2 JP H0263297B2 JP 55130933 A JP55130933 A JP 55130933A JP 13093380 A JP13093380 A JP 13093380A JP H0263297 B2 JPH0263297 B2 JP H0263297B2
Authority
JP
Japan
Prior art keywords
gate
oxide film
drain
source
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55130933A
Other languages
Japanese (ja)
Other versions
JPS5754373A (en
Inventor
Takeya Ezaki
Masabumi Kubota
Osamu Ishikawa
Kosei Kajiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13093380A priority Critical patent/JPS5754373A/en
Publication of JPS5754373A publication Critical patent/JPS5754373A/en
Publication of JPH0263297B2 publication Critical patent/JPH0263297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 本発明はMOS型半導体装置の性能を安定に向
上せしめること、特に微細化に伴なう問題の解決
を図ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to stably improve the performance of a MOS type semiconductor device, and particularly to solve problems associated with miniaturization.

MOS型半導体装置の高速化・高密度化のため、
年々ゲート長が短かくなつており、いわゆる短チ
ヤネル化が図られている。しかしながらそれに伴
なつて、閾値VTのばらつき増大、ドレイン耐圧
の低下、ひいてはドレインリーク電流の増大等の
いわゆる短チヤネル効果をいかに解決するかが重
要な課題として浮んで来た。
In order to increase the speed and density of MOS type semiconductor devices,
Gate lengths are becoming shorter year by year, leading to so-called short channels. However, along with this, it has emerged as an important issue how to solve the so-called short channel effect, such as increased variation in threshold value V T , decreased drain breakdown voltage, and even increased drain leakage current.

例えば現状技術では、3ミクロン巾のゲートパ
ターンがマスク上に形成されている場合、ポリシ
リコン上にこれが転写されると、巾2.5ミクロン
程度になり、さらにソース・ドレイン拡散層の深
さ(約0.5ミクロン)の2倍を引いた1.5ミクロン
程度の実効チヤネル長になる。始めのマスク上の
ゲートパターンを微細化するには、フオトリソグ
ラフイー及エツチングに於ける転写精度の向上
や、ソース・ドレイン拡散深さを浅く形成する技
術の開始等、マスクパターンと実効チヤネル長の
差分を少なくしなければならない。従来からこの
様な方向での種々の改善がなされて来たが、例え
ば浅い接合形成のための砒素イオン注入によつて
も接合深さxJは0.25〜0.3ミクロン程度あり、2xJ
で0.5〜0.6ミクロンになり、転写誤差と合わせて
1ミクロンもの差分を生じている。これでもまだ
nチヤネルは砒素という拡散係数の小さな不純物
が使用出来るから良い方であつて、pチヤネルで
はボロンの様に拡散係数が大きい不純物を使うの
で、ゲート長の短縮が一層困難である。従つて、
p,n両チヤネルを用いる相補型MOS集積回路
の微細化には大きな障害が存在している。
For example, with current technology, if a gate pattern with a width of 3 microns is formed on a mask, when it is transferred onto polysilicon, the width will be approximately 2.5 microns, and the depth of the source/drain diffusion layer (approximately 0.5 microns). The effective channel length is approximately 1.5 microns, which is calculated by subtracting twice the actual channel length (microns). In order to miniaturize the gate pattern on the initial mask, it is necessary to improve the mask pattern and effective channel length, such as improving the transfer accuracy in photolithography and etching, and starting technology to form shallow source/drain diffusion depths. The difference must be reduced. Various improvements have been made in this direction, for example, even with arsenic ion implantation to form shallow junctions, the junction depth x J is approximately 0.25 to 0.3 microns, and 2x J
This results in a difference of 0.5 to 0.6 microns, which together with the transfer error creates a difference of 1 micron. Even with this, the n-channel is better because it can use an impurity with a small diffusion coefficient, such as arsenic, but the p-channel uses an impurity with a large diffusion coefficient, such as boron, so it is more difficult to shorten the gate length. Therefore,
There are major obstacles to miniaturization of complementary MOS integrated circuits using both p and n channels.

本発明においては、ゲート上に酸化膜を被着せ
しめ、ゲートから所望の距離だけ離れた位置へ不
純物を導入し、ゲート直下のチヤネル領域へのソ
ース・ドレイン拡散層の拡がりを極力少なくし、
もつて、ゲート長に対する実効チヤネル長の差分
を少なくし、短チヤネル効果の少ない微細化され
たMOS型半導体装置を得ることをその骨子とす
る。
In the present invention, an oxide film is deposited on the gate, impurities are introduced at a position a desired distance from the gate, and the spread of the source/drain diffusion layer into the channel region directly under the gate is minimized.
The goal is to reduce the difference between the effective channel length and the gate length to obtain a miniaturized MOS type semiconductor device with less short channel effect.

以下第1図〜第7図によつて本発明の構成につ
いて説明する。nチヤネルの例について述べる
が、pチヤネルにも同様に適用出来、従つて相補
型MOSICにも適用され得るものである。
The configuration of the present invention will be explained below with reference to FIGS. 1 to 7. Although an example of an n-channel will be described, the present invention can be similarly applied to a p-channel and therefore also to a complementary MOSIC.

(第1図) p型シリコン基板1表面の所望領域
に選択酸化法によりフイールド酸化膜2を形成し
た後、露出した基板1の表面にゲート酸化膜3を
熱酸化法により約500Åの厚さに成長せしめる。
(Fig. 1) After forming a field oxide film 2 on a desired region of the surface of a p-type silicon substrate 1 by selective oxidation, a gate oxide film 3 is formed on the exposed surface of the substrate 1 to a thickness of about 500 Å by thermal oxidation. Let it grow.

(第2図) 次に、ゲートとなるべき多結晶シリ
コン(以下ポリシリコンと略記する)4を所望の
ゲート長lGに形成する。マスクパターンに対して
高精度の寸法を得るためにフレオンガスを用いた
プラズマ又は反応性スパツタエツチングによるの
が好ましい。
(FIG. 2) Next, polycrystalline silicon (hereinafter abbreviated as polysilicon) 4 which is to become a gate is formed to have a desired gate length l.sub.G. Preferably, plasma or reactive sputter etching with Freon gas is used to obtain highly accurate dimensions for the mask pattern.

(第3図) 次にゲート酸化膜3をポリシリコン
4をマスクとしてエツチオフして後ポリシリコン
4を含む基板1の表面に被膜5を堆積又は塗布す
る。被膜5としては次の工程で必要な気相成長酸
化膜を用いることにする。被膜5の厚みは図示し
た如く平坦な部分で定義されるtfであるが、ポリ
シリコン4の端部近傍の巾Δfより厚い部分が生
じる。これは、被膜5が、ポリシリコン4の端面
4aにおいても付着し成長するためで、大略Δf
はΔfに等しいということが出来る。
(FIG. 3) Next, gate oxide film 3 is etched off using polysilicon 4 as a mask, and then film 5 is deposited or coated on the surface of substrate 1 including polysilicon 4. As the film 5, a vapor-grown oxide film, which is necessary in the next step, will be used. The thickness of the coating 5 is t f defined by the flat portion as shown, but there is a portion thicker than the width Δ f near the end of the polysilicon 4 . This is because the film 5 also adheres and grows on the end surface 4a of the polysilicon 4, and approximately Δ f
can be said to be equal to Δ f .

(第4図) 次に、ソース・ドレインを形成する
ために基板1と反対導電型、例えばリンイオン
を、その飛程距離Rpが、被膜5の厚みtfよりわず
かに大きくなる程度の加速電圧でイオン注入する
と、注入層6,6′が、ポリシリコンゲート4か
ら、大略Δf離れた位置に形成される。このΔf
値は、0.4〜0.5ミクロン程度に選ぶ。
(Fig. 4) Next, to form the source/drain, phosphorus ions of the opposite conductivity type as the substrate 1, such as phosphorus ions, are heated at an accelerating voltage such that the range R p is slightly larger than the thickness t f of the coating 5. When ions are implanted at , implantation layers 6 and 6' are formed at positions approximately Δ f away from polysilicon gate 4. The value of Δf is selected to be approximately 0.4 to 0.5 microns.

(第5図) 次に、1000℃程度の温度で熱処理を
行ない、n型注入層6,6′を拡げ、ゲート4端
部に達する拡散層61及び61′を形成する。こ
の拡散層61,61′がソース・ドレイン拡散領
域である。ソース・ドレイン拡散層61,61′
間距離である実効チヤネル長Leffは、ゲート長lG
より、0.1〜0.2ミクロン程度短かくなる様に形成
される。被膜5として気相成長酸化膜を用いるた
め、酸化膜中の不純物拡散は例えば多結晶シリコ
ン中のそれに比べ非常に遅くイオン注入後の熱処
理により、ソース・ドレイン領域が丁度ゲート端
に達する位置関係を精密に規定できる。
(FIG. 5) Next, heat treatment is performed at a temperature of about 1000° C. to expand the n-type injection layers 6, 6' and form diffusion layers 61 and 61' reaching the ends of the gate 4. These diffusion layers 61, 61' are source/drain diffusion regions. Source/drain diffusion layer 61, 61'
The effective channel length L eff is the distance between the gate length l G
It is formed to be about 0.1 to 0.2 microns shorter. Since a vapor-phase grown oxide film is used as the coating 5, impurity diffusion in the oxide film is much slower than that in polycrystalline silicon, for example.By heat treatment after ion implantation, the positional relationship in which the source/drain region just reaches the gate edge can be adjusted. Can be specified precisely.

(第6図) 次に被膜5にコンタクト開孔7,
7′を設ける。図示していないが、ポリシリコン
4へのコンタクト開孔も同時に形成する。
(Fig. 6) Next, the contact hole 7 in the coating 5,
7' is provided. Although not shown, a contact opening to the polysilicon 4 is also formed at the same time.

(第7図) 次に、回路素子間接続のための金属
配線8,8′を形成する。図示してないが、ポリ
シリコンゲート4への信号伝達のための金属配線
も同時に形成する。
(FIG. 7) Next, metal wiring lines 8 and 8' for connection between circuit elements are formed. Although not shown, metal wiring for signal transmission to the polysilicon gate 4 is also formed at the same time.

以上で、MOS型半導体装置の製造工程が完了
する。
With the above steps, the manufacturing process of the MOS type semiconductor device is completed.

本発明によれば、ゲート上に酸化膜を被着せし
め、その酸化膜の厚みとほぼ同程度又はより大き
くなる加速電圧で不純物を注入し、ソース・ドレ
イン層がゲートから所定の間隔離れた位置に形成
出来るため、熱処理により、ソース・ドレイン層
が拡がつても、実効チヤネル長Leffが余り小さく
ならない。即ち、ゲート長lGと実効チヤネル長
Leffの差は極めて小さく出来る。従つて、設計寸
法であるマスク上のゲート長を実効チヤネル長と
の差は、ゲートを形成する時のフオトリソグラフ
イー及びエツチング工程のみでほぼ与えられる。
この様に実効チヤネル長が従来に比し、より設計
寸法に近づくという事は、その分始めに設計寸法
を微細化出来る事を意味しており、微細化による
効果、即ちより高密度化・寄生容量の減少による
高速化等の効果が本発明によりもたらされる。ま
た、第5図以降で明らかな如く、ソース・ドレイ
ン61,61′とゲート4との重なり部分が極め
て小さいので、ゲート・ソース間及びゲート・ド
レイン間容量が小さい。ゲート・ドレイン間容量
は高周波特性に悪影響を及ぼすので、本発明によ
るMOS型半導体装置はまた高速性にも優れてい
る。
According to the present invention, an oxide film is deposited on the gate, impurities are implanted at an acceleration voltage that is approximately the same as or greater than the thickness of the oxide film, and the source/drain layer is located at a position separated from the gate by a predetermined distance. Therefore, even if the source/drain layer is expanded by heat treatment, the effective channel length L eff will not become too small. That is, gate length l G and effective channel length
The difference in L eff can be made extremely small. Therefore, the difference between the design dimension of the gate length on the mask and the effective channel length is almost determined only by the photolithography and etching steps used to form the gate.
In this way, the fact that the effective channel length is closer to the design dimension than in the past means that the design dimension can be made smaller at the beginning. The present invention brings about effects such as increased speed due to reduced capacity. Furthermore, as is clear from FIG. 5 onward, since the overlapping portion between the source/drain 61, 61' and the gate 4 is extremely small, the capacitance between the gate and source and between the gate and drain is small. Since gate-drain capacitance has a negative effect on high frequency characteristics, the MOS type semiconductor device according to the present invention also has excellent high speed performance.

これらの効果は注入層6,6′を、ゲート4か
らΔfだけ離れた位置に形成したことによりもた
らされたものであるが、この工程(第3〜第4
図)にはマスク合せで、サイドエツチといつた作
業者の感覚に依存するところがなく自己整合的な
方法であるため高精度で制御性が良いという製造
技術上の利点を備えているところが本発明の重要
な特徴である。
These effects were brought about by forming the injection layers 6, 6' at a distance of Δ f from the gate 4;
The present invention has the advantage of high precision and good controllability in mask alignment because it is a self-aligning method that does not rely on the operator's senses such as side etching. This is an important feature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図はそれぞれ本発明の一実施
例の方法を説明するための半導体素子の断面図で
ある。 1……基板、2……フイールド酸化膜、3……
ゲート酸化膜、4……ポリシリコン、5……被
膜、6,6′……注入層、61,61′……拡散
層。
1 to 7 are cross-sectional views of a semiconductor device, respectively, for explaining a method according to an embodiment of the present invention. 1...Substrate, 2...Field oxide film, 3...
Gate oxide film, 4... polysilicon, 5... film, 6, 6'... injection layer, 61, 61'... diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に、ゲート酸化膜及びゲートを
形成する工程と、上記ゲートを含む上記半導体基
板上に所望の厚みの酸化膜を被着する工程と、上
記基板表面に垂直方向から、その飛程距離が上記
酸化膜の厚みと同程度又はより大きくなる加速電
圧で不純物を注入し上記ゲート端部から離れた位
置にソース・ドレインを形成する工程と、上記ソ
ース・ドレインを上記ゲート端部に丁度達せしめ
るように熱処理する工程とを含むことを特徴とす
るMOS型半導体装置の製造方法。
1. A step of forming a gate oxide film and a gate on a semiconductor substrate, a step of depositing an oxide film of a desired thickness on the semiconductor substrate including the gate, and a step of depositing the oxide film to a desired thickness from a direction perpendicular to the surface of the substrate. a step of implanting impurities at an accelerating voltage such that the distance is equal to or greater than the thickness of the oxide film to form a source/drain at a position away from the edge of the gate, and placing the source/drain just at the edge of the gate; 1. A method for manufacturing a MOS type semiconductor device, comprising the step of heat treatment to achieve the desired temperature.
JP13093380A 1980-09-19 1980-09-19 Manufacture of mos type semiconductor device Granted JPS5754373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13093380A JPS5754373A (en) 1980-09-19 1980-09-19 Manufacture of mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13093380A JPS5754373A (en) 1980-09-19 1980-09-19 Manufacture of mos type semiconductor device

Publications (2)

Publication Number Publication Date
JPS5754373A JPS5754373A (en) 1982-03-31
JPH0263297B2 true JPH0263297B2 (en) 1990-12-27

Family

ID=15046094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13093380A Granted JPS5754373A (en) 1980-09-19 1980-09-19 Manufacture of mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS5754373A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789571B2 (en) * 1985-04-16 1995-09-27 株式会社東芝 Method of manufacturing semiconductor memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166958A (en) * 1979-06-15 1980-12-26 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166958A (en) * 1979-06-15 1980-12-26 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5754373A (en) 1982-03-31

Similar Documents

Publication Publication Date Title
US4329186A (en) Simultaneously forming fully implanted DMOS together with enhancement and depletion mode MOSFET devices
US5573961A (en) Method of making a body contact for a MOSFET device fabricated in an SOI layer
US5502009A (en) Method for fabricating gate oxide layers of different thicknesses
US4442589A (en) Method for manufacturing field effect transistors
US5567631A (en) Method of forming gate spacer to control the base width of a lateral bipolar junction transistor using SOI technology
US4689872A (en) Method of manufacturing a semiconductor device
JPS6249750B2 (en)
JPH03178135A (en) Manufacture of insulating gate field effect transistor
JPS59220971A (en) Manufacture of semiconductor device
US4577397A (en) Method for manufacturing a semiconductor device having vertical and lateral transistors
JPH09232445A (en) Semiconductor device and its manufacture
US5001081A (en) Method of manufacturing a polysilicon emitter and a polysilicon gate using the same etch of polysilicon on a thin gate oxide
US5396099A (en) MOS type semiconductor device having a high ON current/OFF current ratio
US5149663A (en) Method for manufacturing a Bi-CMOS semiconductor device
US5610087A (en) Method for fabricating narrow base width lateral bipolar junction transistor, on SOI layer
US5179031A (en) Method of manufacturing a polysilicon emitter and a polysilicon gate using the same etch of polysilicon on a thin gate oxide
KR910000020B1 (en) Manufacture of semiconductor device
JPH07153952A (en) Semiconductor device and manufacture thereof
US5728613A (en) Method of using an insulator spacer to form a narrow base width lateral bipolar junction transistor
JPH0263297B2 (en)
JPS6040702B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0974189A (en) Manufacture of semiconductor device
US4653173A (en) Method of manufacturing an insulated gate field effect device
JPS6110996B2 (en)
KR950011562B1 (en) Manufacturing method of semiconductor device