JPH0261083A - Anode for generating oxygen and production thereof - Google Patents

Anode for generating oxygen and production thereof

Info

Publication number
JPH0261083A
JPH0261083A JP63210187A JP21018788A JPH0261083A JP H0261083 A JPH0261083 A JP H0261083A JP 63210187 A JP63210187 A JP 63210187A JP 21018788 A JP21018788 A JP 21018788A JP H0261083 A JPH0261083 A JP H0261083A
Authority
JP
Japan
Prior art keywords
coating layer
oxide
mol
anode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63210187A
Other languages
Japanese (ja)
Other versions
JP2596807B2 (en
Inventor
Shingo Tokuda
徳田 晋吾
Toshiyuki Ikeda
俊幸 池田
Toshio Muranaga
村永 外志雄
Masahiko Oosumi
雅彦 大炭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP63210187A priority Critical patent/JP2596807B2/en
Publication of JPH0261083A publication Critical patent/JPH0261083A/en
Application granted granted Critical
Publication of JP2596807B2 publication Critical patent/JP2596807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To impart corrosion resistance to an oxygen impermeable intermediate layer and to improve the electrical conductivity thereof as well as to prevent the damage of a surface layer by providing the intermediate layer and surface layer consisting of specific ratios of the oxide of Ti, Ta, Sn, etc., and iridium oxide onto a conductive metallic base body. CONSTITUTION:The insoluble anode for electroplating of Sn, Zn, Cr, etc., which generates O2 is produced by forming a) the conductive intermediate coating layer consisting of the oxide mixture composed of 85 to 95mol% the metal oxide of >=1 kinds of the Ti, Ta, Sn, Nb, and Zr and 15 to 5mol% IrO2 and b) the surface coating layer which consists of the oxide mixture composed of 20 to 70mol% metal oxide which is the same as in the above-mentioned (a) and 80 to 30mol% IrO2 and has O2 generating power on the conductive metallic base body. The intermediate coating layer and surface coating layer of this anode consist of the common components, contain the many crystals of the common rutile structure and are analogous in unit lattice volume to each other and, therefore, the adhesive property of both to each other is secure and the anode is strong against the erosion by the produced gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸素発生を伴う電解工程、特にスズ。[Detailed description of the invention] (Industrial application field) The present invention is directed to electrolytic processes involving oxygen evolution, particularly tin.

亜鉛、クロム等の電気メツキに使用される不溶性陽極に
関するものである。
It relates to insoluble anodes used for electroplating of zinc, chromium, etc.

(従来の技術及び発明が解決しようとする課題)スズ、
亜鉛、クロム等の電気メツキ用陽極として現在鉛又は鉛
合金が使用されているが、鉛は比咬時消耗が速く、メツ
キ液中に溶出し、メツキ液の汚染、メツキ皮膜の劣化等
の問題がめった。
(Problems to be solved by conventional techniques and inventions) Tin,
Lead or lead alloys are currently used as anodes for electroplating of zinc, chromium, etc., but lead wears out quickly during mating and is eluted into the plating solution, causing problems such as contamination of the plating solution and deterioration of the plating film. I was disappointed.

これに代る陽極として白金メツキ陽極や白金箔クラッド
陽極が検討されているが、白金の消耗が大きく未だ解決
に至っていない。そのため消耗の少ない不溶性陽極が種
々提案されている。
Platinum plated anodes and platinum foil clad anodes are being considered as alternative anodes, but platinum consumption is large and no solution has yet been reached. For this reason, various insoluble anodes with low consumption have been proposed.

特開昭59−38394号公報では、導電性金属基体上
に4価の原子価数をとるT1及びsnから選ばれた少な
くとも1種の金属酸化物と5価の原子価数をとるTa及
びNbから選ばれた少なくとも1種の酸化物との混合酸
化物からなる中間層を設けて導電性を付与し、その上に
電極活性物質を被覆した電イ々を提案している。
In JP-A No. 59-38394, at least one metal oxide selected from T1 and sn having a valence of 4 and Ta and Nb having a valence of 5 are deposited on a conductive metal substrate. They have proposed an electrode in which an intermediate layer made of a mixed oxide with at least one type of oxide selected from the above is provided to impart conductivity, and an electrode active material is coated on the intermediate layer.

中間層は4価の金属と5価の金属の酸化物か混在したも
のであり、一般に知られている原子価制御原理に基づく
N型半導体となっていると考えられるが、未だ十分な電
気伝導性がでていなかった。
The intermediate layer is a mixture of oxides of tetravalent metals and pentavalent metals, and is thought to be an N-type semiconductor based on the generally known valence control principle, but it still has insufficient electrical conductivity. The sex wasn't showing.

特公昭51−19429号公報は、導電性支持基材と電
極活物質被覆の中間層にPt−1r合金?Co、Mn、
Pd、Pb、Ptの酸化物からなる酸素不浸透層を設【
ブで電極の不働態化防止を試みている。しかし中間被覆
物質自体が酸素発生に触媒活性があるので、透過してく
る電解液と反応して中間層で酸素発生反応が起り、電極
被覆の密着性及び不働態化防止効果は十分でなかった。
Japanese Patent Publication No. 51-19429 discloses that a Pt-1r alloy is used as an intermediate layer between a conductive support base material and an electrode active material coating. Co, Mn,
An oxygen-impermeable layer made of oxides of Pd, Pb, and Pt was established
Attempts are being made to prevent the electrode from becoming passivated. However, since the intermediate coating material itself has a catalytic activity for oxygen generation, it reacts with the permeating electrolyte and an oxygen generation reaction occurs in the intermediate layer, so that the adhesion of the electrode coating and the effect of preventing passivation were insufficient. .

特開昭59−150091号公報では、特開昭59−3
8394号の中間層にptを分散させた電極を提案して
いる。即ち半導体中間層のキャリアー濃度に限界がある
ので更に導電性を付与するためPtを分散させたもので
あるが、pt自体が電解液、特に硫酸酸性液中で電解時
に少しずつ溶解し、長期に使用するには限界があった。
In JP-A-59-150091, JP-A-59-3
No. 8394 proposes an electrode in which PT is dispersed in the intermediate layer. In other words, since there is a limit to the carrier concentration in the semiconductor intermediate layer, Pt is dispersed in order to provide further conductivity, but Pt itself dissolves little by little during electrolysis in an electrolytic solution, especially an acidic sulfuric acid solution, and does not last for a long time. There were limits to its use.

特開昭60−184691号公報では、導電性金属基体
と電極活物質との中間層にTi及びSnから選ばれた金
属の酸化物とAI、Ga、Fe。
In JP-A-60-184691, an oxide of a metal selected from Ti and Sn and AI, Ga, and Fe are used as an intermediate layer between a conductive metal substrate and an electrode active material.

Co、Ni及びTIから選ばれた少なくとも1種の金属
の酸化物との混合酸化物中にPtを分散した中間層を提
案している。この中間層は4価の金属と2価又は3価の
金属の混合酸化物中にPtを分散したものであり、該酸
化物は原子価制御原理に基づいてP型半導体となり、良
好な導電性を有する上に分散したPtにより高い電子電
導性が付与されると考えられた。しかし白金自体は硫酸
酸性電解液中で徐々に溶解し、電解中は溶解が加速され
るので十分な寿命は期待できない。
An intermediate layer in which Pt is dispersed in a mixed oxide with an oxide of at least one metal selected from Co, Ni, and TI is proposed. This intermediate layer is made by dispersing Pt in a mixed oxide of a tetravalent metal and a divalent or trivalent metal, and the oxide becomes a P-type semiconductor based on the valence control principle and has good conductivity. It was thought that high electronic conductivity was imparted by the Pt dispersed in the Pt. However, platinum itself gradually dissolves in the sulfuric acid acidic electrolyte, and the dissolution is accelerated during electrolysis, so a sufficient lifespan cannot be expected.

特開昭62−174394号公報では、電導性基体上に
電気メツキ法により多孔質Pt層を設け、その上に熱分
解で設けた酸化ルテニウム、酸化パラジウム及び酸化イ
リジウムから選ばれた少なくとも1種の酸化物層からな
る電極でPtメツキ層と酸化物層をくり返して形成する
電極を提案している。この場合も電解時、硫酸酸性電解
液に対して白金多孔質層が徐々に溶解する問題か解決さ
れていない。
In JP-A No. 62-174394, a porous Pt layer is provided on a conductive substrate by electroplating, and at least one layer selected from ruthenium oxide, palladium oxide, and iridium oxide is formed on the porous Pt layer by thermal decomposition. We have proposed an electrode made of an oxide layer, which is formed by repeating a Pt plating layer and an oxide layer. In this case as well, the problem of the platinum porous layer gradually dissolving in the sulfuric acid acidic electrolyte during electrolysis remains unsolved.

(課題を解決するための手段) 本発明者らは硫酸酸性電解液中で使用する不溶性陽極に
おいて、酸素不浸透な中間層の耐蝕性を付与し、且つ導
電性を高め、表面層の酸素発生触媒活性とガス発生に対
する機械的損傷を防ぐことにより長寿命の電極を完成さ
せるに至ったものである。
(Means for Solving the Problems) In an insoluble anode used in a sulfuric acid acidic electrolyte, the present inventors provided corrosion resistance to an oxygen-impermeable intermediate layer, increased conductivity, and oxygen generation in the surface layer. By preventing mechanical damage to catalyst activity and gas generation, we have achieved a long-life electrode.

即ち本発明は、導電性金属基体上に、a)チタン、タン
タル、スズ、ニオブ、ジルコニウムから選ばれた少なく
とも1種の金属酸化物85〜95モル%と酸化イリジウ
ム15〜5モル%の混合酸化物とよりなる導電性を有す
る中間被覆層及び該中間被覆層上にb)チタン、タンタ
ル、スズ、ニオブ。
That is, the present invention provides a method of forming a mixed oxide of 85 to 95 mol% of at least one metal oxide selected from titanium, tantalum, tin, niobium, and zirconium and 15 to 5 mol% of iridium oxide on a conductive metal substrate. and b) titanium, tantalum, tin, and niobium on the intermediate coating layer.

ジルコニウムから選ばれた少なくとも1種の金属酸化物
20〜70モル%と酸化イリジウム80〜30モル%と
の混合酸化物からなる酸素発生触媒能を有する表面被覆
層を形成したことを特徴とする酸素発生用陽極及びその
製法である。
Oxygen characterized by forming a surface coating layer having oxygen generation catalytic ability consisting of a mixed oxide of 20 to 70 mol% of at least one metal oxide selected from zirconium and 80 to 30 mol% of iridium oxide. A generation anode and its manufacturing method.

本発明の導電性金属基体には、チタン、タンタル、ニオ
ブ、ジルコニウムから選ばれた金属又はこれらの合金等
の不働態皮膜を形成する材料が挙げられる。通常は経済
性、電気的機械的性質や加工性等の点からチタン及び/
又はその合金が使用される。電極形状としては板状、棒
状、エキスバンド状、多孔板等種々の形状が可能である
The conductive metal substrate of the present invention includes a material that forms a passive film, such as a metal selected from titanium, tantalum, niobium, and zirconium, or an alloy thereof. Usually, titanium and/or
or its alloys are used. Various electrode shapes are possible, such as a plate, a rod, an expanded band, and a perforated plate.

本発明の中間被覆層はチタン、タンタル、スズ。The intermediate coating layer of the present invention is titanium, tantalum, and tin.

ニオブ、ジルコニウムから選ばれた少なくとも1種の酸
化物85〜90モル%と酸化イリジウム15〜5モル%
を含む導電性の混合酸化物であり、酸化イリジウム含有
量が5モル%未満では、電子導電性が小さく逆に15モ
ル%を超えると酸素発生触媒能が強く現われて酸素不浸
透性の機能が損われるので、寿命が短かくなる。
85 to 90 mol% of at least one oxide selected from niobium and zirconium and 15 to 5 mol% of iridium oxide
If the iridium oxide content is less than 5 mol%, the electronic conductivity will be low, and if it exceeds 15 mol%, the oxygen generation catalytic ability will be strong and the oxygen impermeable function will be lost. Because it is damaged, its lifespan is shortened.

中間被覆層に酸化イリジウムを入れずに、チタン、タン
タル、スズ、ニオブ、ジルコニウムから選ばれた少なく
とも1種の混合酸化物皮膜を形成した場合、加速電解試
験の寿命はむしろ短かくなる。原因ははっきりしないが
、この中間被覆層は酸素透過に対し十分防御できるもの
の基体と中間層間の電位障壁が高くなり、その結果電解
寿命試験で早く電圧が上昇するものと考えられる。
When a mixed oxide film of at least one selected from titanium, tantalum, tin, niobium, and zirconium is formed without containing iridium oxide in the intermediate coating layer, the life of the accelerated electrolytic test is rather shortened. Although the cause is not clear, it is thought that although this intermediate coating layer can sufficiently protect against oxygen permeation, the potential barrier between the substrate and the intermediate layer becomes high, and as a result, the voltage increases quickly in the electrolytic life test.

本発明の表面被覆層はチタン、タンタル、スズ。The surface coating layer of the present invention is made of titanium, tantalum, or tin.

ニオブ、ジルコニウムから選ばれた少なくとも1種の酸
化物20〜70モル%と酸化イリジウム80〜30モル
%の酸素発生触媒能を有する混合酸化物よりなるもので
あって、酸化イリジウムが30モル%未満では酸素発生
触媒能が劣化し、80モル%を超えると皮膜の密着性が
損われる。
A mixed oxide having an oxygen generation catalytic ability of 20 to 70 mol% of at least one oxide selected from niobium and zirconium and 80 to 30 mol% of iridium oxide, with less than 30 mol% of iridium oxide. If the content exceeds 80 mol%, the adhesion of the film will be impaired.

本発明の被覆層の形成は次のようにして行われる。The coating layer of the present invention is formed as follows.

導電性金属基体の表面を酸処理、ブラスト処理等の方法
でエツチングを行なって粗面化させた後、塩化チタン、
塩化タンタル、塩化第1スズ、塩化ニオブ、オキシ塩化
ジルコニウム又は塩化イリジウム等の金属塩をエヂルア
ルコール、ブチルアルコール等の溶媒に溶解して所定組
成の混合溶液としたものを刷毛塗り、ロール塗り、スプ
レー法或いは浸漬法等の手段で塗布する。次いで100
〜150℃で数分間乾燥し、空気又は酸素雰囲気の電気
炉中300〜700’Cで10〜20分間熱分解処理を
行う。
After etching and roughening the surface of the conductive metal substrate using methods such as acid treatment and blasting, titanium chloride, titanium chloride,
Metal salts such as tantalum chloride, stannous chloride, niobium chloride, zirconium oxychloride or iridium chloride are dissolved in a solvent such as edyl alcohol or butyl alcohol to form a mixed solution of a predetermined composition, which is applied by brushing, rolling, It is applied by means such as spraying or dipping. then 100
It is dried at ~150°C for several minutes, and then subjected to thermal decomposition treatment at 300-700'C for 10-20 minutes in an electric furnace in an air or oxygen atmosphere.

熱処理温度が300℃未満では熱分解が完全に起らず、
また700℃を超えると金属基体の酸化が進行して基体
が損傷を受ける。
If the heat treatment temperature is less than 300°C, thermal decomposition will not occur completely;
Further, if the temperature exceeds 700° C., oxidation of the metal substrate progresses and the substrate is damaged.

中間被覆層の厚みは酸素透過防止能力を発揮するために
は3.0g/ m以上がよく、それ以下では効果か少な
い。また表面被覆層の厚みは10.0g#以上おれば、
酸素発生に対する触媒能も、寿命も共に良好となる。
The thickness of the intermediate coating layer is preferably 3.0 g/m or more in order to exhibit oxygen permeation prevention ability, and if it is less than that, the effect will be low. Also, if the thickness of the surface coating layer is 10.0 g# or more,
Both the catalytic ability for oxygen generation and the lifespan are improved.

(発明の効果) 本発明陽極における中間被覆層及び表面被覆層は共通の
成分からなり、かつ共通のルチル構造を有する結晶を多
く含み、単位格子体積も相互に類似しているので、両者
の相互密着性は甚だ強固となり、発生ガスによるエロー
ジョンに対しても強い等の特徴を有している。ざらに中
間被覆層と表面被覆層は同じ酸化イリジウムの含有率を
異ならすことにより導電性及び酸素発生触媒能という別
異の機能を持たせるという独特の効果を有している。
(Effects of the Invention) The intermediate coating layer and the surface coating layer in the anode of the present invention are made of common components, contain many crystals having a common rutile structure, and have similar unit cell volumes, so the mutual Adhesion is extremely strong, and it has characteristics such as being resistant to erosion due to generated gas. Generally speaking, the intermediate coating layer and the surface coating layer have a unique effect of having different functions of conductivity and oxygen generation catalytic ability by having different contents of the same iridium oxide.

本発明陽極は優れた耐久性を有し、例えば硫酸酸性溶液
中における鋼材のメツキ、すなわちスズ。
The anode of the present invention has excellent durability, such as plating of steel material in sulfuric acid solution, that is, tin.

亜鉛、クロム等の電気メツキ等の用途に有効に使用され
る。
Effectively used for electroplating of zinc, chromium, etc.

以下実施例により本発明を更に具体的に詳述する。例中
の組成%は特記なき限りモル基準である。
The present invention will be described in more detail below with reference to Examples. Composition percentages in the examples are on a molar basis unless otherwise specified.

実施例1   比較例1,2 市販チタン板(1xlOx O,1cm)をアセトン脱
脂後10重量%熱蓚酸溶液中でエツチング処理を行ない
、その表面に下記組成の溶液を刷毛塗りで塗布した。
Example 1 Comparative Examples 1 and 2 A commercially available titanium plate (1xlOxO, 1cm) was degreased with acetone and etched in a 10% by weight hot oxalic acid solution, and a solution having the following composition was applied to the surface by brushing.

Taα52.ICI ブチルチタネート      4.O〃H2I rcj
!a ・6H201,On濃塩酸    1.0 d n−ブチルアルコール   15〃 これを120’Cで20分間乾燥した後電気炉中500
°Cで10分間焼成することにより、Ta20s30%
とT i 0260%とIrQ210%の混合酸化物よ
りなる皮膜を得た。この操作を4回繰り返して3.(X
l/TItの中間被覆層を得た。
Taα52. ICI Butyl Titanate 4. O〃H2I rcj
! a ・6H201,On concentrated hydrochloric acid 1.0 d n-butyl alcohol 15〃 After drying this at 120'C for 20 minutes, it was heated in an electric furnace at 500 °C.
By baking at °C for 10 minutes, Ta20s30%
A film made of a mixed oxide of 60% T i 0 and 10% IrQ was obtained. Repeat this operation 4 times and 3. (X
An intermediate coating layer of l/TIt was obtained.

次に該中間被覆層上に下記組成の溶液を刷毛塗りで塗布
した。
Next, a solution having the following composition was applied by brushing onto the intermediate coating layer.

Ta(lfs           o、47gH2I
 r(j!e ・6H201,Ott濃塩酸    1
.0 d n−ブチルアルコール   15  rd!これを12
0℃で20分間乾燥した後電気炉中500℃で10分間
焼成することにより、Ta20s40%とIr0260
%の混合酸化物よりなる皮膜を得た。
Ta(lfso, 47gH2I
r(j!e ・6H201, Ott concentrated hydrochloric acid 1
.. 0 d n-butyl alcohol 15 rd! This is 12
By drying at 0°C for 20 minutes and then firing at 500°C for 10 minutes in an electric furnace, Ta20s40% and Ir0260
% of mixed oxide was obtained.

この操作を10回繰り返して10.0(1/ triの
表面被覆層を得た。
This operation was repeated 10 times to obtain a surface coating layer of 10.0 (1/tri).

この電極を50℃、 100(]/N硫酸溶液中に陽極
として用い、白金線を陰極として電流密度200A/d
m2で加速電解試験したところ320時間使用できた。
This electrode was used as an anode in a 100(]/N sulfuric acid solution at 50°C, and the platinum wire was used as a cathode at a current density of 200 A/d.
When an accelerated electrolytic test was conducted at m2, it could be used for 320 hours.

一方比較例1として、表面被覆層塗布液に丁aC1sを
加えなかった以外は実施例1と同様に作製した陽極、及
び比較例2として中間被覆層を形成しなかった以外は実
施例1と同様に作製した陽極について、実施例1と同様
に試験した結果、寿命は夫々85時間、35時間であり
、本発明電極の寿命が格段に長いことが分った。
On the other hand, as Comparative Example 1, an anode was prepared in the same manner as in Example 1, except that C1s was not added to the surface coating layer coating solution, and as Comparative Example 2, it was the same as in Example 1, except that no intermediate coating layer was formed. As a result of testing the anode produced in Example 1 in the same manner as in Example 1, the lifespan was 85 hours and 35 hours, respectively, indicating that the electrode of the present invention had a much longer lifespan.

実施例2〜4   比較例3,4 中間被覆層(4回塗布、3.0Mm>の組成比を第1表
記載のように変化させた以外は実施例1と同様に陽極を
作製し、実施例1と同様に試験した結果を第1表に示し
た。
Examples 2 to 4 Comparative Examples 3 and 4 Anodes were produced in the same manner as in Example 1, except that the composition ratio of the intermediate coating layer (4 times coated, 3.0 Mm) was changed as shown in Table 1, and the The results of the test conducted in the same manner as in Example 1 are shown in Table 1.

比較のために、中間被覆層(4回塗布、 3.0(+/
ゴ)の組成比を第1表記載のように変化させた以外は実
施例2と同様に陽極を作製し、実施例2と同様に試験し
た結果を第1表に併せて示した。この結果、中間被覆層
のIrO2含有量が3%、 20%では中間被覆層の効
果が十分でないことが分る。
For comparison, the intermediate coating layer (4 coats, 3.0 (+/
An anode was prepared in the same manner as in Example 2 except that the composition ratio of (G) was changed as shown in Table 1, and the results of testing in the same manner as in Example 2 are also shown in Table 1. The results show that the effect of the intermediate coating layer is not sufficient when the IrO2 content of the intermediate coating layer is 3% or 20%.

第1表 実施例5〜8   比較例5,6 表面被覆層(10回塗布、  10.OMTIt)の組
成比を第2表記載のように変化させた以外は実施例]と
同様に陽極を作製し、実施例1と同様に試験した結果を
第2表に示した。
Table 1 Examples 5 to 8 Comparative Examples 5 and 6 Anodes were produced in the same manner as in Example except that the composition ratio of the surface coating layer (coated 10 times, 10.OMTIt) was changed as shown in Table 2. The results of testing in the same manner as in Example 1 are shown in Table 2.

比較のために、表面被覆層(10回塗布、  io、o
ct/尻)の組成比を第2表記載のように変化させた以
外は実施例5と同様に陽(へを作製し、実施例5と同様
に試験した結果を第2表に併せて示した。
For comparison, the surface coating layer (coated 10 times, io, o
A positive plate was prepared in the same manner as in Example 5, except that the composition ratio of ct/butt was changed as shown in Table 2, and the results of testing in the same manner as in Example 5 are also shown in Table 2. Ta.

この結果表面被覆層のIrO2含有遣は30%以上がよ
いこと、90%になると寿命が極端に短くなることが分
る。
The results show that the IrO2 content of the surface coating layer is preferably 30% or more, and that when it becomes 90%, the life becomes extremely short.

実施例9〜12  比較例7〜10 中間被覆層(4回塗布、 3.OMTri)及び表面被
覆層(10回塗布、  io、oa/ゴ)の組成比を第
3表記載のように変化させた以外は実施例1と同様に陽
極を作製し、試験した結果を第3表に示した。
Examples 9 to 12 Comparative Examples 7 to 10 The composition ratios of the intermediate coating layer (coated 4 times, 3.OMTri) and the surface coating layer (coated 10 times, io, oa/go) were changed as shown in Table 3. An anode was produced in the same manner as in Example 1 except for the above, and the test results are shown in Table 3.

第2表 第3表 この結果、IrO2を含有する中間被覆層を設けた本発
明の電極は、IrO2を含まない中間被覆層を設けた電
極と比べて耐久性の格段に優れた電極であることが分る
Table 2 Table 3 As a result, the electrode of the present invention provided with an intermediate coating layer containing IrO2 has much better durability than the electrode provided with an intermediate coating layer not containing IrO2. I understand.

Claims (4)

【特許請求の範囲】[Claims] (1)導電性金属基体上に、a)チタン、タンタル、ス
ズ、ニオブ、ジルコニウムから選ばれた少なくとも1種
の金属酸化物85〜95モル%と酸化イリジウム15〜
5モル%との混合酸化物よりなる導電性を有する中間被
覆層及び該中間被覆層上にb)チタン、タンタル、スズ
、ニオブ、ジルコニウムから選ばれた少なくとも1種の
金属酸化物20〜70モル%と酸化イリジウム80〜3
0モル%との混合酸化物からなる酸素発生触媒能を有す
る表面被覆層を形成したことを特徴とする酸素発生用陽
極。
(1) On a conductive metal substrate, a) 85-95 mol% of at least one metal oxide selected from titanium, tantalum, tin, niobium, and zirconium and 15-95 mol% of iridium oxide
an electrically conductive intermediate coating layer made of a mixed oxide with 5 mol %; and b) 20 to 70 mol of at least one metal oxide selected from titanium, tantalum, tin, niobium, and zirconium on the intermediate coating layer; % and iridium oxide 80-3
1. An anode for oxygen generation, characterized in that a surface coating layer having an oxygen generation catalytic ability is formed of a mixed oxide with 0 mol %.
(2)導電性金属基体がチタン、タンタル、ニオブ、ジ
ルコニウムから選ばれた金属又はこれらの合金である請
求項1記載の陽極。
(2) The anode according to claim 1, wherein the conductive metal substrate is a metal selected from titanium, tantalum, niobium, zirconium, or an alloy thereof.
(3)導電性金属基体に、チタン、タンタル、スズ、ニ
オブ、ジルコニウムから選ばれた少なくとも1種の金属
塩とイリジウム金属塩とを含む溶液を被覆し、酸化性雰
囲気中で加熱処理してチタン、タンタル、スズ、ニオブ
、ジルコニウムから選ばれた少なくとも1種の金属酸化
物85〜95モル%と酸化イリジウム15〜5モル%と
の混合酸化物よりなる中間被覆層を形成し、次いで上記
と同様の手段でチタン、タンタル、スズ、ニオブ、ジル
コニウムから選ばれた少なくとも1種の金属酸化物20
〜70モル%と酸化イリジウム80〜30モル%との混
合酸化物よりなる表面被覆層とを形成することを特徴と
する酸素発生用電極の製法。
(3) A conductive metal substrate is coated with a solution containing at least one metal salt selected from titanium, tantalum, tin, niobium, and zirconium and an iridium metal salt, and then heat-treated in an oxidizing atmosphere to form a titanium , an intermediate coating layer made of a mixed oxide of 85 to 95 mol % of at least one metal oxide selected from tantalum, tin, niobium, and zirconium and 15 to 5 mol % of iridium oxide, and then the same as above. At least one metal oxide selected from titanium, tantalum, tin, niobium, zirconium by means of 20
A method for producing an electrode for oxygen generation, comprising forming a surface coating layer made of a mixed oxide of ~70 mol% and 80-30 mol% iridium oxide.
(4)酸化性雰囲気中での加熱処理温度が300〜70
0℃である請求項3に記載の陽極の製法。
(4) Heat treatment temperature in oxidizing atmosphere is 300 to 70
The method for manufacturing an anode according to claim 3, wherein the temperature is 0°C.
JP63210187A 1988-08-24 1988-08-24 Anode for oxygen generation and its production method Expired - Lifetime JP2596807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63210187A JP2596807B2 (en) 1988-08-24 1988-08-24 Anode for oxygen generation and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210187A JP2596807B2 (en) 1988-08-24 1988-08-24 Anode for oxygen generation and its production method

Publications (2)

Publication Number Publication Date
JPH0261083A true JPH0261083A (en) 1990-03-01
JP2596807B2 JP2596807B2 (en) 1997-04-02

Family

ID=16585225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210187A Expired - Lifetime JP2596807B2 (en) 1988-08-24 1988-08-24 Anode for oxygen generation and its production method

Country Status (1)

Country Link
JP (1) JP2596807B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2239260A (en) * 1989-12-22 1991-06-26 Tdk Corp Oxygen-generating electrolysis electrode and method for the preparation thereof
JPH03271386A (en) * 1990-03-20 1991-12-03 Daiso Co Ltd Anode for generating oxygen and production thereof
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
JPH05148675A (en) * 1991-11-28 1993-06-15 Permelec Electrode Ltd Electrolytic electrode base body, electrolytic electrode and production thereof
US5243427A (en) * 1991-12-27 1993-09-07 Samsung Electronics Co., Ltd. Contour correction apparatus and contour correction method
EP0560338A2 (en) * 1992-03-11 1993-09-15 TDK Corporation Oxygen generating electrode
JPH06146052A (en) * 1992-11-11 1994-05-27 Permelec Electrode Ltd Production of metallic foil by electrolysis
JPH06146051A (en) * 1992-11-06 1994-05-27 Permelec Electrode Ltd Production of metallic foil by electrolysis
WO2003000957A1 (en) * 2001-06-21 2003-01-03 Sanyo Electric Co., Ltd. Electrolyzing electrode and production method therefor and electrolysis method using electrolyzing electrode and electrolysis solution producing device
KR20040042526A (en) * 2002-11-14 2004-05-20 주식회사 포스코 Manufacturing method of electrolytic galvanized iron having excellent surface properties
JP2010059524A (en) * 2008-09-05 2010-03-18 Daiki Ataka Engineering Co Ltd Electrode for producing oxygen
CN113668010A (en) * 2021-08-25 2021-11-19 山西铱倍力科技有限公司 Oxygen evolution anode for industrial electrolysis and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636233A (en) * 1979-08-31 1981-04-09 Toshiba Corp Automatic frequency control alarm circuit
JPS5643315A (en) * 1979-09-18 1981-04-22 Mitsubishi Petrochem Co Ltd Propylene block copolymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636233A (en) * 1979-08-31 1981-04-09 Toshiba Corp Automatic frequency control alarm circuit
JPS5643315A (en) * 1979-09-18 1981-04-22 Mitsubishi Petrochem Co Ltd Propylene block copolymer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2239260B (en) * 1989-12-22 1994-02-16 Tdk Corp Oxygen-generating electrode and method for the preparation thereof
GB2239260A (en) * 1989-12-22 1991-06-26 Tdk Corp Oxygen-generating electrolysis electrode and method for the preparation thereof
JPH03271386A (en) * 1990-03-20 1991-12-03 Daiso Co Ltd Anode for generating oxygen and production thereof
JPH0499294A (en) * 1990-08-09 1992-03-31 Daiso Co Ltd Oxygen generating anode and its production
JPH05148675A (en) * 1991-11-28 1993-06-15 Permelec Electrode Ltd Electrolytic electrode base body, electrolytic electrode and production thereof
US5243427A (en) * 1991-12-27 1993-09-07 Samsung Electronics Co., Ltd. Contour correction apparatus and contour correction method
US5294317A (en) * 1992-03-11 1994-03-15 Tdk Corporation Oxygen generating electrode
EP0560338A3 (en) * 1992-03-11 1994-01-05 Tdk Corp
EP0560338A2 (en) * 1992-03-11 1993-09-15 TDK Corporation Oxygen generating electrode
EP0699780A1 (en) 1992-03-11 1996-03-06 TDK Corporation Oxygen generating electrode
JPH06146051A (en) * 1992-11-06 1994-05-27 Permelec Electrode Ltd Production of metallic foil by electrolysis
JPH06146052A (en) * 1992-11-11 1994-05-27 Permelec Electrode Ltd Production of metallic foil by electrolysis
WO2003000957A1 (en) * 2001-06-21 2003-01-03 Sanyo Electric Co., Ltd. Electrolyzing electrode and production method therefor and electrolysis method using electrolyzing electrode and electrolysis solution producing device
US7156962B2 (en) 2001-06-21 2007-01-02 Sanyo Electric Co., Ltd. Electrolyzing electrode and production method therefor and electrolysis method using electrolyzing electrode and electrolysis solution producing device
KR20040042526A (en) * 2002-11-14 2004-05-20 주식회사 포스코 Manufacturing method of electrolytic galvanized iron having excellent surface properties
JP2010059524A (en) * 2008-09-05 2010-03-18 Daiki Ataka Engineering Co Ltd Electrode for producing oxygen
CN113668010A (en) * 2021-08-25 2021-11-19 山西铱倍力科技有限公司 Oxygen evolution anode for industrial electrolysis and preparation method thereof

Also Published As

Publication number Publication date
JP2596807B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US4554176A (en) Durable electrode for electrolysis and process for production thereof
US4584084A (en) Durable electrode for electrolysis and process for production thereof
US4484999A (en) Electrolytic electrodes having high durability
US4581117A (en) Durable electrode for electrolysis and process for production thereof
JP7094110B2 (en) Electrodes for the electrolysis process
JPH0261083A (en) Anode for generating oxygen and production thereof
JPH025830B2 (en)
TW201300576A (en) Anode for oxygen evolution
JP2931812B1 (en) Electrode for electrolysis and method for producing the same
WO2011102431A1 (en) Electrode base, negative electrode for aqueous solution electrolysis using same, method for producing the electrode base, and method for producing the negative electrode for aqueous solution electrolysis
JPH02282491A (en) Oxygen generating anode and production thereof
JPH02179891A (en) Anode for generate oxygen and production thereof
JPH0499294A (en) Oxygen generating anode and its production
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH02282490A (en) Oxygen generating anode and production thereof
JPS58136790A (en) Insoluble anode
JPH02232387A (en) Oxygen generating anode and production thereof
JP2004360067A (en) Electrode for electrolysis, and its production method
JPH01312096A (en) Electrode for electrolysis and production thereof
JP3661924B2 (en) Oxygen generating anode
JP4193390B2 (en) Oxygen generating electrode
CA1259052A (en) Durable electrode for electrolysis and process for production thereof
JPH0443986B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12