JPH02232387A - Oxygen generating anode and production thereof - Google Patents

Oxygen generating anode and production thereof

Info

Publication number
JPH02232387A
JPH02232387A JP1054445A JP5444589A JPH02232387A JP H02232387 A JPH02232387 A JP H02232387A JP 1054445 A JP1054445 A JP 1054445A JP 5444589 A JP5444589 A JP 5444589A JP H02232387 A JPH02232387 A JP H02232387A
Authority
JP
Japan
Prior art keywords
oxide
coating layer
mol
titanium
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1054445A
Other languages
Japanese (ja)
Other versions
JPH0631454B2 (en
Inventor
Shingo Tokuda
徳田 晋吾
Toshiyuki Ikeda
俊幸 池田
Toshio Muranaga
村永 外志雄
Masahiko Oosumi
雅彦 大炭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP1054445A priority Critical patent/JPH0631454B2/en
Publication of JPH02232387A publication Critical patent/JPH02232387A/en
Publication of JPH0631454B2 publication Critical patent/JPH0631454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Abstract

PURPOSE:To provide the oxygen generating anode having durability by coating the surface of an intermediate coating layer consisting of a mixture composed of specific mol% of an oxide of metal such as titanium and rhodium oxide with a mixture composed of specific mol% of an oxide of metal such as titanium and iridium oxide. CONSTITUTION:The intermediate coating layer and a surface coating layer having oxygen generating catalytic ability is formed on a conductive metallic base body. The intermediate coating layer is formed of the oxide mixture composed of 85 to 90mol% oxide of at least one kind of the metals selected from Ti, Ta, Sn, Nb, and Zr and 5 to 15mol% rhodium oxide. The surface coating layer is formed of the oxide mixture composed of 23 to 70mol% metal oxide of at least one kind of the metals selected from Ti, Ta, Sn, Nb, and Zr and 30 to 80mol% iridium oxide. The conductive metal base body is composed of the metal selected from Ti, Ta, Nb, and Zr and the alloy thereof. The anode which is hardly dissolved by electrolysis in a sulfuric acid soln. is provided in this way.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は酸素発生を伴う電解工程,特にスズ,亜鉛,ク
ロム等の電気メッキに使用ざれる不溶性陽極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an insoluble anode used in electrolytic processes involving oxygen generation, particularly in electroplating of tin, zinc, chromium, etc.

〔従来の技術と解決しようとする課題〕スズ,亜鉛,ク
ロム等の連続帯状鋼板の電気メッキ用陽極としては現在
、鉛又は鉛合金が使用ざれているが、鉛は比較的消耗が
速く、メッキ液中に溶け出し、メッキ液の汚染やメッキ
皮膜の劣化等の問題があった。これに代る陽極として白
金メッキ陽極や白金箔クラツド陽極が検討されているが
、白金の消耗が大ぎく未だ解決ざれていない。
[Conventional technology and problems to be solved] Currently, lead or lead alloys are used as anodes for electroplating of continuous steel strips such as tin, zinc, chromium, etc., but lead is consumed relatively quickly and is not suitable for plating. It dissolves into the solution, causing problems such as contamination of the plating solution and deterioration of the plating film. Platinum plated anodes and platinum foil clad anodes are being considered as alternative anodes, but platinum consumption is too great and the problem has not yet been resolved.

そのため消耗の少ない不溶性陽極が種々提案ざれている
For this reason, various insoluble anodes with low consumption have been proposed.

例えば特開昭59−38394号には導電性金属基体上
に、4価の原子価をとるチタン及びスズから選ばれた少
なくとも1種の金属酸化物と5価の原子価をとるタンタ
ル及び二オブから選ばれた少なくとも1種の金属酸化物
との混合酸化物よりなる中間被覆層を設けて導電性を付
与し、その上に電極活物質を被覆した電極が提案されて
いる。
For example, in JP-A No. 59-38394, at least one metal oxide selected from tetravalent titanium and tin and pentavalent tantalum and niobium are deposited on a conductive metal substrate. An electrode has been proposed in which an intermediate coating layer made of a mixed oxide with at least one metal oxide selected from the following is provided to impart conductivity, and an electrode active material is coated on the intermediate coating layer.

この中間被覆層は4価の金属と5価の金属が混在してお
り、一般に知られている原子価制御原理に基づくN型半
導体となっていると考えられるが、未だ十分な電気導電
性が得られていない。
This intermediate coating layer contains a mixture of tetravalent metals and pentavalent metals, and is considered to be an N-type semiconductor based on the generally known valence control principle, but it still has insufficient electrical conductivity. Not obtained.

また特公昭51−19429号には導電性基体と電極活
性物質被覆の中間層に白金一イリジウム合金やコバルト
,マンガン,パラジウム,鉛,白金の酸化物からなる酸
素不浸透層を設けて、その上に電解液に対して耐食性を
有する固溶体型の外部被覆からなる電極が提案ざれてい
る。これによれば中間層の触媒はそれ自体酸素発生に対
して触媒活性であり、また固溶体型の外部被覆(実施例
より判断すると酸化ルテニウムと酸化チタンとの固溶体
)はそれ以上に触媒活性がある。しかし中間層のうち、
コバルト,マンガン,パラジウム,鉛,白金の酸化物は
硫1’醗性溶液中では比較的消耗が激しい。また酸化ル
テニウムと酸化チタンとの固溶体も硫酸酸性溶液中で耐
久性に乏しく、工業的に使用することは困難である。
Furthermore, in Japanese Patent Publication No. 51-19429, an oxygen-impermeable layer made of a platinum-iridium alloy or an oxide of cobalt, manganese, palladium, lead, or platinum is provided as an intermediate layer between the conductive substrate and the electrode active material coating, and then An electrode consisting of a solid solution type outer coating that has corrosion resistance against electrolytes has been proposed. According to this, the catalyst in the intermediate layer is itself catalytically active for oxygen generation, and the solid solution type outer coating (judging from the examples, a solid solution of ruthenium oxide and titanium oxide) is even more catalytically active. . However, among the middle class,
Oxides of cobalt, manganese, palladium, lead, and platinum are relatively rapidly depleted in sulfur 1' solution. Furthermore, a solid solution of ruthenium oxide and titanium oxide also has poor durability in an acidic sulfuric acid solution, making it difficult to use it industrially.

また特開昭59−150091号には特開昭59−38
394号の中間被覆層に白金を分散させた電極が提案さ
れている。すなわち半導体中間層のキャリア濃度に限界
があるため、さらに導電性を付与するものであるが、白
金自体は電解液,特に硫酸酸性液中における電解時に少
しずつ♂け、長期間使用するには限界がある。
Also, in JP-A-59-150091, JP-A-59-38
No. 394 proposes an electrode in which platinum is dispersed in an intermediate coating layer. In other words, since there is a limit to the carrier concentration in the semiconductor intermediate layer, platinum itself is used to impart further conductivity, but platinum itself gradually disintegrates during electrolysis in an electrolytic solution, especially in a sulfuric acid acidic solution, making it a limit for long-term use. There is.

特開昭60−184691号には導電性金属基体と電極
活物質との中間層に、チタン及びスズから選ばれた金属
の酸化物と、アルミニウム,カリウム,鉄,コバルト,
ニッケル及びタリウムから選ばれた少なくとも1種の金
属の酸化物との混合駿化物中に白金を分散した中間層が
提案ざれている。この中間層は4価の金属と2価又は3
価の金屈との混合酸化物中に白金を分散したものであり
、この酸化物は原子価制御原理に基づいてP型半導体と
なり、良好な電導性を有するうえに、分散した白金によ
り高い電子電導度を付与するものと考えられていた。し
かし白金自体は硫酸酸性電解液中で徐々に溶解し、電解
中は溶解が加速ざれるので十分な寿命が期待できない。
JP-A No. 60-184691 discloses that an oxide of a metal selected from titanium and tin, and aluminum, potassium, iron, cobalt,
An intermediate layer in which platinum is dispersed in a mixed fluoride with an oxide of at least one metal selected from nickel and thallium has been proposed. This intermediate layer consists of a tetravalent metal and a divalent or trivalent metal.
Platinum is dispersed in a mixed oxide with a valence of gold, and this oxide becomes a P-type semiconductor based on the valence control principle, and not only has good electrical conductivity, but also has high electron resistance due to the dispersed platinum. It was thought to impart electrical conductivity. However, platinum itself gradually dissolves in the sulfuric acid acidic electrolyte, and the dissolution is accelerated during electrolysis, so a sufficient lifespan cannot be expected.

特開昭62−1 74394号には導電性基体上に電気
メッキ法により多孔質白金層を設け、その上に熱分解に
より酸化ルテニウム,M化パラジウム及び酸化イリジウ
ムから選ばれた少なくとも1種の酸化物層を設けた電極
で白金メッキ層と酸化物層とをくり返し形成させたもの
が提案されている。この場合も電解時、硫酸酸性電解液
に対して白金多孔質層が徐々に溶解する問題が解決ざれ
ていない。
JP-A-62-174394 discloses that a porous platinum layer is provided on a conductive substrate by electroplating, and then at least one oxide selected from ruthenium oxide, palladium M oxide, and iridium oxide is deposited on the porous platinum layer by thermal decomposition. An electrode has been proposed in which a platinum plating layer and an oxide layer are repeatedly formed in an electrode provided with a metal layer. In this case as well, the problem of the platinum porous layer gradually dissolving in the sulfuric acid acidic electrolyte during electrolysis remains unsolved.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは硫1M性電解液中で使用する不溶性陽極に
おいて、酸素不浸透な中間層に耐食性を付与し、かつ導
電性を高め、表面層に酸素発生触媒活性を付与しガス発
生に対する機械的損傷を防ぎ得る長寿命の電極を開発し
たものである。
The present inventors have developed an insoluble anode for use in a 1M sulfur electrolyte by imparting corrosion resistance to the oxygen-impermeable intermediate layer and increasing conductivity, and by imparting oxygen generation catalytic activity to the surface layer to provide a mechanism for preventing gas generation. We have developed a long-life electrode that can prevent physical damage.

すなわち本発明は導電性金属基体上に a)チタン,タンタル,スズ、ニオブ,ジルコニウムか
ら選ばれた少なくとも1種の金属酸化物85〜95モル
%と酸化ロジウム5〜15モル%との混合酸化物よりな
る中間被覆層及び該中間被覆層上にb)チタン,タンタ
ル,スズ,ニオブ,ジルコニウムから選ばれた少なくと
も1種の金属の酸化物20〜70モル%と酸化イリジウ
ム30〜80モル%との混合酸化物よりなる駿素発生触
媒能を有する表面被覆層を形成したことを特徴とする酸
素発生陽極とその製法である。
That is, the present invention provides a mixed oxide of 85 to 95 mol% of at least one metal oxide selected from titanium, tantalum, tin, niobium, and zirconium and 5 to 15 mol% of rhodium oxide on a conductive metal substrate. b) 20 to 70 mol% of an oxide of at least one metal selected from titanium, tantalum, tin, niobium, and zirconium and 30 to 80 mol% of iridium oxide; The present invention relates to an oxygen generating anode characterized in that a surface coating layer made of a mixed oxide and having a catalytic ability to generate hydrogen is formed, and a method for producing the same.

本発明に使用される導電性基体にはチタン,タンタル,
ニオブ,ジルコニウム及びこれらの合金等の不働性皮膜
を形成する材料が挙げられる。通常は経済性,電気的機
械的性質や加工性等の点からチタン及び/又はその合金
が使用される。電極の形状としては板状,棒状,エキス
バンド状,多孔板状等種々の形状をとりうる。
The conductive substrate used in the present invention includes titanium, tantalum,
Materials that form passive films include niobium, zirconium, and alloys thereof. Titanium and/or its alloys are usually used from the viewpoint of economy, electromechanical properties, workability, etc. The electrode can take various shapes such as a plate, a rod, an expanded band, and a perforated plate.

中間被覆層はヂタン,タンタル,スズ、ニオブ,ジルコ
ニウムの1種以上の酸化物85〜95モル%と酸化ロジ
ウム5〜15モル%とよりなる混合酸化物層てあり、酸
化ロジウム含有量が5モル%未満では電子伝導性が小さ
く、15モル%を越えると酸素発生触媒能が強く表われ
て、酸素不浸透性の機能が損われるので寿命が短くなる
。中間被N層に酸化ロジウムを入れずに、チタン,タン
タル,スズ、ニオブ,ジルコニウムの1種以上の酸化物
層皮膜を形成した場合、加速電解試験の寿命はむしろ短
くなる。その原因は判然としないがこの場合、中間被覆
層は酸素透過に対して十分に防止できるとしても、基体
と中間被覆層間の電位障壁が高くなり、そのために電解
寿命試験で早く電圧が上昇するものと考えられる。
The intermediate coating layer is a mixed oxide layer consisting of 85 to 95 mol% of one or more oxides of titanium, tantalum, tin, niobium, and zirconium and 5 to 15 mol% of rhodium oxide, and the rhodium oxide content is 5 mol. If it is less than 15 mol %, the electron conductivity will be low, and if it exceeds 15 mol %, the oxygen generation catalytic ability will be strong, impairing the oxygen impermeability function and shortening the life. If an oxide layer of one or more of titanium, tantalum, tin, niobium, and zirconium is formed without rhodium oxide in the intermediate N layer, the life of the accelerated electrolytic test will be rather shortened. The cause is not clear, but in this case, even if the intermediate coating layer can sufficiently prevent oxygen permeation, the potential barrier between the substrate and the intermediate coating layer becomes high, which causes the voltage to rise quickly in the electrolytic life test. it is conceivable that.

表面被覆図はチタン,タンタル,スズ、ニオブ,ジルコ
ニウムの1種以上の酸化物20〜70モル%と酸化イリ
ジウム30〜80モル%よりなる混合酸化物層よりなり
、酸化イリジウムが30モル%未満では酸素発生の触媒
能が劣化し、80モル%を越えると皮膜の密着性が損わ
れる。
The surface coverage consists of a mixed oxide layer consisting of 20 to 70 mol% of one or more oxides of titanium, tantalum, tin, niobium, and zirconium and 30 to 80 mol% of iridium oxide, and if iridium oxide is less than 30 mol%, The catalytic ability to generate oxygen deteriorates, and if it exceeds 80 mol%, the adhesion of the film will be impaired.

本発明電極の被覆層の形成は次のようにして行われる。The coating layer of the electrode of the present invention is formed as follows.

導電性金属基体の表面を酸処理,ブラスト処理等の方法
でエッチングを行って粗而化させ、塩化チタン,塩化タ
ンタル,塩化第1スズ,塩化二オブ,オキシ塩化ジルコ
ニウム及び塩化ロジウム等の金属塩をエチルアルコール
,ブチルアルコール等の溶媒に溶かして所定組成の混合
溶液をつくり、ハケ塗り,ロール塗り,スプレー法,浸
漬法等の手段で塗布する。塗布後溶媒を蒸発させるため
に100〜150℃で数10分間乾燥し、空気又は酸素
雰囲気の電気炉中で300〜700℃にて10〜20分
間熱分解処理を行う。熱処理温度が300゜C未満では
熱分解が完全に起らず、700℃を越えると金屈基体の
酸化が進行して基体が損傷する。中間被覆層の酸素透過
防止能力を持たすためには、その被覆量は3. 0(I
I/ rri以上がよくそれ以下では効果が少ない。
The surface of the conductive metal substrate is roughened by etching with acid treatment, blasting, etc., and metal salts such as titanium chloride, tantalum chloride, stannous chloride, niobium chloride, zirconium oxychloride, and rhodium chloride are etched. is dissolved in a solvent such as ethyl alcohol or butyl alcohol to prepare a mixed solution of a predetermined composition, and applied by means such as brush coating, roll coating, spraying, or dipping. After coating, it is dried at 100 to 150°C for several tens of minutes to evaporate the solvent, and then thermally decomposed in an electric furnace in an air or oxygen atmosphere at 300 to 700°C for 10 to 20 minutes. If the heat treatment temperature is less than 300°C, thermal decomposition will not occur completely, and if it exceeds 700°C, the oxidation of the metal-cured substrate will progress and the substrate will be damaged. In order for the intermediate coating layer to have the ability to prevent oxygen permeation, the coating amount must be 3. 0(I
I/rri or more is good, and less is less effective.

表面被覆層は塩化イリジウム酸と塩化チタン,プチルチ
タネート,塩化タンタル,塩化二オブ,オギシ塩化ジル
コニウム,塩化第1スズ等の金属塩をエチルアルコール
,ブチルアルコール等の溶媒に溶かして所定組成の混合
溶液をつくり、中間層と同様の方法により被覆する。被
覆層の触媒量は金属イリジウム換算で10(]/m以上
であれば酸素発生に対する触媒能,寿命ともに良好とな
る。
The surface coating layer is a mixed solution of a predetermined composition by dissolving iridic acid chloride and metal salts such as titanium chloride, butyl titanate, tantalum chloride, niobium chloride, zirconium chloride, and stannous chloride in a solvent such as ethyl alcohol or butyl alcohol. and coated in the same manner as the intermediate layer. If the amount of catalyst in the coating layer is 10(]/m or more in terms of metallic iridium, both the catalytic ability for oxygen generation and the life span will be good.

以下実施例により本発明を詳述する。例中の組成%は特
記のない限りいずれもモル基準でおる。
The present invention will be explained in detail with reference to Examples below. All composition percentages in the examples are on a molar basis unless otherwise specified.

実施例1  比較例1,2 市販チタン板( IX10XO.iCm )をアセトン
脱脂後10重量%熱蓚酸溶液中でエッチング処理を行い
その表面に下記組成の溶液を塗布した。
Example 1 Comparative Examples 1 and 2 A commercially available titanium plate (IX10XO.iCm) was degreased with acetone, etched in a 10% by weight hot oxalic acid solution, and a solution having the following composition was applied to its surface.

T a CJls            2。Ogプ
チルヂタネート      3.9g?hCi3 ・ 
3 H2 0             0.!M濃}
{CI!l.■Id! n−ブチルアルコール    20  mこれを120
℃で20分間乾燥し、その後500℃の電気炉内で10
分間焼成することによりTa2 0s30%,TiQ2
60%,Rh2 03 10%の混合酸化物よりなる皮
膜を得た。この操作を4回繰り返して3. 09/ ′
rdの中間被覆層を得た。次にこの中間被覆層上に下記
組成の溶液を塗布した。
T a CJls 2. Og petyl ditanate 3.9g? hCi3・
3 H2 0 0. ! M thick}
{CI! l. ■Id! n-butyl alcohol 20 m This is 120
℃ for 20 minutes, then in an electric furnace at 500℃ for 10 minutes.
Ta20s30%, TiQ2
A film consisting of a mixed oxide of 60% Rh2 03 and 10% Rh2 03 was obtained. Repeat this operation 4 times and 3. 09/'
A rd intermediate coating layer was obtained. Next, a solution having the following composition was applied onto this intermediate coating layer.

TaCJls         .   0.47gH
2Irαs ・6t−ho    1.0(]1!HC
fl!            1.0mln−ブチル
アルコール    15mlこれを120℃で20分間
乾燥し、その後500℃の電気炉内で10分間焼成する
ことによりTa2 0s40%,irQ260%の混合
酸化物よりなる皮膜を得た。この操作を10回くり返し
て10. O(1/ 771の表面被覆層を得た。
TaCJls. 0.47gH
2Irαs ・6t-ho 1.0(]1!HC
Fl! 1.0 ml of n-butyl alcohol (15 ml) was dried at 120° C. for 20 minutes, and then fired in an electric furnace at 500° C. for 10 minutes to obtain a film consisting of a mixed oxide of 40% Ta20s and 260% irQ. Repeat this operation 10 times. A surface coating layer of 1/771 was obtained.

このN極を50℃, 100MfJの硫酸溶液中に陽極
として用い、白金線を陰極として極間距離約4Cm,電
流密度20OA/dm2にて加速電解試験を行った。
This N-electrode was used as an anode in a 100 MfJ sulfuric acid solution at 50° C., and an accelerated electrolytic test was conducted at a current density of 20 OA/dm 2 with a distance between the electrodes of about 4 Cm and a platinum wire as a cathode.

初期電圧は8vであり、徐々に上昇するが320時間経
過後、急激に約10Vまで上昇1ノだ。この時間を電極
の寿命とする。一方比較として、表面被覆層塗布液にT
aα5を入れない以外は同様に作製した陽極,及び中間
被覆層を省略した以外は同様に作製した陽極を使用して
、上記と同条件で加速電解試験を行ったところ、電極の
寿命はそれぞれ110時間と35時間であった。
The initial voltage is 8V, and it gradually increases, but after 320 hours, it suddenly increases to about 10V. This time is defined as the life of the electrode. On the other hand, for comparison, T was added to the surface coating layer coating solution.
When an accelerated electrolytic test was conducted under the same conditions as above using an anode prepared in the same manner except that aα5 was not added and an anode prepared in the same manner except that the intermediate coating layer was omitted, the life of the electrode was 110%. It was 35 hours.

実施例2〜4  比較例3,4 実施例1の表面被覆層(10回塗布,  10.0[1
/m)は同様にして中間被覆層(4回塗布, 3.Oq
/77f>の組成比を第1表の如く変化させた以外は、
実施例1と同様にして陽極を作製した。これを実施例1
と同様の条件で加速電解試験を行った結果を第1表に併
記する。
Examples 2 to 4 Comparative Examples 3 and 4 Surface coating layer of Example 1 (coated 10 times, 10.0 [1
/m) in the same way as the intermediate coating layer (4 coats, 3.Oq.
/77f> except that the composition ratio was changed as shown in Table 1.
An anode was produced in the same manner as in Example 1. Example 1
Table 1 also shows the results of an accelerated electrolytic test conducted under the same conditions as above.

第 ] 表 以上のように、中間被覆層のRh203含有不が3%,
20%の場合は電極のR命が短く、中間被覆層を入れた
効果がでていない。
] As shown in the table above, the Rh203 content of the intermediate coating layer is 3%,
In the case of 20%, the R life of the electrode is short, and the effect of inserting the intermediate coating layer is not obtained.

実施例5〜8  比較例4.5 中間被N層は実施例1と同様にし、表面被覆層(10回
塗布,  10.0g/7rt)の組成比を第2表の如
く変化させた以外は実施例1と同様にして陽極を作製し
た。これを実施例1と同様の条件で加速電解試験を行っ
た結果を第2表に併記する。
Examples 5 to 8 Comparative Example 4.5 The intermediate N layer was the same as in Example 1, except that the composition ratio of the surface coating layer (coated 10 times, 10.0g/7rt) was changed as shown in Table 2. An anode was produced in the same manner as in Example 1. This was subjected to an accelerated electrolytic test under the same conditions as in Example 1, and the results are also shown in Table 2.

第    2    表 以上のように表面被覆囮のIr02含有量は30%以上
がよく、また90%以上になると寿命が短くなる。
As shown in Table 2 and above, the Ir02 content of the surface-coated decoy is preferably 30% or more, and if it is 90% or more, the life will be shortened.

実施例9〜12  比較例6〜9 実施例1と同様の方法で中間被覆層(4回塗布,3. 
OM rtt )及び表面被覆層(10回塗布,10、
0(J/耐)の組成物質を第3表に示されるように変え
て陽極を作製し、実施例1と同様の条件で加速電解試験
を行った。その結果を第3表に併記する。
Examples 9-12 Comparative Examples 6-9 Intermediate coating layer (4 coats, 3.
OM rtt ) and surface coating layer (10 coats, 10,
0 (J/resistance), anodes were prepared by changing the composition materials as shown in Table 3, and an accelerated electrolysis test was conducted under the same conditions as in Example 1. The results are also listed in Table 3.

以上のようにRh203を含有する中間被覆層をエ2け
た本発明電極はRt1203を含まない中間被覆層を設
けた電極に比へ、耐久性が優れていることが判る。
As described above, it can be seen that the electrode of the present invention having two intermediate coating layers containing Rh203 has superior durability compared to the electrode having an intermediate coating layer not containing Rt1203.

(発明の効果) 本発明陽極は中間被覆層として酸素透過防止能を有する
酸化ロジウムとチタン,タンタル,スズ,ジルコニウム
,ニオブの酸化物の1種以上との混合酸化物層を設け、
表面被覆層として酸素発生に対して触媒活性であり、か
つ硫酸溶液中での電解による溶解がほとんどない酸化イ
リジウムと上記ヂクン以下金属の酸化物の1種以上との
混合酸化物層を設けてなるので,耐久性のある酸素発生
陽極として有用である。
(Effects of the Invention) The anode of the present invention has a mixed oxide layer of rhodium oxide having oxygen permeation prevention ability and one or more of titanium, tantalum, tin, zirconium, and niobium oxides as an intermediate coating layer,
Provided as a surface coating layer is a mixed oxide layer of iridium oxide, which is catalytically active against oxygen generation and is hardly dissolved by electrolysis in a sulfuric acid solution, and one or more of the oxides of the metals listed below. Therefore, it is useful as a durable oxygen generating anode.

Claims (4)

【特許請求の範囲】[Claims] (1)導電性金属基体上にa)チタン、タンタル、スズ
、ニオブ、ジルコニウムから選ばれた少なくとも1種の
金属の酸化物85〜95モル%と酸化ロジウム5〜15
モル%との混合酸化物よりなる中間被覆層及び該中間被
覆層上にb)チタン、タンタル、スズ、ニオブ、ジルコ
ニウムから選ばれた少なくとも1種の金属の酸化物20
〜70モル%と酸化イリジウム30〜80モル%との混
合酸化物よりなる酸素発生触媒能を有する表面被覆層を
形成したことを特徴とする酸素発生陽極。
(1) On a conductive metal substrate, a) 85 to 95 mol% of an oxide of at least one metal selected from titanium, tantalum, tin, niobium, and zirconium and 5 to 15% of rhodium oxide;
an intermediate coating layer consisting of a mixed oxide with mol% and b) an oxide of at least one metal selected from titanium, tantalum, tin, niobium, and zirconium 20
1. An oxygen-generating anode characterized in that a surface coating layer having an oxygen-generating catalytic ability is formed of a mixed oxide of ~70 mol% and 30-80 mol% of iridium oxide.
(2)導電性金属基体がチタン、タンタル、ニオブ、ジ
ルコニウムから選ばれた金属又はこれらの合金である請
求項1記載の陽極。
(2) The anode according to claim 1, wherein the conductive metal substrate is a metal selected from titanium, tantalum, niobium, zirconium, or an alloy thereof.
(3)導電性金属基体にチタン、タンタル、スズ、ニオ
ブ、ジルコニウムから選ばれた少なくとも1種の金属塩
とロジウムの金属塩とを含む溶液を塗布し、酸化性雰囲
気中で加熱処理してチタン、タンタル、スズ、ニオブか
ら選ばれた少なくとも1種の金属酸化物85〜95モル
%と酸化ロジウム5〜15モル%との混合酸化物よりな
る中間被覆層を形成し、次いで上記と同様の方法でチタ
ン、タンタル、スズ、ニオブ、ジルコニウムから選ばれ
た少なくとも1種の金属酸化物20〜70モル%と酸化
イリジウム30〜80モル%との混合酸化物よりなる表
面被覆層とを形成することを特徴とする酸素発生用陽極
の製法。
(3) A solution containing at least one metal salt selected from titanium, tantalum, tin, niobium, and zirconium and a metal salt of rhodium is applied to a conductive metal substrate, and then heat-treated in an oxidizing atmosphere to form titanium. , an intermediate coating layer made of a mixed oxide of 85 to 95 mol % of at least one metal oxide selected from tantalum, tin, and niobium and 5 to 15 mol % of rhodium oxide, and then the same method as above. to form a surface coating layer made of a mixed oxide of 20 to 70 mol% of at least one metal oxide selected from titanium, tantalum, tin, niobium, and zirconium and 30 to 80 mol% of iridium oxide. Characteristic manufacturing method of anode for oxygen generation.
(4)酸化性雰囲気中での加熱処理温度が300〜70
0℃である請求項3に記載の方法。
(4) Heat treatment temperature in oxidizing atmosphere is 300 to 70
4. The method according to claim 3, wherein the temperature is 0<0>C.
JP1054445A 1989-03-06 1989-03-06 Oxygen generating anode and its manufacturing method Expired - Lifetime JPH0631454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054445A JPH0631454B2 (en) 1989-03-06 1989-03-06 Oxygen generating anode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054445A JPH0631454B2 (en) 1989-03-06 1989-03-06 Oxygen generating anode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02232387A true JPH02232387A (en) 1990-09-14
JPH0631454B2 JPH0631454B2 (en) 1994-04-27

Family

ID=12970903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054445A Expired - Lifetime JPH0631454B2 (en) 1989-03-06 1989-03-06 Oxygen generating anode and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0631454B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2239260A (en) * 1989-12-22 1991-06-26 Tdk Corp Oxygen-generating electrolysis electrode and method for the preparation thereof
JPH05148675A (en) * 1991-11-28 1993-06-15 Permelec Electrode Ltd Electrolytic electrode base body, electrolytic electrode and production thereof
JP2017535675A (en) * 2014-09-10 2017-11-30 チャイナ・ナショナル・フードピュリフィケーション・テクノロジー・(ベイジン)・カンパニー・リミテッド Electrode, manufacturing method thereof, and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2239260A (en) * 1989-12-22 1991-06-26 Tdk Corp Oxygen-generating electrolysis electrode and method for the preparation thereof
GB2239260B (en) * 1989-12-22 1994-02-16 Tdk Corp Oxygen-generating electrode and method for the preparation thereof
JPH05148675A (en) * 1991-11-28 1993-06-15 Permelec Electrode Ltd Electrolytic electrode base body, electrolytic electrode and production thereof
JP2017535675A (en) * 2014-09-10 2017-11-30 チャイナ・ナショナル・フードピュリフィケーション・テクノロジー・(ベイジン)・カンパニー・リミテッド Electrode, manufacturing method thereof, and use thereof

Also Published As

Publication number Publication date
JPH0631454B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US5098546A (en) Oxygen-generating electrode
US4288302A (en) Method for electrowinning metal
US4797182A (en) Electrode with a platinum metal catalyst in surface film and its use
US4331528A (en) Coated metal electrode with improved barrier layer
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
US4554176A (en) Durable electrode for electrolysis and process for production thereof
IL170874A (en) Process for the production of an electrolytic electrode with a platinum group metal oxide coating and electrodes made therefrom
US4584084A (en) Durable electrode for electrolysis and process for production thereof
JPS6022074B2 (en) Durable electrolytic electrode and its manufacturing method
JPH0443985B2 (en)
JPH025830B2 (en)
JP2006104502A (en) Cathode for electrolysis
JPS6320313B2 (en)
JP2596807B2 (en) Anode for oxygen generation and its production method
JP2931812B1 (en) Electrode for electrolysis and method for producing the same
EP0027051B1 (en) Coated metal electrode with improved barrier layer and methods of manufacture and use thereof
JP2019119930A (en) Chlorine generating electrode
JPH0499294A (en) Oxygen generating anode and its production
JPH02179891A (en) Anode for generate oxygen and production thereof
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPH02232387A (en) Oxygen generating anode and production thereof
JPH02282490A (en) Oxygen generating anode and production thereof
JPS6134519B2 (en)
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JP4193390B2 (en) Oxygen generating electrode