JPH0261004B2 - - Google Patents

Info

Publication number
JPH0261004B2
JPH0261004B2 JP60177154A JP17715485A JPH0261004B2 JP H0261004 B2 JPH0261004 B2 JP H0261004B2 JP 60177154 A JP60177154 A JP 60177154A JP 17715485 A JP17715485 A JP 17715485A JP H0261004 B2 JPH0261004 B2 JP H0261004B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
range
wavelength range
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60177154A
Other languages
Japanese (ja)
Other versions
JPS6236604A (en
Inventor
Toshiaki Ogura
Shusuke Ono
Yasuo Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60177154A priority Critical patent/JPS6236604A/en
Publication of JPS6236604A publication Critical patent/JPS6236604A/en
Publication of JPH0261004B2 publication Critical patent/JPH0261004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、光学レンズなどの光学要素の表面に
設けられその透過率を向上させるための反射防止
膜に関するものである。 従来の技術 近年、スチルカメラ、ビデオカメラの分野にお
いて、撮影レンズの自動焦点検出装置が各種提案
されている。特に、ビデオカメラに応用される自
動焦点検出装置として有力な方式のひとつに、撮
影すべき被写体(以下、被写体と略称する)に測
距用信号として近赤外光を投射し、前記被写体に
より反射した前記測距用信号を受光し、受光した
前記測距用信号に基づき撮影レンズを適切なフオ
ーカシング位置に駆動する方式がある。前記近赤
外光は撮影レンズを介して投射または受光される
ことが多いが、近赤外光の光量は測距距離および
測距精度に大きく影響するため、撮影レンズには
近赤外光に対する反射防止膜を形成する必要があ
る。一方、従来の撮影レンズには単層から4層程
度の層数の反射防止膜が使われており、単一波長
近傍あるいは可視波長域(および400〜600nm、
広帯域化を図つたものでおよそ400nm〜700nm)
において反射防止の効果をもたせたものが多い。
また、構成の詳細は明らかではないが、可視波長
域から近赤外波長域(およそ400〜1000nm)にわ
たつて反射防止の効果をもたせるため、さらに多
くの多層膜化(10層以上)が図られている例もあ
る。(例えば、藤原史朗編;「光学薄膜」(1985)
第98頁〜第110頁、「オプトロニクス」(1984)No.
6第44頁〜第45頁) 発明が解決しようとする問題点 しかしながら上記のような構成、すなわち単層
から4層程度の反射防止膜では前記自動焦点検出
方式に使用される撮影レンズに対しての反射防止
膜としては有効な波長域が不充分であり、特に多
層反射防止膜のものは、有効波長域の両側で反射
率が急激に増加しており、前記の測距用近赤外光
に対する反射防止膜として適当でない。また、可
視波長域から近赤外波長域にわたつて反射防止の
効果をもたせるためにさらに多くの多層膜化(10
層以上)を図つたものは、コストも高く製造上の
歩留りも悪くなると予想されこれも生産性にはあ
まり適当ではないという問題点を有していた。 本発明は上記問題点を鑑み、可視光及び測距用
近赤外光に対しての反射防止として有効で生産性
にも優れた反射防止膜を提供するものである。 問題点を解決するための手段 上記問題点を解決するために、d線に対する屈
折率(nd)が1.58〜1.62のガラス基板に対して本
発明の反射防止膜は6層構成からなり空気側から
基板側へ順に第1層、第3層及び第5層は屈折率
1.35〜1.40の範囲にある低屈折率物質からなり、
また第2層、第4層及び第6層は屈折率1.90〜
2.40の範囲にある高屈折率物質からなり、かつ各
層の光学的膜厚は以下の条件を満足したものであ
る。 n1d1=(0.2758±0.0138)λ0 n2d2=(0.1069±0.0107)λ0 n3d3=(0.0468±0.0047)λ0 n4d4=(0.4969±0.0248)λ0 n5d5=(0.0461±0.0046)λ0 n6d6=(0.0895±0.0090)λ0 但し、λ0;可視波長域における設計波長 作 用 本発明は上記した構成によつて、可視波長域
(400〜600nm)及び近赤外波長域(840〜900nm)
の光に対して有効な反射防止を行ない、波長
880nm近傍の近赤外光を用いる焦点検出方式に適
した反射防止膜を提供するものである。 実施例 以下本発明の一実施例の反射防止膜について、
図面を参照しながら説明する。 第1図は本発明の反射防止膜の構成を示すもの
である。第1図において1はガラス基板であり、
反射防止膜は空気側から基板1側へ順に、第1層
11,第2層12,第3層13,第4層14,第
5層15,及び第6層16の6層構成からなり各
層の構成材料及び光学的膜厚を第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an antireflection film provided on the surface of an optical element such as an optical lens to improve its transmittance. 2. Description of the Related Art In recent years, various automatic focus detection devices for photographic lenses have been proposed in the fields of still cameras and video cameras. In particular, one of the promising methods for automatic focus detection devices applied to video cameras is to project near-infrared light as a distance measurement signal onto the subject to be photographed (hereinafter referred to as the subject), and then reflect it from the subject. There is a method of receiving the distance measurement signal and driving the photographing lens to an appropriate focusing position based on the received distance measurement signal. The above-mentioned near-infrared light is often projected or received through a photographic lens, but since the amount of near-infrared light greatly affects the distance and accuracy of distance measurement, the photographic lens has a It is necessary to form an antireflection film. On the other hand, conventional photographic lenses use antireflection coatings with a number of layers ranging from a single layer to about 4 layers, and are used in the vicinity of a single wavelength or in the visible wavelength range (and 400 to 600 nm,
Approximately 400nm to 700nm)
Many of them have an anti-reflection effect.
In addition, although the details of the structure are not clear, it is expected that more multilayer films (more than 10 layers) will be used to provide antireflection effects from the visible wavelength range to the near-infrared wavelength range (approximately 400 to 1000 nm). There are also examples where this has been done. (For example, "Optical Thin Films" (1985) edited by Shiro Fujiwara)
Pages 98-110, "Optronics" (1984) No.
6, pp. 44-45) Problems to be Solved by the Invention However, with the above-mentioned configuration, that is, with an anti-reflection coating of about one to four layers, it is difficult to solve the problem for the photographing lens used in the automatic focus detection method. The effective wavelength range is insufficient for anti-reflection coatings, and in particular, the reflectance of multilayer anti-reflection coatings increases rapidly on both sides of the effective wavelength range, making it difficult to use near-infrared light for distance measurement. It is not suitable as an antireflection film for In addition, in order to provide anti-reflection effects from the visible wavelength range to the near-infrared wavelength range, more multilayer films (10
However, it is expected that the manufacturing cost will be high and the manufacturing yield will be poor, and this is also not suitable for productivity. In view of the above-mentioned problems, the present invention provides an antireflection film that is effective in preventing reflection of visible light and near-infrared light for distance measurement and has excellent productivity. Means for Solving the Problems In order to solve the above problems, the antireflection film of the present invention has a 6-layer structure for a glass substrate with a refractive index (nd) of 1.58 to 1.62 for the d-line. The first layer, third layer, and fifth layer have refractive indexes in order toward the substrate side.
Consisting of a low refractive index material in the range of 1.35 to 1.40,
In addition, the second layer, fourth layer and sixth layer have a refractive index of 1.90~
It is made of a material with a high refractive index in the range of 2.40, and the optical thickness of each layer satisfies the following conditions. n 1 d 1 = (0.2758±0.0138) λ 0 n 2 d 2 = (0.1069 ± 0.0107) λ 0 n 3 d 3 = (0.0468 ± 0.0047) λ 0 n 4 d 4 = (0.4969 ± 0.0248) λ 0 n 5 d 5 = (0.0461 ± 0.0046) λ 0 n 6 d 6 = (0.0895 ± 0.0090) λ 0 However, λ 0 ; design wavelength effect in the visible wavelength range. ~600nm) and near-infrared wavelength range (840~900nm)
Provides effective anti-reflection for light of wavelengths
The present invention provides an antireflection film suitable for a focus detection method that uses near-infrared light around 880 nm. Example The following is an example of an antireflection film of the present invention.
This will be explained with reference to the drawings. FIG. 1 shows the structure of the antireflection film of the present invention. In FIG. 1, 1 is a glass substrate,
The anti-reflection film is composed of six layers, in order from the air side to the substrate 1 side: a first layer 11, a second layer 12, a third layer 13, a fourth layer 14, a fifth layer 15, and a sixth layer 16. The constituent materials and optical film thicknesses are shown in Table 1.

【表】 また、第2図は分光反射率特性を示す図であ
り、曲線aは光学的膜厚λ0/4(λ0=520nm)の
MgF2単層膜をガラス基板1の表面に形成したも
の、曲線bは本実施例のものである。 第2図から本実施例の反射防止膜はおよそ400
〜600nmの可視波長域及びおよそ820〜920nmの
近赤外波長域において良好な反射防止効果をもつ
ことがわかる。特に、可視波長域での平均反射率
はMgF2単層膜のものよりも小さくなつており良
好な反射防止膜となつている。 なお、上記の実施例において第1層11,第3
層13,第5層15を形成する高屈折率物質は
ZrTiO4としたが前記高屈折率物質はZrO2
TiO2、あるいは前記物質の少なくとも2種類の
混合物でもよい。 発明の効果 以上のように本発明は、d線に対する屈折率
(nd)が1.58〜1.62のガラス基板上に6層構成の
反射防止膜を設け空気側から基板側へ第1層、第
3層及び第5層は屈折率1.35〜1.40の範囲にある
低屈折率物質からなり、第2層、第4層及び第6
層は屈折率1.90〜2.40の範囲にある高屈折率物質
からなり、かつ各層の光学的膜厚は以下の条件を
満足させることにより、可視光及び近赤外光に対
して良好な反射防止を行なうことができる。 n1d1=(0.2758±0.0138)λ0 n2d2=(0.1069±0.0107)λ0 n3d3=(0.0468±0.0047)λ0 n4d4=(0.4969±0.0248)λ0 n5d5=(0.0461±0.0046)λ0 n6d6=(0.0895±0.0090)λ0 λ0;可視波長域における設計波長 また、本発明の反射防止膜は生産性にも優れた
ものであるのでその実用的価値はきわめて大であ
る。
[Table] Figure 2 is a diagram showing the spectral reflectance characteristics, and curve a is the optical film thickness λ 0 /4 (λ 0 = 520 nm).
The MgF 2 single layer film is formed on the surface of the glass substrate 1, and the curve b is for this example. From Figure 2, the anti-reflection film of this example has approximately 400
It can be seen that it has a good antireflection effect in the visible wavelength range of ~600 nm and the near-infrared wavelength range of approximately 820 to 920 nm. In particular, the average reflectance in the visible wavelength range is smaller than that of a single MgF 2 film, making it a good antireflection film. In addition, in the above embodiment, the first layer 11, the third layer
The high refractive index material forming the layer 13 and the fifth layer 15 is
Although ZrTiO 4 was used, the high refractive index material was ZrO 2 ,
It may be TiO 2 or a mixture of at least two of the above substances. Effects of the Invention As described above, the present invention provides a six-layer antireflection film on a glass substrate with a refractive index (nd) for d-line of 1.58 to 1.62, and the first layer, the third layer, and the like from the air side to the substrate side. and the fifth layer is made of a low refractive index material with a refractive index in the range of 1.35 to 1.40;
The layers are made of a high refractive index material with a refractive index in the range of 1.90 to 2.40, and the optical thickness of each layer satisfies the following conditions to ensure good antireflection against visible light and near-infrared light. can be done. n 1 d 1 = (0.2758±0.0138) λ 0 n 2 d 2 = (0.1069 ± 0.0107) λ 0 n 3 d 3 = (0.0468 ± 0.0047) λ 0 n 4 d 4 = (0.4969 ± 0.0248) λ 0 n 5 d 5 = (0.0461±0.0046) λ 0 n 6 d 6 = (0.0895 ± 0.0090) λ 0 λ 0 ; Design wavelength in the visible wavelength range In addition, the antireflection film of the present invention has excellent productivity. Its practical value is extremely great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の反射防止膜の構成を示す図、
第2図は分光反射率特性を示す図である。 1……ガラス基板、11……第1層、12……
第2層、13……第3層、14……第4層、15
……第5層、16……第6層、a……MgF2単層
膜の分光反射率特性を示す曲線、b……本発明の
実施例の分光反射率特性を示す曲線。
FIG. 1 is a diagram showing the structure of the antireflection film of the present invention,
FIG. 2 is a diagram showing spectral reflectance characteristics. 1... Glass substrate, 11... First layer, 12...
2nd layer, 13...3rd layer, 14...4th layer, 15
...Fifth layer, 16...Sixth layer, a...Curve showing the spectral reflectance characteristics of the MgF 2 single layer film, b...Curve showing the spectral reflectance characteristics of the example of the present invention.

Claims (1)

【特許請求の範囲】 1 d線に対する屈折率(nd)が1.58〜1.62の範
囲にあるガラス基板の表面に形成された反射防止
膜であつて、前記反射防止膜は6層構成からなり
空気側から基板側へ第1層、第3層及び第5層は
屈折率1.35〜1.40の範囲にある低屈折率物質から
なり、第2層、第4層及び第6層は屈折率1.90〜
2.40の範囲にある高屈折率物質からなり、かつ各
層の光学的膜厚は以下の条件 n1d1=(0.2758±0.0138)λ0 n2d2=(0.1069±0.0107)λ0 n3d3=(0.0468±0.0047)λ0 n4d4=(0.4969±0.0248)λ0 n5d5=(0.0461±0.0046)λ0 n6d6=(0.0895±0.0090)λ0 但し、ここで、 ni;第i層の構成物質の屈折率 (i=1,2,…,6) nidi;第i層の構成物質の光学的膜厚 (i=1,2,…,6) λ0;可視波長域における設計波長 を満足することを特徴とする反射防止膜。 2 第1層、第3層及び第5層を構成する低屈折
率物質がMgF2であることを特徴とする特許請求
の範囲第1項記載の反射防止膜。 3 第2層、第4層及び第6層を構成する高屈折
率物質がZrTiO4,ZrO2,TiO2あるいは前記物質
の少なくとも2種類の混合物であることを特徴と
する特許請求の範囲第1項記載の反射防止膜。
[Scope of Claims] 1. An anti-reflection film formed on the surface of a glass substrate having a refractive index (nd) for the d-line in the range of 1.58 to 1.62, the anti-reflection film having a six-layer structure, From the substrate side, the first, third and fifth layers are made of a low refractive index material with a refractive index in the range of 1.35 to 1.40, and the second, fourth and sixth layers have a refractive index of 1.90 to 1.90.
2.40, and the optical thickness of each layer is as follows: n 1 d 1 = (0.2758±0.0138) λ 0 n 2 d 2 = (0.1069 ± 0.0107) λ 0 n 3 d 3 = (0.0468±0.0047)λ 0 n 4 d 4 = (0.4969±0.0248) λ 0 n 5 d 5 = (0.0461±0.0046) λ 0 n 6 d 6 = (0.0895±0.0090) λ 0However , here, ni: refractive index of constituent material of i-th layer (i=1,2,...,6) nidi: optical thickness of constituent material of i-th layer (i=1,2,...,6) λ0 : visible An anti-reflection film that satisfies the design wavelength in the wavelength range. 2. The antireflection film according to claim 1, wherein the low refractive index substance constituting the first layer, third layer, and fifth layer is MgF2 . 3. Claim 1, characterized in that the high refractive index material constituting the second layer, fourth layer and sixth layer is ZrTiO 4 , ZrO 2 , TiO 2 or a mixture of at least two of the above substances. Anti-reflective coating as described in section.
JP60177154A 1985-08-12 1985-08-12 Antireflection film Granted JPS6236604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177154A JPS6236604A (en) 1985-08-12 1985-08-12 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177154A JPS6236604A (en) 1985-08-12 1985-08-12 Antireflection film

Publications (2)

Publication Number Publication Date
JPS6236604A JPS6236604A (en) 1987-02-17
JPH0261004B2 true JPH0261004B2 (en) 1990-12-18

Family

ID=16026130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177154A Granted JPS6236604A (en) 1985-08-12 1985-08-12 Antireflection film

Country Status (1)

Country Link
JP (1) JPS6236604A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564134B1 (en) * 1992-03-31 1999-12-29 Canon Kabushiki Kaisha Anti-reflection coating
JP2006047572A (en) * 2004-08-03 2006-02-16 Olympus Corp Transparent member for holding sample, cover glass, and pinch sample object

Also Published As

Publication number Publication date
JPS6236604A (en) 1987-02-17

Similar Documents

Publication Publication Date Title
TWI432770B (en) Optical system
US3922068A (en) Multi-layer anti-reflection coating with high and low index material
US4726654A (en) Multi-layered anti-reflection coating
JP3563955B2 (en) Observation system having half mirror and method of manufacturing the half mirror
JPH05215915A (en) Multilayer reflection increase film
JP3221770B2 (en) Anti-reflection coating for plastic optical parts
JPH0261004B2 (en)
JPH0261001B2 (en)
JPS5498257A (en) Aspherical antireflection film
JPS6177002A (en) Optical antireflecting film
JP2000111702A (en) Antireflection film
JPH0261003B2 (en)
JPH0261002B2 (en)
JPH0516003B2 (en)
JPH10133253A (en) Light quantity stopping device
JPS6032001A (en) Reflection preventing film
JPS6177001A (en) Optical antireflecting film
JPS6028603A (en) Prism type beam splitter
JPS6133167B2 (en)
JP2835535B2 (en) Anti-reflection coating for optical components
WO2022052268A1 (en) Lens and lens assembly
JPS6239801A (en) Semi-transparent mirror
JPS6238402A (en) Optical filter
JPS5811901A (en) Multilayered semipermeable mirror
JP2915513B2 (en) Anti-reflective coating