JPH0259470A - Production of diamond sintered body - Google Patents

Production of diamond sintered body

Info

Publication number
JPH0259470A
JPH0259470A JP63208598A JP20859888A JPH0259470A JP H0259470 A JPH0259470 A JP H0259470A JP 63208598 A JP63208598 A JP 63208598A JP 20859888 A JP20859888 A JP 20859888A JP H0259470 A JPH0259470 A JP H0259470A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
powder
resin
diamond powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63208598A
Other languages
Japanese (ja)
Other versions
JPH0745340B2 (en
Inventor
Manabu Miyamoto
学 宮本
Kojiro Kitahata
北畑 浩二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63208598A priority Critical patent/JPH0745340B2/en
Publication of JPH0259470A publication Critical patent/JPH0259470A/en
Publication of JPH0745340B2 publication Critical patent/JPH0745340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce a high hardness diamond sintered body having superior wear resistance and similar in shape to a product by dispersing diamond powder in a liq. monomer and charging the monomer into a mold at the time when resinification is initiated. CONSTITUTION:Diamond powder or powdery starting material contg. 45-95wt.%, preferably 60-85wt.% diamond powder is dispersed in a liq. monomer, e.g., for resol type phenol resin and the dispersed monomer is charged into a mold similar in shape to a product at the time when the viscosity is somewhat in creased by the initiation of resinification. The resulting molded body is heat- treated, released from the mold and carbonized to form an amorphous carbon molded body made from resin contg. diamond particles. This molded body is sintered at >=1,250 deg.C under >=40kb pressure to obtain a diamond sintered body.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、切削用工具の刃先、ドレッサー5ダイス等の
耐摩耗性部品として有用なダイヤモンド焼結体を製造す
る方法に関するものである6[従来の技術] ダイヤモンド焼結体は高硬度であり且つ耐摩耗性に富ん
でいるので、従来から切削用工具の刃先や線引ダイス等
の素材として使用されてきた。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a diamond sintered body useful as a wear-resistant part such as the cutting edge of a cutting tool or a dresser die. [Prior Art] Diamond sintered bodies have high hardness and high wear resistance, and have thus far been used as materials for cutting tool edges, wire drawing dies, and the like.

この様なダイヤモンド焼結体を製造する方法としては、
ダイヤモンド粉末を高温・高圧下で焼結するのが一般的
である。ところがこの様な従来技術であると、粉末状の
原料を使用しているので粉末原料の表面にガスが吸着さ
れ易く、従って焼結が阻害されて未焼結部分が残ってし
まうという問題があった。又原料が粉末状或は粉末由来
の成形体である為隣接粉末相互間にガスが残留し、この
残留ガスは完全に脱ガスできる訳ではないので、圧力媒
体からなる高圧容器での圧力発生効率が悪く、強固なダ
イヤモンド焼結体が得られないという問題があった。殊
に原料が粉末由来の成形体である場合には、該成形体の
強度が高くないので、高圧容器内に設置するときに破損
し易く、作業性が悪く量産できないという問題もあった
The method for producing such a diamond sintered body is as follows:
Generally, diamond powder is sintered at high temperature and pressure. However, since such conventional technology uses powdered raw materials, gas is easily adsorbed on the surface of the powdered raw materials, which hinders sintering and leaves unsintered parts. Ta. In addition, since the raw material is powder or a powder-derived compact, gas remains between adjacent powders, and this residual gas cannot be completely degassed, so the pressure generation efficiency in a high-pressure container made of pressure medium is There was a problem that a strong diamond sintered body could not be obtained. In particular, when the raw material is a molded body derived from powder, the strength of the molded body is not high, so it is easily damaged when placed in a high-pressure container, and there is a problem that the workability is poor and mass production is not possible.

そこで本発明者らのうちの1人は上述の様な問題を解決
する方法として、液体状モノマーにダイヤモンド粉末を
分散させた後、該液体状千ツマ−を樹脂化及び炭化処理
してダイヤモンド粉末分散樹脂とし、これから非晶質炭
素を作って更に高温・高圧法でダイヤモンド焼結体を製
造する方法を提案した(特願昭62−292477号)
Therefore, one of the inventors of the present invention has devised a method for solving the above-mentioned problems by dispersing diamond powder in a liquid monomer, and then processing the liquid monomer into resin and carbonization to form a diamond powder. We proposed a method for producing diamond sintered bodies using a dispersed resin, making amorphous carbon from it, and then using a high-temperature, high-pressure method (Japanese Patent Application No. 62-292477).
.

[発明が解決しようとする課題] しかしながらこの技術においても次に述べる様な技術的
課題が残されていた。即ちこの技術では、非晶質炭、素
の一般的製造方法と同様に、平板状のダイヤモンド焼結
体を作製してから製品としの所定形状(例えば円盤状や
円筒状)に加工するものであるから、加工による廃棄部
分が多くなって歩留りが悪くなるばかりか、加工に多大
な時間と労力を必要とするという問題があった。また比
較的単純な形状しか製造できないので、得られたダイヤ
モンド焼結体を例えば線引ダイスの素材として用いる場
合には、ダイヤモンド焼結体を製造した後にレーザ加工
や放電加工によってダイス孔を形成する必要がある。
[Problems to be Solved by the Invention] However, even with this technology, the following technical problems remain. In other words, in this technology, a flat diamond sintered body is produced and then processed into a predetermined shape (for example, a disc or a cylinder) as a product, similar to the general manufacturing method of amorphous carbon or element. Because of this, there is a problem that not only is there a large amount of wasted parts due to processing, resulting in poor yield, but also that processing requires a great deal of time and effort. In addition, since only relatively simple shapes can be manufactured, if the obtained diamond sintered body is used as a material for a wire drawing die, for example, a die hole is formed by laser machining or electrical discharge machining after the diamond sintered body is manufactured. There is a need.

本発明はこうした技術的課題を解決する為になされたも
のであって、その目的とするところは、高硬度且つ優れ
た耐摩耗性を有事るダイヤモンド焼結体を製品形状によ
り近い状態で製造する為の最適な方法を提供する点にあ
り、これによってダイヤモンド焼結体の製造における生
産性を高めようとするものである。
The present invention was made to solve these technical problems, and its purpose is to manufacture a diamond sintered body with high hardness and excellent wear resistance in a state closer to the product shape. The purpose of this invention is to provide an optimal method for the production of diamond sintered bodies, thereby increasing productivity in the production of diamond sintered bodies.

[課題を解決する為の手段] 上記目的を達成し得た本発明の製造方法とは、液体状千
ツマ−にダイヤモンド粉末若しくはダイヤモンド粉末を
含む原料粉末を分散させた後、該液体状千ツマ−を樹脂
化及び炭化処理して得られるダイヤモンド粉末分散樹脂
由来非晶質炭素を原料とし、高温・高圧法によってダイ
ヤモンド焼結体を製造する方法において、ダイヤモンド
粉末若しくはダイヤモンド粉末を含む原料粉末を分散さ
せた液体状モノマーを、樹脂化開始に伴う粘性増大状態
で、製品近似形状の型に充填して成形する工程を含む点
に要旨を有するものである。
[Means for Solving the Problems] The manufacturing method of the present invention that achieves the above object is that after dispersing diamond powder or a raw material powder containing diamond powder in a liquid powder, the liquid powder is dispersed in a liquid powder. - A method for manufacturing a diamond sintered body by a high temperature and high pressure method using diamond powder-dispersed resin-derived amorphous carbon obtained by resinizing and carbonizing the diamond powder, in which diamond powder or a raw material powder containing diamond powder is dispersed. The gist of this method is that it includes a step of filling and molding the liquid monomer into a mold having a shape similar to that of a product while the viscosity increases due to the start of resin formation.

[作用] 既出願に係る技術の概要は前述した通りであるが、要す
るに樹脂由来非晶質炭素は後述の如く液体状モノマーか
ら製造でとるので、該樹脂由来非晶質炭素がマトリック
スとなってダイヤモンド粉末を適度に分散でき、従来技
術で述べた如きガス吸着等の不都合を伴なうことな′7
に、最適なダイヤモンド焼結体が実現できたのである。
[Function] The outline of the technology related to the existing application is as described above, but in short, since the resin-derived amorphous carbon is produced from a liquid monomer as described below, the resin-derived amorphous carbon serves as a matrix. Diamond powder can be dispersed appropriately, and there is no inconvenience such as gas adsorption as described in the prior art.'7
As a result, we were able to create an optimal diamond sintered body.

木発明者らは、こうした先行技術を基本としつつ、製品
形状により近い状態でダイヤモンド焼結体を得る為の技
術を開発すべく鋭意研究を重ねた。その結果ダイヤモン
ド粉末を分散させた液体状モノマーを樹脂化開始に伴う
粘性増大状態で製品近似形状の型に充填して成形する工
程を、上記技術における一連の工程中に含ませることに
よって、希望するダイヤモンド焼結体が実現できること
を見出し、ここに本発明を完成した。尚ここで製品近似
形状としたのは、焼結後のワイヤカットによる切断、研
磨およびランプ仕上げ等を考慮した為である。
Based on these prior art techniques, the inventors of the invention conducted intensive research to develop a technique for obtaining a diamond sintered body in a state closer to the product shape. As a result, by including in the series of steps in the above technology a step of filling and molding a liquid monomer with diamond powder dispersed therein into a mold with an approximate shape of the product in a state of increased viscosity due to the start of resinization, the desired result can be achieved. It was discovered that a diamond sintered body could be realized, and the present invention was thus completed. Note that the reason why the shape is approximate to the product is to take into consideration cutting by wire cutting, polishing, lamp finishing, etc. after sintering.

樹脂由来非晶質炭素はグラッシーカーボンとも呼ばれて
おり、代表例としてはフェノール樹脂由来非晶質炭素が
挙げられ、これは液状のレゾールタイプ樹脂を熱処理及
び炭化処理することによって得られる。従って本発明に
おいて樹脂由来非晶質炭素としてフェノール樹脂由来非
晶質炭素を用いる場合には、液状のブエノール中にダイ
ヤモンド粉末を混合分散させてから熱処理を行ない、フ
ェノールの樹脂化によって適度の粘性に達した後製品近
似形状の型に充填し、引続いて熱処理を行なって硬化さ
せてから離型し、更に炭化処理を行なうことによって、
所定のダイヤモンド粉末を含有し且つ製品と近似した形
状を有する固形のフェノール樹脂由来非晶質炭素が得ら
れる。こうして得られたダイヤモンド粉末含有樹脂由来
非晶質炭素を高温真空下で脱ガス処理した後金属触媒と
積層又は同心円状に配置して接触させ、高温・高圧下で
焼結させることによって、前記樹脂由来非晶質炭素自体
もダイヤモンドに変換され、全体として高硬度のダイヤ
モンド焼結体が得られる。
Resin-derived amorphous carbon is also called glassy carbon, and a typical example is phenol resin-derived amorphous carbon, which is obtained by heat-treating and carbonizing a liquid resol type resin. Therefore, in the case of using phenol resin-derived amorphous carbon as the resin-derived amorphous carbon in the present invention, diamond powder is mixed and dispersed in liquid buenol and then heat-treated to obtain an appropriate viscosity by converting the phenol into a resin. After reaching the desired temperature, the product is filled into a mold with a shape similar to the product, followed by heat treatment to harden it, then released from the mold, and further carbonized.
Solid phenolic resin-derived amorphous carbon containing a predetermined diamond powder and having a shape similar to that of the product is obtained. The diamond powder-containing resin-derived amorphous carbon obtained in this way is degassed under high-temperature vacuum, and then brought into contact with a metal catalyst in a stacked or concentric manner, and sintered under high temperature and high pressure. The derived amorphous carbon itself is also converted to diamond, resulting in a highly hard diamond sintered body as a whole.

尚ここで製品近似形状とは、切削チップ用のダイヤモン
ド焼結体を製造する場合は円板状であり、線引ダイス用
のダイヤモンド焼結体を製造する場合は円柱状であるが
、更に複雑な形状であっても成形可能である。また成形
用の型の素材としては、ガラスやテフロン等が使用でき
る。
Note that the approximate product shape here is a disk shape when manufacturing a diamond sintered body for cutting tips, and a columnar shape when manufacturing a diamond sintered body for wire drawing dies, but it is also a more complicated shape. It can be molded into any shape. Furthermore, glass, Teflon, or the like can be used as the material for the mold.

ダイヤモンド粉末を分散含有した樹脂由来非晶質炭素は
緻密な固形物であり、−変説ガス処理した後はガス成分
の吸着が少なく、しかも原料粉末をカーボンで均一に被
覆した成形体を形成する。
Resin-derived amorphous carbon containing dispersed diamond powder is a dense solid substance, and after being treated with a strange gas, it absorbs less gas components and forms a molded body in which the raw material powder is uniformly coated with carbon. .

上記樹脂由来非晶質炭素とは非晶質炭素結合によって一
体形をなすものであって粉末成形体よりも高強度である
ので、高圧容器内に設置するときに破損する様なことも
回避され、作業性が良好となって量産できる。またダイ
ヤモンド焼結体を製造した段階で既に製品に近似した形
状のものが得られるので、従来技術で述べた様な加工工
程が省略でき、この面からも生産性向上に大幅に寄与す
ることになる。
The above-mentioned resin-derived amorphous carbon is formed into a single piece by amorphous carbon bonds, and has higher strength than a powder compact, so it can avoid damage when installed in a high-pressure container. , it has good workability and can be mass-produced. In addition, since a diamond sintered body with a shape similar to that of the product can already be obtained at the stage of manufacturing it, the processing steps mentioned in the conventional technology can be omitted, and from this aspect as well, it contributes significantly to productivity improvement. Become.

上記説明では樹脂由来非晶質炭素の代表例としてフェノ
ール樹脂を炭化処理して得られるフェノール樹脂由来非
晶質炭素を示したが、本発明で用いる樹脂由来非晶質炭
素はフェノール樹脂由来のものに限らず、その他アセト
ン・フルフラール共重合樹脂、フルフリルアルコール・
フェノール共重合樹脂、尿素樹脂、メラミン樹脂、キシ
レン樹脂、グアナミン樹脂等の熱硬化性樹脂由来のもの
であっても同様に処理できる。尚これらの樹脂は2 f
ffi以上を混合して用いてもよい。またこれらの樹脂
を形成する液体モノマーを型に充填するに際しては、樹
脂化開始に伴なって粘性がある程度増大した状態である
ことが必要である。即ち液体状モノマーの粘性が低い状
態で型に充填されると、充填した後樹脂化されるまでの
間の収縮量が大きく、所定のサイズの樹脂が得られない
とともに割れが生じる恐れがある。
In the above explanation, phenol resin-derived amorphous carbon obtained by carbonizing phenol resin was shown as a representative example of resin-derived amorphous carbon, but the resin-derived amorphous carbon used in the present invention is derived from phenol resin. , as well as other acetone/furfural copolymer resins, furfuryl alcohol,
Materials derived from thermosetting resins such as phenol copolymer resins, urea resins, melamine resins, xylene resins, and guanamine resins can be similarly treated. Furthermore, these resins are 2 f
ffi or more may be used in combination. Furthermore, when filling a mold with the liquid monomer that forms these resins, it is necessary that the viscosity increases to some extent as the resin formation begins. That is, if a liquid monomer is filled into a mold with a low viscosity, the amount of shrinkage will be large during the period from filling until it is converted into a resin, making it impossible to obtain a resin of a predetermined size and possibly causing cracks.

一方希望するダイヤモンド焼結体を得る為の焼結温度は
1250℃以上とするのが望ましく、1250℃未満で
は焼結性が劣る。又焼結の際の圧力としては当然のこと
ながら、熱力学的なダイヤモンド安定領域の圧力とする
必要があり、約40kb以上の圧力が好ましい。更に焼
結工程で用いる触媒としては鉄、コバルト、ニッケル等
の鉄族金属であることが必要であり、鉄族金属のいずれ
かを5重量%以上含有する合金であれば十分な触媒作用
が発揮される。しかしながら鉄族金属が5重量%未満で
あると触媒作用が発揮されず、焼結性が低下する。
On the other hand, the sintering temperature for obtaining the desired diamond sintered body is desirably 1250°C or higher, and if it is lower than 1250°C, the sinterability is poor. It goes without saying that the pressure during sintering must be within the thermodynamic diamond stability region, and is preferably about 40 kb or higher. Furthermore, the catalyst used in the sintering process must be an iron group metal such as iron, cobalt, or nickel, and any alloy containing 5% by weight or more of any of the iron group metals will exhibit sufficient catalytic activity. be done. However, if the iron group metal content is less than 5% by weight, the catalytic action will not be exhibited and sinterability will deteriorate.

また本発明においては、ダイヤモンド粉末の含有量は4
0〜95重量%とするのが好ましい。これはダイヤモン
ド粉末の含有量が40重量%より少ないと、非晶質炭素
をダイヤモンドに変換する際に多量の触媒金属が必要と
なるため、必然的に触媒金属の焼結体中に残留する量が
多くなり且つ金属が偏在した不均質な組織となり、良好
なダイヤモンド焼結体が得られないからである。また含
有量が95重量%を超えるとダイヤモンド粉末の均一分
散が困難となり、焼結体中に未焼結部が残留する。尚ダ
イヤモンド粉末のより好ましい含有量は、60〜85%
程度である。
In addition, in the present invention, the content of diamond powder is 4
It is preferably 0 to 95% by weight. This is because if the content of diamond powder is less than 40% by weight, a large amount of catalyst metal is required to convert amorphous carbon into diamond, so the amount of catalyst metal that remains in the sintered body will inevitably increase. This is because the diamond sintered body becomes inhomogeneous and has a large amount of metal unevenly distributed, making it impossible to obtain a good diamond sintered body. Moreover, if the content exceeds 95% by weight, it becomes difficult to uniformly disperse the diamond powder, and unsintered parts remain in the sintered body. The more preferable content of diamond powder is 60 to 85%.
That's about it.

尚上記説明ではダイヤモンド焼結体の原料粉末としてダ
イヤモンド粉末のみを用いる場合について説明したが、
ダイヤモンド粉末の一部を立方晶窒化硼素粉末、或は炭
化物や窒化物の粉末で置き換えたものを原料粉末として
用いても同様の効果が期待できる。
In the above explanation, only diamond powder is used as the raw material powder for the diamond sintered body.
A similar effect can be expected even if part of the diamond powder is replaced with cubic boron nitride powder, or carbide or nitride powder as the raw material powder.

以下本発明を実施例に”よって更に詳細に説明するが、
下記実施例は本発明を限定する性質のものではなく、前
・後記の趣旨に徴して設計変更することはいずれも本発
明の技術的範囲に含まれるものである。
The present invention will be explained in more detail below with reference to Examples.
The following examples are not intended to limit the present invention, and any design changes in accordance with the spirit of the above and below are included within the technical scope of the present invention.

[実施例] 実施例1 アンモニアを触媒としてフェノールとホルムアルデヒド
から合成された液状のリシールタイプフェノール樹脂1
0cc中に、粒径2〜4μmダイヤモンド粉末を20g
分散させ、10mm◆の複数(この実施例では9)の孔
5を有する31III11厚のテフロン板1をガラス板
2に貼り合わせて作成した型3(第1図参照)に充填し
た。そして60℃で2日及び70tで3日保持した後、
140tに加熱して硬化させた。硬化させた樹脂を型3
から取り出し、10mmすXl、5mmの円板状試料を
得た。
[Example] Example 1 Liquid resealable phenolic resin 1 synthesized from phenol and formaldehyde using ammonia as a catalyst
20g of diamond powder with a particle size of 2 to 4μm in 0cc
The mixture was dispersed and filled into a mold 3 (see FIG. 1) prepared by bonding a Teflon plate 1 of 31III11 thickness with a plurality of holes 5 (9 in this example) of 10 mm◆ to a glass plate 2 (see FIG. 1). After holding at 60℃ for 2 days and 70t for 3 days,
It was heated to 140 tons to harden it. Mold 3 of the hardened resin
A disk-shaped sample of 10 mm x 5 mm was obtained.

得られた試料を窒素雰囲気下900℃に加熱して炭化さ
せ、円板状の緻密な固形のダイヤモンド粉末分散フェノ
ール樹脂由来非晶質炭素を得た。
The obtained sample was heated to 900° C. in a nitrogen atmosphere to carbonize it to obtain a disc-shaped dense solid amorphous carbon derived from a phenolic resin in which diamond powder was dispersed.

これを更にI X 1O−STorr、  1450℃
で脱ガスした。
This was further heated to I
Degassed with.

こうして得られたダイヤモンド粉末分散樹脂由来非晶質
炭素を、厚み0.31の00円板及び厚み1.5mmの
超硬合金の間に挟み、高圧容器内で60キロバール、1
500℃の条件で焼結した。得られた焼結体の硬度はH
v7800であり、均一な組織を有していた。
The diamond powder-dispersed resin-derived amorphous carbon thus obtained was sandwiched between a 0.31-thick 00 disk and a 1.5-mm-thick cemented carbide, and placed in a high-pressure container at 60 kbar and 1
Sintering was performed at 500°C. The hardness of the obtained sintered body is H
v7800 and had a uniform structure.

比較例1 粒径2〜4μmのダイヤモンド粉末のみを厚み0.3m
m厚の00円板に積層し、その状態で高圧容器内に充填
し、60キロバール、1500℃の条件で焼結したとこ
ろ、未焼結部が一部残り、硬度測定はできなかった。
Comparative Example 1 Only diamond powder with a particle size of 2 to 4 μm was used in a thickness of 0.3 m.
When they were laminated into 00 disks with a thickness of m and filled in a high-pressure container in that state and sintered at 60 kilobar and 1500°C, some unsintered parts remained and hardness could not be measured.

比較例2 実施例1と同一混合比で、液状のフェノール樹脂中にダ
イヤモンド粉末を分散し、70X70x3 (cm)の
容器内で実施例1と同一条件で加熱硬化させた。次にこ
の板状試料を窒素雰囲気中で900℃まで加熱して炭化
処理した後、超音波加工機によつて10mmφの円板状
試料を打抜き加工したところ、試料としての回収率は約
40%と低く、大半は廃棄せざるを得なかった。
Comparative Example 2 Diamond powder was dispersed in liquid phenol resin at the same mixing ratio as in Example 1, and heated and hardened in a 70×70×3 (cm) container under the same conditions as in Example 1. Next, this plate-shaped sample was carbonized by heating to 900°C in a nitrogen atmosphere, and then a 10 mm diameter disk-shaped sample was punched out using an ultrasonic processing machine, and the recovery rate as a sample was about 40%. This was so low that most of them had to be discarded.

実施例2 第2図に示した型3aを使用する以外は実施例1と同様
にして、線引ダイス用ダイヤモンド焼結体を製造した。
Example 2 A diamond sintered body for a wire drawing die was manufactured in the same manner as in Example 1 except that the mold 3a shown in FIG. 2 was used.

尚このとき使用した型3aはテフロン板1に5mmφの
孔5を3個形成したものであり、その孔5の中央には1
mmすの中子7が立設されており、この中子7によって
ダイヤモンド粉末分散樹脂由来非晶質炭素には線引用の
孔が形成される。また該非晶質炭素からダイヤモンドを
焼結する際には、前記中子7によって非晶質炭素に形成
された孔の中に同形状の窒化硼素焼結体を挿入し、外径
10mmの超硬合金のリングを外筒にして焼結を行なっ
た。
The mold 3a used at this time was one in which three holes 5 of 5 mm diameter were formed in the Teflon plate 1, and a hole 5 was formed in the center of the hole 5.
A core 7 with a diameter of 1 mm is erected, and a hole for a line is formed in the amorphous carbon derived from the diamond powder dispersed resin by this core 7. In addition, when sintering diamond from the amorphous carbon, a boron nitride sintered body of the same shape is inserted into the hole formed in the amorphous carbon by the core 7, and a carbide sintered body with an outer diameter of 10 mm is Sintering was performed using an alloy ring as an outer cylinder.

焼結後前記窒化硼素焼結体は簡単に除去でき、約1mm
のダイス孔を有する線引ダイス用ダイヤモンド焼結体が
得られた。この一連の製造手順によって、従来必要であ
ったレーザー加工や放電加工による穿孔工程が省略でき
た。
After sintering, the boron nitride sintered body can be easily removed and is approximately 1 mm thick.
A diamond sintered body for wire drawing dies having a die hole of Through this series of manufacturing steps, the drilling process using laser machining or electric discharge machining, which was previously necessary, could be omitted.

[発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって、高硬度且つ優れた耐摩耗性を有するダイ
ヤモンド焼結体を製品形状により近い状態で製造するこ
とができる様になり、従来必要とされた加工の為の工程
が省略でき生産性向上が達成された。
[Effects of the Invention] As described above, according to the present invention, by employing the above-described configuration, a diamond sintered body having high hardness and excellent wear resistance can be manufactured in a state closer to the product shape. As a result, the conventionally required processing steps can be omitted, resulting in improved productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明を実施する際に使用される型
を例示する概略説明図である。 1・・・テフロン板   2・・・ガラス板3.3a・
・・型      5・・・孔7・・・中子 第1図 第2図 /3
FIGS. 1 and 2 are schematic diagrams illustrating molds used in carrying out the present invention. 1...Teflon plate 2...Glass plate 3.3a・
... Mold 5 ... Hole 7 ... Core Fig. 1 Fig. 2/3

Claims (1)

【特許請求の範囲】[Claims]  液体状モノマーにダイヤモンド粉末若しくはダイヤモ
ンド粉末を含む原料粉末を分散させた後、該液体状モノ
マーを樹脂化及び炭化処理して得られるダイヤモンド粉
末分散樹脂由来非晶質炭素を原料とし、高温・高圧法に
よってダイヤモンド焼結体を製造する方法において、ダ
イヤモンド粉末若しくはダイヤモンド粉末を含む原料粉
末を分散させた液体状モノマーを、樹脂化開始に伴う粘
性増大状態で、製品近似形状の型に充填して成形する工
程を含むことを特徴とするダイヤモンド焼結体の製造方
法。
Diamond powder or a raw material powder containing diamond powder is dispersed in a liquid monomer, and then the liquid monomer is resinized and carbonized. Diamond powder-dispersed resin-derived amorphous carbon is used as a raw material, and a high-temperature/high-pressure method is used. In the method of manufacturing a diamond sintered body, diamond powder or a liquid monomer in which diamond powder-containing raw material powder is dispersed is filled into a mold with an approximate shape of the product and molded while the viscosity increases due to the start of resinization. A method for producing a diamond sintered body, comprising the steps of:
JP63208598A 1988-08-22 1988-08-22 Method for manufacturing diamond sintered body Expired - Lifetime JPH0745340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208598A JPH0745340B2 (en) 1988-08-22 1988-08-22 Method for manufacturing diamond sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208598A JPH0745340B2 (en) 1988-08-22 1988-08-22 Method for manufacturing diamond sintered body

Publications (2)

Publication Number Publication Date
JPH0259470A true JPH0259470A (en) 1990-02-28
JPH0745340B2 JPH0745340B2 (en) 1995-05-17

Family

ID=16558856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208598A Expired - Lifetime JPH0745340B2 (en) 1988-08-22 1988-08-22 Method for manufacturing diamond sintered body

Country Status (1)

Country Link
JP (1) JPH0745340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112830784A (en) * 2021-01-20 2021-05-25 郑州大学 Glassy carbon material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112830784A (en) * 2021-01-20 2021-05-25 郑州大学 Glassy carbon material and preparation method thereof

Also Published As

Publication number Publication date
JPH0745340B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JP4275862B2 (en) Diamond composite manufacturing method
JP5456949B2 (en) Method for producing polycrystalline cubic boron nitride cutting tool insert
JPS6141867B2 (en)
JP2020525392A (en) Method for producing pellets of sintered material such as boron carbide pellets
JP3310013B2 (en) Insert for chip forming machining and manufacturing method thereof
WO2003076363A1 (en) Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method
JPS6016869A (en) Manufacture of silicon carbide sintered body
US3717694A (en) Hot pressing a refractory article of complex shape in a mold of simple shape
JP2021137715A (en) Diamond base massive tool material and production method thereof
JPH0259470A (en) Production of diamond sintered body
KR101141263B1 (en) ADHESIVE MATERIALS OF WC-Fe BASED HARD METAL AND MANUFACTURING METHOD OF THE SAME
JPH04285102A (en) Production of sintered body
JPH0269354A (en) Sintered diamond body and production thereof
CN112387956A (en) Preparation method of hard alloy saw blade
JP6132586B2 (en) Method for producing SiC molded body
JPH01133976A (en) Manufacture of diamond sintered body
JP3899402B2 (en) Method for producing diamond-titanium carbide composite sintered body
JPS59563B2 (en) Manufacturing method of diamond sintered body
JPH0269355A (en) Production of diamond sintered compact
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JPS6011261A (en) Manufacture of ceramics sintered body
JPH05132704A (en) High-hardness microcrystal sintered compact and production thereof
JPH06102575B2 (en) High hardness composite sintered body
JPS58140374A (en) Manufacture of silicon carbide sintered body
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof