JPH0259204B2 - - Google Patents

Info

Publication number
JPH0259204B2
JPH0259204B2 JP58016100A JP1610083A JPH0259204B2 JP H0259204 B2 JPH0259204 B2 JP H0259204B2 JP 58016100 A JP58016100 A JP 58016100A JP 1610083 A JP1610083 A JP 1610083A JP H0259204 B2 JPH0259204 B2 JP H0259204B2
Authority
JP
Japan
Prior art keywords
weight
ingot
iron
alloy
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58016100A
Other languages
Japanese (ja)
Other versions
JPS59143039A (en
Inventor
Hiroaki Hirasawa
Katsuaki Kamio
Hiroyuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP1610083A priority Critical patent/JPS59143039A/en
Publication of JPS59143039A publication Critical patent/JPS59143039A/en
Publication of JPH0259204B2 publication Critical patent/JPH0259204B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は均質化処理性の優れた鋳造組織を有す
るAl−Mg−Si系の押出用アルミニウム合金鋳塊
の製造方法に関する。 [従来の技術] 従来、61Sおよび63Sに代表されるAl−Mg−Si
系合金から押出材を得るに際しては、当該合金溶
湯から連続鋳造法または半連続鋳造法によつて押
出用の鋳塊を造り、次いで鋳造時に生じた偏折成
分の固溶均質化を図り、且つ鋳塊の鋳造組織にお
ける樹枝状組織(デンドライト)間に存在する鉄
系晶出物の相変態(β晶からα晶への変態)や晶
出物の球状化を行なわせることによつて鋳塊の押
出加工性の向上および得られた押出製品の機械的
性質や表面処理性の改善を図ることを目的とし
て、例えば61Sや63S合金材の場合においては鋳
塊を550℃付近の温度に数時間加熱保持する所謂
均質化処理を施し、次いでこの鋳塊を押出加工時
には押出温度まで予熱し、押出加工を行ない更に
時効処理として押出材に160〜200℃で数時間の熱
処理を施すことが行なわれている。 [発明が解決しようとする課題] 第1図aは上記したような61Sや63S合金鋳塊
の押出加工を行なう場合の従来プロセスにおける
合金材の熱履歴を示す概念図であるが、同図から
明らかなように従来のプロセスにおいては押出加
工前に均質化処理と予熱操作との二度に亘る熱処
理を施すことが必要であり、しかも均質化処理に
おいては540〜580℃の高温に数時間に亘る加熱保
持が必要であつて多大な熱エネルギーを要するも
のであつた。 また、この種Al−Mg−Si系アルミニウム合金
押出材は建築、車両等の構成材に使用されること
が多いが、この場合において材料の装飾性付与と
耐食性向上を目的として押出材の表面に陽極酸化
処理を施すことによつて着色皮膜を形成させるこ
とがしばしば行なわれるが、この場合において合
金鋳塊の鋳造組織中に晶出する鉄系晶出物のうち
β晶(β−AlFeSi)が多量に存在するときは、
押出後の製品に形成される着色陽極酸化皮膜は
往々にして色調が不均一となるので、これをα晶
(α−AlFeSi)化する必要があり、α晶化を十分
に達成するためには均質化処理に際して鋳塊を高
温で長時間の加熱保持をする(例えば580℃に2
時間以上の加熱保持を施すなど)必要があり、ま
た均質化処理後の常温までの冷却速度が不適切で
ある場合には固溶成分の一部が再析出し、これが
押出加工に際しての予熱処理によつても十分に解
消されないために押出材の品質特性の劣化を招く
恐れを有していた。 本発明はAl−Mg−Si系アルミニウム合金押出
材の製造に際しての上記したような問題点を解決
し、均質化処理性に優れ、しかも押出加工によつ
て高性能の押出材を常に安定して得ることができ
るような押出用鋳塊の製造法を提供することを目
的とするものである。 [課題を解決するための手段] 即ち、本発明は上記目的を達成するため検討の
結果なされたもので、必須成分としてマグネシウ
ム0.2〜1.5重量%、珪素0.1〜0.8重量%、鉄0.05〜
1.0重量%を含み、各0.5重量%までの銅、マンガ
ンおよびクロムを不純物として含み、または上記
元素に加えて更にTi0.001〜0.20重量%および
B0.0001〜0.04重量%を含み、且つ硅素含有量
(X)重量%と鉄含有量(Y)重量%とが、第2
図に示したX−Y線図上における座標ア,イ,ウ
およびエを結ぶ領域内にあり、残部アルミニウム
およびその他の不可避的不純物からなるアルミニ
ウム合金溶湯を連続または半連続鋳造法を適用
し、28℃/秒以上の冷却速度で冷却させながら鋳
造を行なうことによつて、鋳塊鋳造組織中に含ま
れる鉄系晶出物のうちα−AlFeSi晶の占める割
合(以下α率という)を70%を超える量とし、且
つ浮遊晶体積率を20%未満、デンドライト・アー
ム・スペーシングを25μm未満とした鋳塊を得る
ことを特徴とする押出用Al−Mg−Si系アルミニ
ウム合金鋳塊の製造方法を提案するものである。 [作 用] 以下本発明の詳細およびその作用について説明
する。 61Sや63SなどのAl−Mg−Si系アルミニウム合
金溶湯を鋳造して得られた合金鋳塊においては通
常原料アルミニウム地金中に不可避的に存在し、
または押出材の表面品質の改善のために添加され
た鉄と合金成分中の硅素とが結合してα−
AlFeSi晶(α晶)、β−AlFeSi晶(β晶)、
Al3FeおよびAl6Feなどの種々の形態の鉄系晶出
物が金属間化合物として鋳塊組織中に晶出する
が、これらのうちβ晶状のものは押出加工性を阻
害し、押出材の表面処理性を劣化させることが知
られている。 しかして、合金溶湯からの鋳造時に鋳塊中に一
旦β晶が析出すると、これを変態させてα晶化す
るためには前述したように高温長時間の加熱処理
が必要であるとされている。しかるに、発明者ら
が検討したところによると、合金を鋳造して得ら
れた鋳塊中に形成される鉄系晶出物のうちの過半
数、特に70%を超える量がα晶化しており、さら
に鋳塊の鋳造組織における浮遊晶体積率が20%未
満で且つデンドライト・アーム・スペーシングが
25μm未満となるような合金組成および鋳造条件
によつて鋳造を行なうことにより得られた鋳塊は
均質化処理性が良好で容易に組織の均質化が行な
われるので、短時間の加熱処理によつて押出性が
良好で、且つ押出後に品質特性の優れた押出材が
再現性よく安定して得られることが判かつた。ま
た、更に発明者らの研究によると、α率の高い鋳
塊は合金中に含まれる鉄と硅素が域る特定の相互
関係が成立するような割合で含まれる場合に得や
すいことが判明した。 第2図は本発明による高α率の鋳塊を容易に得
ることができるような鉄、硅素の含有範囲を示す
図面であつて、横軸に硅素量をまた縦軸に鉄量を
表わしたものである。 第2図中座標イ,ロ,ハおよびニによつて囲ま
れた斜線領域内になるように鉄と硅素を含有する
合金を使用すれば、可成りの高い確率で鋳塊中に
形成される鉄系晶出物をα晶とすることができる
が、さらに確実には鋳塊中の浮遊晶の体積率が20
%未満になるような鋳造条件で鋳塊の鋳造を行な
うことによつて再現性よくα晶化を推進すること
ができる。 本発明においては、上記したように鋳塊の鋳造
組織中の鉄系化合物のα率を70%を超える量と
し、浮遊晶体積率を20%未満とするほかに鋳造組
織におけるデンドライト・アーム・スペーシング
を25μm未満とすることをもう一つの要件とする
ものであるが、このためには合金溶湯の鋳造を行
なうに際して溶湯の冷却速度を28℃/秒、好まし
くは30℃/秒以上にする必要がある。 そして、本発明の合金組成を有する合金溶湯を
このような冷却条件で鋳造すると浮遊晶の数も激
減し、その鋳塊中に占める体積率も20%未満の極
めて小さい値になること、またこのことが鋳塊組
織中に形成される鉄系化合物のα晶化にも好影響
をもたらすものであることが判かつた。 このように鋳塊の鋳造組織におけるデンドライ
ト・アーム・スペーシングを25μm未満とするこ
とによつてデンドライトセルの境界に晶出する
Mg2Si等の共晶化合物や鉄系晶出物の粒子が微細
となつてその拡散や相変化が容易になるので短時
間の加熱で十分に鋳塊組織の均質化を図ることが
できるとともにβ晶のα晶化も容易に行なわれる
ようになるものと思われる。 本発明においては鋳造方法としては連続または
半連続鋳造法を採用することが推奨される。 なお、本発明において鋳塊のα率の判定は次の
如くして行なう。即ち、鋳塊から適宜試料を採取
しX線マイクロアナライザーにより晶出物の鉄、
硅素の同時分析を行ない、両元素のX線カウント
数の比をとるとα晶の場合はFe/Si比が5以上
であり、β晶の場合には3以下となる。従つてα
率は試料を或る一定方向に移動したときに交差す
る一定数(一般的には50個程度を採る)の鉄系晶
出物を上述の方法で判定し、その中のα晶と同定
された晶出物の個数を数えこれを100分率で表わ
すことによつて算出判定する。 またデンドライト・アーム・スペーシングの判
定は一般に切断法として知られた方法を利用し、
光学顕微鏡ならびに画像解析装置によつて鋳塊の
任意画面中におけるデンドライト(樹枝状晶)の
数を測定し、観察長さをその個数で除することに
よつて算出する。 浮遊晶体積率の判定については上記と同様鋳塊
の任意断面試料を苛性ソーダ等のエツチング剤に
よりエツチングしたものについて、鋳塊表面から
半径中心軸までを等間隔に4領域に区分し、実体
顕微鏡(倍率10倍)で各領域についての浮遊晶の
面積率を2視野以上に亘つて観察し、各領域にお
ける浮遊晶の平均面積率をそれぞれ表層側から
F1、F2、F3およびF4としたとき、求める浮遊晶
体積率は下記近似式によつて求めることができ
る。 F=7F1+5F2+3F3+F4/16 本発明のAl−Si−Mg系合金における組成範囲
は次の理由によつて定めた。 即ち、マグネシウムの0.2〜1.5重量%および珪
素の0.1〜0.8重量%はこの種時効硬化性Al−Mg
−Si系合金において通常含まれる範囲を示すもの
であり、両元素の下限未満では時効硬化による合
金の強度向上効果が乏しく、また上限を超えるこ
とは押出性が低下するので好ましくない。 合金中の鉄の含有量の多寡は硅素の含有と関連
して本発明の主旨とする鋳塊組織中に生ずる鉄系
化合物のα率に重要な影響を与えるものであり、
上記した珪素含有量および鉄0.05〜1.0重量%の
含有量の範囲内で、且つ珪素、鉄の含有量をそれ
ぞれ(X)重量%、(Y)重量%としたときに、
第2図に示す如きX−Y線図上における各座標、 ア…(0.1、0.05) イ…(0.1、1.0) ウ…(0.8、1.0) エ…(0.4、0.05) で囲まれた領域内にあるときに、α晶が形成され
易くなり、またこの範囲内において本発明におい
て示された特定の鋳造条件によつて合金溶湯を鋳
造することによつて鋳塊内の鉄系晶出物のα率を
一層高めることができる。 合金中に含有される鉄は合金の機械的強度を向
上させる効果を有するものであるが、その含有量
が上記した範囲の下限値未満であるときは合金の
強度向上効果が不十分であり、また上限値を超え
ると合金中に生成する鉄含有化合物の量が過大と
なつて合金の加工性を著しく低下させるのでとも
に好ましくない。 合金の鋳造に際して、この種Al−Mg−Si系合
金において必要に応じて結晶微細化剤としてしば
しば添加されるチタンおよび硼素における通常的
な添加量であるチタン0.001〜0.20重量%、硼素
0.0001〜0.04重量%の範囲での両者の添加は本発
明の効果の妨げにならないばかりか、却つて浮遊
晶体積率の適正化やα率、デンドライト・アー
ム・スペーシングの調整のために好影響を及ぼす
ので好ましいことである。 チタンおよび硼素の添加量がそれぞれ上記した
範囲の下限値未満であるときは合金鋳造に際して
十分な結晶微細化効果が得られず、また上限値を
超えるときはこれ以上の結晶微細化効果が得られ
ない上に、合金中にTiB2の粗大晶を生じやすく
なり押出材にレザー・ストリークなどの表面欠陥
を生ずる恐れがあるのでともに好ましくない。 また、従来からこの種のAl−Mg−Si合金にお
いて合金強度向上のために目的に応じて添加さ
れ、または不純物として混入する0.5重量%まで
の銅、マンガンおよびクロムの含有は本発明の効
果を何等妨げることがないので差支えない。 本発明によつて得られたAl−Mg−Si系合金鋳
塊は鋳塊組織中に存在する鉄系晶出物の殆ど大部
分がα晶化していること、ならびにミクロ偏析が
細かく分散されていることなどから均質化処理性
に優れているので、これを第1図aに示されるよ
うな均質化処理、予熱処理工程を経て押出加工を
行なうときは、比較的短時間の加熱保持によつて
も鋳塊の十分な均質化が行なわれるために、得ら
れた押出材製品は従来品に比べて機械的性質、表
面品質等において一段と優れた性能を有するもの
が得られる。 また本発明による鋳塊は上記したように均質化
処理性にすぐれているために、押出プロセスを遂
行するに当たつて第1図aに示される熱処理工
程、即ち均質化処理と予熱処理を併せ行なうプロ
セスによることなく、押出操作を始める直前に鋳
塊を580〜640℃に10分以内の加熱保持をする高温
短時間の加熱処理を施し、保持完了後速やかにこ
の系の合金において通常行なわれる押出速度であ
る300〜500℃の温度範囲まで冷却して押出加工を
行なうことによつても優れた品質の押出材を得る
ことができる。 そして、このような短縮したプロセスを採るこ
とによつて従来の押出材製造プロセスに比べて生
産性の向上とエネルギー消費の節減を図ることが
できるばかりでなく、均質化処理後の鋳塊を室温
まで冷却することによる合金溶質成分の一部が再
析出を起こすことがないので押出材の品質向上に
も寄与することができる。 第1図bはこのような押出プロセスを示す概念
図である。これを第1図aの従来法による押出プ
ロセスと比較すれば本発明の鋳塊を使用した短縮
押出プロセスが如何に生産性向上とエネルギー節
約に貢献するか一目瞭然であろう。 このような短縮プロセスを採用した場合におい
て、押出操作開始直前の鋳塊均質化処理温度を
580℃より低くすると溶質成分の鋳塊基質内での
拡散速度が低下するため均質化効果の発現に要す
る保持時間が急激に増大し、生産性向上とエネル
ギー消費節減の効果が顕著でなくなるし、また加
熱処理温度が640℃を超えると鋳塊組織中の低融
点相の局部的溶解を生じて押出製品の品質を劣化
するので好ましくない。また、加熱保持時間は10
分程度で十分であり、特に上限温度の640℃付近
での保持時間は1〜2分程度でよい。 このような短時間保持で十分な均質化効果を得
ることは本発明によつて得られた鋳塊を使用する
ことによつて初めて達成し得るものであり、従来
のAl−Mg−Si系合金鋳塊を使用しても達成する
ことはできない。 なお、高温加熱した鋳塊を押出温度まで急冷す
るのは溶出成分の再析出を可及的に防止するため
であり、このためには鋳塊表面で20℃/秒以上の
冷却速度で冷却するのがよい。 本発明による鋳塊を使用しての押出は直接押出
法のほか、間接押出法その他公知の押出法が採用
され、押出速度等、押出に際しての緒条件は従来
のこの種Al−Mg−Si系合金におけるものと変わ
ることがない。 また、このようにして得られた押出材は爾後常
法に従つて冷却後、用途に応じて所望の条件で時
効硬化処理を施し、また陽極酸化処理等を施して
使用に供せられる。 [実施例] 次に本発明の実施例について述べる。 実施例 1 合金組成としてMg0.52重量%、Si0.40重量%、
Fe0.22重量%、Cu0.01重量%、Mn0.03重量%、
Cr0.001重量%、Ti0.004重量%およびB0.001重量
%を含み、残部アルミニウムおよびその他の不可
避的不純物からなる合金(本発明合金)と比較の
ため合金組成がMg0.50重量%、Si0.48重量%、
Fe0.18重量%、Cu0.01重量%、Mn0.007重量%、
Cr0.001重量%、Ti0.004重量%およびB0.002重量
%を含み、残部アルミニウムおよびその他の不可
避的不純物からなる合金(比較合金:鉄、珪素の
含有量の相互関係が第2図に×印で示される如く
本発明の領域範囲を外れるもの)とを同一の半連
続鋳造装置を使用し、 鋳造条件(本発明鋳造条件) :溶湯温度 720℃ 鋳造速度 75mm/分 冷却速度 30℃/秒 鋳造条件(比較鋳造条件) :溶湯温度 700℃ 鋳造速度 100mm/分 冷却速度 25℃/秒 の二通りの鋳造条件で径203mmφ、長さ1200mmの
円柱状鋳塊に鋳造し、それぞれその中央部より
500mmの長さのビレツト2本宛を採取した。一方
のビレツトからX線マイクロアナライザー試料、
デンドライト・アーム・スペーシングおよび浮遊
晶体積率の各試料を採取し、前述した測定法によ
つて各試料の測定を行ない、その結果を第1表に
示した。また、他方のビレツトについては均質炉
において昇温速度100℃/時にて560℃まで昇温さ
せ、該温度で30分および2時間の2水準の均質化
時間による加熱保持を行ない、炉から取出した
後、これをフアン冷却(冷却速度200℃/時)に
よつて室温まで冷却し、次いでこれを電磁誘導式
のビレツト・ヒーターによつて480℃まで再加熱
し、5分間保持した後直ちに押出加工を行なつ
た。 押出に際しては1500トンの油圧式直接押出機を
用い、押出速度30m/分で3mmの肉厚を有するサ
ツシ用型材を押出し、室温で3日間放置した後、
200℃で2時間の時効処理を行なつた。 得られた押出材における機械的性質および反射
率の測定結果ならびに陽極酸化処理を施した表面
外観の観察結果を第2表に示す。 なお、押出材の陽極酸化処理には常法による硫
酸アルマイト法を適用した。 第1表および第2表の結果から本発明の合金を
使用し、且つ本発明の鋳造条件によつて得られた
Al−Mg−Si系合金鋳塊(実施番号−1)は、
α率が100%と高く、且つデンドライト・アー
ム・スペーシングが20μm、浮遊晶体積率3%と、
これらの値が全て本発明の条件を満足しており、
このような鋳塊から得られた押出材においては、
30分という極めて短時間の均質化処理を施したも
のであつても2時間の長時間処理を施したものに
較べて機械的性質、表面反射率および陽極酸化処
理性において殆ど変りのない優れた品質特性のも
のが得られるのに対して、本発明による組成の合
金であつても本発明の鋳造条件に適合しない鋳造
条件によつて得られた鋳塊(実施番号−2)お
よび本発明の組成を外れた組成を有する合金から
得られた鋳塊から得られた押出材(実施番号−
3および−4)は機械的性質や陽極酸化処理性
において劣り、特に合金組成においても、また鋳
造条件においても本発明から逸脱した条件によつ
て得られた鋳塊によるもの(実施番号−4)に
おいては短時間の均質化処理では勿論のこと、長
時間の均質化処理を行なつた場合においても得ら
れる押出材の強度、表面反射率および陽極酸化処
理性が本発明によるものに較べて著し
[Industrial Field of Application] The present invention relates to a method for producing an Al-Mg-Si aluminum alloy ingot for extrusion, which has a casting structure with excellent homogenization processability. [Conventional technology] Conventionally, Al-Mg-Si represented by 61S and 63S
When obtaining an extruded material from a series alloy, an ingot for extrusion is made from the molten alloy by a continuous casting method or a semi-continuous casting method, and then the polarized components generated during casting are homogenized as a solid solution, and By causing the phase transformation (transformation from β crystal to α crystal) of the iron-based crystals existing between the dendritic structures (dendrites) in the casting structure of the ingot and the spheroidization of the crystals, the ingot is For example, in the case of 61S and 63S alloy materials, the ingot is heated to a temperature around 550℃ for several hours in order to improve the extrusion processability of the product and the mechanical properties and surface treatment properties of the extruded product obtained. The so-called homogenization treatment of heating and holding is performed, and then this ingot is preheated to the extrusion temperature during extrusion processing, extrusion processing is performed, and the extruded material is further heat treated at 160 to 200°C for several hours as an aging treatment. ing. [Problems to be Solved by the Invention] Figure 1a is a conceptual diagram showing the thermal history of the alloy material in the conventional process when extruding 61S or 63S alloy ingots as described above. As is clear, in the conventional process, it is necessary to perform two heat treatments, homogenization treatment and preheating operation, before extrusion processing, and in the homogenization treatment, the temperature is heated to a high temperature of 540 to 580℃ for several hours. It was necessary to maintain heating for a long period of time, and a large amount of thermal energy was required. In addition, this type of Al-Mg-Si aluminum alloy extruded material is often used for construction materials, vehicles, etc., and in this case, the surface of the extruded material is A colored film is often formed by anodizing, but in this case, among the iron-based crystals that crystallize in the cast structure of the alloy ingot, β-crystals (β-AlFeSi) are When present in large quantities,
The colored anodic oxide film formed on the extruded product often has a non-uniform color tone, so it is necessary to convert it into α-crystal (α-AlFeSi). During the homogenization process, the ingot is heated and held at a high temperature for a long time (for example, heated to 580℃ for 2 hours).
If the cooling rate to room temperature after homogenization treatment is inappropriate, some of the solid solution components will re-precipitate, and this will cause the preheating treatment during extrusion processing to occur. However, the problem could not be resolved satisfactorily even if the problem was solved by the above methods, so there was a risk of deterioration of the quality characteristics of the extruded material. The present invention solves the above-mentioned problems when producing Al-Mg-Si aluminum alloy extruded materials, has excellent homogenization processability, and can always stably produce high-performance extruded materials through extrusion processing. The object of the present invention is to provide a method for producing an ingot for extrusion that can be obtained. [Means for Solving the Problems] That is, the present invention was made as a result of studies to achieve the above object, and contains 0.2 to 1.5% by weight of magnesium, 0.1 to 0.8% by weight of silicon, and 0.05 to 0.05% of iron as essential components.
1.0% by weight and contains up to 0.5% by weight each of copper, manganese and chromium as impurities, or in addition to the above elements further 0.001-0.20% by weight of Ti and
B0.0001 to 0.04% by weight, and the silicon content (X) weight% and the iron content (Y) weight% are the second
A continuous or semi-continuous casting method is applied to the molten aluminum alloy, which is located within the region connecting coordinates A, A, C, and E on the X-Y diagram shown in the figure, and consists of the remainder aluminum and other unavoidable impurities, By performing casting while cooling at a cooling rate of 28°C/sec or more, the proportion of α-AlFeSi crystals (hereinafter referred to as α ratio) among the iron-based crystals contained in the cast structure of the ingot can be reduced to 70%. %, a suspended crystal volume fraction of less than 20%, and a dendrite arm spacing of less than 25 μm. This paper proposes a method. [Function] The details of the present invention and its function will be explained below. In alloy ingots obtained by casting molten Al-Mg-Si aluminum alloys such as 61S and 63S, it usually exists unavoidably in the raw aluminum base metal.
Or, iron added to improve the surface quality of extruded materials and silicon in the alloy components combine to form α-
AlFeSi crystal (α crystal), β-AlFeSi crystal (β crystal),
Various forms of iron-based crystallized substances such as Al 3 Fe and Al 6 Fe crystallize in the ingot structure as intermetallic compounds, but among these, β-crystalline substances inhibit extrusion processability and are difficult to extrude. It is known that it deteriorates the surface treatment properties of materials. However, once β crystals are precipitated in the ingot during casting from a molten alloy, heat treatment at high temperatures and for a long period of time is required to transform the crystals and turn them into α crystals, as described above. . However, according to the inventors' investigation, the majority of the iron-based crystallized substances formed in the ingot obtained by casting the alloy, especially more than 70%, is α-crystallized. Furthermore, the suspended crystal volume percentage in the casting structure of the ingot is less than 20% and the dendrite arm spacing is
Ingots obtained by casting with an alloy composition and casting conditions that result in a thickness of less than 25 μm have good homogenization properties and the structure can be easily homogenized, so it can be easily processed by short heat treatment. It was found that extrudability was good, and extruded materials with excellent quality characteristics could be stably obtained with good reproducibility after extrusion. Furthermore, according to the research conducted by the inventors, it was found that an ingot with a high alpha ratio can be easily obtained when iron and silicon are contained in the alloy in a ratio that establishes a specific interrelationship. . Fig. 2 is a diagram showing the content ranges of iron and silicon such that an ingot with a high alpha rate can be easily obtained according to the present invention, with the horizontal axis representing the amount of silicon and the vertical axis representing the amount of iron. It is something. If an alloy containing iron and silicon is used within the shaded area surrounded by coordinates A, B, C, and D in Figure 2, there is a fairly high probability that it will form in the ingot. It is possible to make iron-based crystals into alpha crystals, but it is more certain that the volume fraction of suspended crystals in the ingot is 20
By casting the ingot under casting conditions such that the α-crystallization is less than %, α-crystallization can be promoted with good reproducibility. In the present invention, as described above, in addition to setting the alpha ratio of iron-based compounds in the cast structure of the ingot to more than 70% and keeping the suspended crystal volume percentage to less than 20%, the dendrite arm stratum in the cast structure is Another requirement is that the pacing be less than 25 μm, which requires the cooling rate of the molten alloy to be 28°C/sec or more, preferably 30°C/sec or more when casting the molten alloy. There is. Furthermore, if a molten alloy having the alloy composition of the present invention is cast under such cooling conditions, the number of floating crystals will be drastically reduced, and the volume fraction occupying the ingot will be an extremely small value of less than 20%. It was found that this also had a favorable effect on the alpha crystallization of iron-based compounds formed in the ingot structure. In this way, by setting the dendrite arm spacing in the cast structure of the ingot to less than 25 μm, crystallization occurs at the boundaries of dendrite cells.
Particles of eutectic compounds such as Mg 2 Si and iron-based crystallized substances become fine, making their diffusion and phase change easier, making it possible to sufficiently homogenize the ingot structure with short heating times. It is thought that α-crystalization of β-crystals will also become easier. In the present invention, it is recommended to use continuous or semi-continuous casting as the casting method. In the present invention, the α ratio of the ingot is determined as follows. That is, appropriate samples are taken from the ingot and analyzed with an X-ray microanalyzer to determine the iron crystallization,
When silicon is simultaneously analyzed and the ratio of the X-ray counts of both elements is taken, the Fe/Si ratio is 5 or more in the case of α crystal, and 3 or less in the case of β crystal. Therefore α
The rate is determined by using the method described above to determine a certain number (generally about 50) of iron-based crystals that intersect when the sample is moved in a certain direction, and which are identified as α-crystals. Calculate and judge by counting the number of crystallized substances and expressing this as a percentage. In addition, dendrite arm spacing is generally determined using a method known as the cutting method.
It is calculated by measuring the number of dendrites in an arbitrary area of the ingot using an optical microscope and an image analysis device, and dividing the observed length by the number. As for the determination of the suspended crystal volume fraction, an arbitrary cross-sectional sample of the ingot was etched with an etching agent such as caustic soda as described above, and the area from the ingot surface to the radial center axis was divided into four areas at equal intervals, and the sample was examined using a stereoscopic microscope ( Observe the area ratio of floating crystals in each region over two or more fields of view using a magnification of 10x), and measure the average area ratio of floating crystals in each region from the surface side.
When F 1 , F 2 , F 3 and F 4 are used, the suspended crystal volume fraction can be determined using the following approximate formula. F=7F 1 +5F 2 +3F 3 +F 4 /16 The composition range of the Al-Si-Mg alloy of the present invention was determined for the following reason. That is, 0.2-1.5% by weight of magnesium and 0.1-0.8% by weight of silicon are such age-hardening Al-Mg
- This indicates the range normally included in Si-based alloys; below the lower limits of both elements, the effect of improving the strength of the alloy through age hardening is poor, and above the upper limits, the extrudability deteriorates, which is not preferable. The amount of iron content in the alloy is related to the silicon content and has an important influence on the alpha ratio of iron-based compounds that occur in the ingot structure, which is the gist of the present invention.
Within the range of silicon content and iron content of 0.05 to 1.0% by weight as described above, and when the silicon and iron contents are respectively (X) weight% and (Y) weight%,
Each coordinate on the X-Y diagram as shown in Figure 2, A...(0.1, 0.05) I...(0.1, 1.0) U...(0.8, 1.0) E...(0.4, 0.05) Within the area surrounded by When the temperature is within this range, α-crystals are likely to be formed, and by casting the molten alloy under the specific casting conditions shown in the present invention within this range, the iron-based crystals in the ingot can be removed. The α rate can be further increased. Iron contained in the alloy has the effect of improving the mechanical strength of the alloy, but when its content is less than the lower limit of the above range, the effect of improving the strength of the alloy is insufficient, Moreover, if the upper limit is exceeded, the amount of iron-containing compounds formed in the alloy becomes excessive, which significantly reduces the workability of the alloy, which is not preferable. When casting the alloy, 0.001 to 0.20% by weight of titanium and boron are added, which are the usual addition amounts of titanium and boron, which are often added as necessary grain refiners in this type of Al-Mg-Si alloy.
Addition of both in the range of 0.0001 to 0.04% by weight not only does not interfere with the effects of the present invention, but also has a positive effect on optimizing the suspended crystal volume ratio, adjusting the α ratio, and dendrite arm spacing. This is preferable because it has the effect of If the amounts of titanium and boron added are each less than the lower limit of the above-mentioned range, a sufficient crystal refining effect cannot be obtained during alloy casting, and if it exceeds the upper limit, no further crystal refining effect can be obtained. In addition, coarse crystals of TiB 2 tend to form in the alloy, which may cause surface defects such as laser streaks in the extruded material, which are both undesirable. In addition, the effects of the present invention cannot be achieved by containing up to 0.5% by weight of copper, manganese, and chromium, which have traditionally been added for purposes of improving alloy strength or mixed as impurities in this type of Al-Mg-Si alloy. There is no problem as it will not interfere in any way. In the Al-Mg-Si alloy ingot obtained by the present invention, most of the iron-based crystallized substances present in the ingot structure are α-crystallized, and micro-segregation is finely dispersed. Since it has excellent homogenization properties due to However, since the ingot is sufficiently homogenized, the resulting extruded material product has better mechanical properties, surface quality, etc. than conventional products. Furthermore, since the ingot according to the present invention has excellent homogenization properties as described above, when performing the extrusion process, the heat treatment step shown in FIG. Immediately before starting the extrusion operation, the ingot is heated and held at 580 to 640°C for no more than 10 minutes to undergo a high-temperature, short-time heat treatment, and immediately after the holding is completed, it is usually carried out for this type of alloy. An extruded material of excellent quality can also be obtained by performing extrusion processing by cooling to a temperature range of 300 to 500°C, which is the extrusion rate. By adopting such a shortened process, it is possible not only to improve productivity and reduce energy consumption compared to the conventional extrusion manufacturing process, but also to keep the ingot after homogenization treatment at room temperature. Since some of the alloy solute components do not re-precipitate due to cooling to a certain temperature, it can also contribute to improving the quality of the extruded material. FIG. 1b is a conceptual diagram showing such an extrusion process. If this is compared with the conventional extrusion process shown in FIG. 1a, it will be obvious how the shortened extrusion process using the ingot of the present invention contributes to improved productivity and energy savings. When such a shortened process is adopted, the ingot homogenization temperature immediately before the start of the extrusion operation is
If the temperature is lower than 580℃, the diffusion rate of solute components in the ingot matrix decreases, so the retention time required to achieve the homogenization effect increases rapidly, and the effects of improving productivity and reducing energy consumption become less noticeable. Furthermore, if the heat treatment temperature exceeds 640°C, it is not preferable because it causes local melting of the low melting point phase in the ingot structure and deteriorates the quality of the extruded product. In addition, the heating retention time is 10
A holding time of about 1 to 2 minutes is sufficient, especially when the upper limit temperature is around 640°C. Obtaining a sufficient homogenizing effect with such a short holding time can be achieved for the first time by using the ingot obtained by the present invention, and it is possible to achieve a sufficient homogenization effect for the first time by using the ingot obtained by the present invention. This cannot be achieved using ingots. The purpose of rapidly cooling an ingot that has been heated to a high temperature to the extrusion temperature is to prevent the eluted components from re-precipitating as much as possible.To do this, the ingot surface should be cooled at a cooling rate of 20℃/second or more. It is better. In addition to the direct extrusion method, indirect extrusion method and other known extrusion methods are adopted for extrusion using the ingot according to the present invention. It is no different from that in alloys. Further, the extruded material thus obtained is then cooled in accordance with a conventional method, subjected to age hardening treatment under desired conditions depending on the use, and subjected to anodization treatment etc. before being used. [Example] Next, an example of the present invention will be described. Example 1 Alloy composition: Mg0.52% by weight, Si0.40% by weight,
Fe0.22wt%, Cu0.01wt%, Mn0.03wt%,
For comparison, the alloy composition contains 0.001% by weight of Cr, 0.004% by weight of Ti, and 0.001% by weight of B, with the balance consisting of aluminum and other unavoidable impurities (alloy of the present invention). .48% by weight,
Fe0.18% by weight, Cu0.01% by weight, Mn0.007% by weight,
An alloy containing 0.001% by weight of Cr, 0.004% by weight of Ti, and 0.002% by weight of B, with the balance consisting of aluminum and other unavoidable impurities (comparative alloy: the correlation between the iron and silicon contents is shown in Figure 2) The same semi-continuous casting equipment was used for casting (outside the range of the present invention as shown by the mark), and casting conditions (casting conditions of the present invention): Molten metal temperature: 720°C Casting speed: 75 mm/min Cooling rate: 30°C/sec Casting conditions (comparative casting conditions): A cylindrical ingot with a diameter of 203 mmφ and a length of 1200 mm was cast under two casting conditions: molten metal temperature: 700°C, casting speed: 100 mm/min, cooling rate: 25°C/sec.
Two billets with a length of 500 mm were collected. X-ray microanalyzer sample from one billet,
Samples for dendrite arm spacing and suspended crystal volume fraction were taken, and each sample was measured using the measurement method described above. The results are shown in Table 1. The other billet was heated to 560°C at a heating rate of 100°C/hour in a homogenizing furnace, maintained at this temperature for two homogenization times of 30 minutes and 2 hours, and then taken out of the furnace. After that, it was cooled to room temperature by fan cooling (cooling rate 200°C/hour), then reheated to 480°C by an electromagnetic induction billet heater, held for 5 minutes, and immediately extruded. I did this. For extrusion, a 1,500-ton hydraulic direct extruder was used to extrude a sash shape with a wall thickness of 3 mm at an extrusion speed of 30 m/min, and after leaving it at room temperature for 3 days,
Aging treatment was performed at 200°C for 2 hours. Table 2 shows the results of measuring the mechanical properties and reflectance of the extruded material obtained, as well as the observation results of the surface appearance after anodizing treatment. Note that a conventional sulfuric acid alumite method was applied to the anodizing treatment of the extruded material. From the results in Tables 1 and 2, the alloys of the present invention were used and the casting conditions of the present invention were used.
The Al-Mg-Si alloy ingot (execution number-1) is
The α rate is as high as 100%, the dendrite arm spacing is 20 μm, and the floating crystal volume rate is 3%.
All of these values satisfy the conditions of the present invention,
In extruded materials obtained from such ingots,
Even when homogenized for an extremely short time of 30 minutes, there is almost no difference in mechanical properties, surface reflectance, and anodizing properties compared to those treated for a long time of 2 hours. On the other hand, an alloy having the composition according to the present invention is obtained under casting conditions that do not conform to the casting conditions of the present invention (Example No.-2) and an alloy according to the present invention with quality characteristics. Extruded material obtained from an ingot obtained from an alloy with a composition deviating from the composition (extrusion number -
3 and -4) are inferior in mechanical properties and anodizing properties, and are made of ingots obtained under conditions that deviate from the present invention, especially in terms of alloy composition and casting conditions (Example No.-4). In this case, the strength, surface reflectance, and anodizing properties of the extruded material obtained by the present invention are significantly superior even when homogenizing for a long time as well as for a short time. death

【表】 註:浮遊晶体積率は%表示
[Table] Note: Floating crystal volume percentage is expressed as %

【表】 註:◎−優秀 ○−普通 △−やゝ不良
×−不良
く劣ることが判かる。 また、これらの事柄は本発明によつて得られた
鋳塊が優れた均質化処理性を有するものであるこ
とを如実に示すものである。 実施例 2 合金組成としてMg0.52重量%、Si0.38重量%
およびFe0.20重量%、Cu0.05重量%、Mn0.05重
量%およびCr0.001重量%を含み、残部アルミニ
ウムおよびその他の可避不純物からなるAl−Mg
−Si系合金溶湯を実施例1と同様の半連続鋳造装
置を用いて、下記の鋳造条件にて径200mm、長さ
1200mmの円柱状鋳塊に鋳込んだ。 鋳造条件:溶湯温度 710℃ 鋳造速度 80mm/分 冷却速度 28℃/秒 得られた鋳塊の一部を切取り、鋳塊組織中の鉄
系化合物のα率、デンドライト・アーム・スペー
シングおよび浮遊晶体積率を測定したところ、α
率は100%、デンドライト・アーム・スペーシン
グは20μmであり、また浮遊晶体積率は5%であ
つて、すべて本発明の条件を満足するものであつ
た。 次に、この鋳塊から実施例1と同様の寸法の2
本のビレツトを切取り、そのうちの1本について
実施例1で用いたものと同様の均質化炉にて、第
1図aに示されるような通常の均質化処理条件、
即ち昇温速度100℃/時にて560℃まで昇温させ
て、該温度で2時間保持した後、フアン冷却によ
つて室温まで冷却し7目間放置し、次にこれを実
施例1で用いたものと同様のビレツト・ヒーター
によつて450℃まで再加熱し、同温度で3分間保
持した後押出しを行なつた。 また他の1本については第1図bに示されるよ
うな短縮処理、即ちビレツトを均質化炉で加熱保
持を行なうことなく直ちにビレツト・ヒーターに
よつて室温から600℃まで昇温させ、同温度で5
分間保持した後、フアン冷却によつて5分間で
480℃まで冷却して押出しを行なつた。 両者ともに押出機は実施例1と同様のものを用
い、押出速度40m/分で実施例1と同様のサツシ
用型材を押出し、次いでフアン冷却によつて室温
まで冷却した後、5日間室温にて放置し、しかる
後200℃において2時間保持する時効処理を行な
つた。 これらの型材について機械的性質の測定および
陽極酸化処理後の表面外観検査を行なつた結果を
第3表に示す。
[Table] Note: ◎ - Excellent ○ - Average △ - Poor
× - It can be seen that it is poor and inferior. Furthermore, these facts clearly demonstrate that the ingot obtained by the present invention has excellent homogenization processability. Example 2 Alloy composition: Mg 0.52% by weight, Si 0.38% by weight
and Al-Mg containing 0.20% by weight of Fe, 0.05% by weight of Cu, 0.05% by weight of Mn and 0.001% by weight of Cr, with the balance consisting of aluminum and other inevitable impurities.
- Using the same semi-continuous casting equipment as in Example 1, the molten Si-based alloy was cast to a diameter of 200 mm and a length of 200 mm under the following casting conditions.
It was cast into a 1200mm cylindrical ingot. Casting conditions: Molten metal temperature 710℃ Casting speed 80mm/min Cooling rate 28℃/sec A part of the obtained ingot was cut out and the alpha ratio of iron-based compounds in the ingot structure, dendrite arm spacing, and floating crystals were measured. When the volume fraction was measured, α
The ratio was 100%, the dendrite arm spacing was 20 μm, and the suspended crystal volume ratio was 5%, all of which satisfied the conditions of the present invention. Next, from this ingot, two pieces of the same size as in Example 1 were
The book billets were cut, and one of them was subjected to normal homogenization treatment conditions as shown in FIG. 1a in a homogenization furnace similar to that used in Example 1.
That is, the temperature was raised to 560°C at a heating rate of 100°C/hour, held at that temperature for 2 hours, cooled to room temperature by fan cooling, and left for 7 days. The mixture was reheated to 450° C. using the same billet heater as the one used in the heating process, held at the same temperature for 3 minutes, and then extruded. The other one was shortened as shown in Figure 1b, that is, the billet was immediately heated from room temperature to 600°C using a billet heater without being heated and held in the homogenizing furnace, and then the billet was heated at the same temperature. So 5
After holding for 5 minutes, the fan cools down for 5 minutes.
Extrusion was performed after cooling to 480°C. In both cases, the same extruder as in Example 1 was used, and the same sash material as in Example 1 was extruded at an extrusion speed of 40 m/min, and then cooled to room temperature by fan cooling, and then kept at room temperature for 5 days. It was left to stand and then aged at 200°C for 2 hours. Table 3 shows the results of measuring the mechanical properties and inspecting the surface appearance of these molds after anodizing.

【表】 註:◎ 優秀 ○ 普通
第3表の結果より、本発明による鋳塊から得ら
れたビレツトを通常の均質化処理を施して得られ
た押出材はかなりの機械的性質を有し、また陽極
酸化処理性も良好であるが、さらにこれを短縮熱
処理を施すときは機械的性質、陽極酸化処理性が
さらに向上した押出材が得られることが判かる。 更にこのことから本発明の製造法によつて得ら
れたα率が高く、デンドライト・アーム・スペー
シングが25μm未満で浮遊晶体積率が20%未満の
鋳塊は、従来の製造方法によつて得られた鋳塊よ
りも遥かに均質化処理性が優れているものである
ことも十分に理解されよう。 [発明の効果] 以上述べたように本発明の製造法によつて得ら
れた押出用Al−Mg−Si系合金鋳塊は均質化処理
性に優れているので、通常の均質化処理条件では
勿論のこと、均質化処理に際しての加熱保持時間
を大幅に短縮しても十分に鋳塊組織の均質化を行
ない得る上に、また場合によつては高温短時間の
均質化処理を押出加工直前に行ない、直ちに押出
し加工を行なうこともできるなど、エネルギー節
減、生産性向上に著しい貢献をすることができる
ばかりでなく、これによつて得られた鋳塊を押出
して得られる押出製品の機械的性質や表面状況、
陽極酸化処理性もすぐれているなど、工業的に卓
効ある発明であるということができる。
[Table] Note: ◎ Excellent ○ Fair From the results in Table 3, the extruded material obtained by subjecting the billet obtained from the ingot according to the present invention to the usual homogenization treatment has considerable mechanical properties, Furthermore, although the anodic oxidation properties are good, it is clear that when this is further subjected to a short heat treatment, an extruded material with further improved mechanical properties and anodic oxidation properties can be obtained. Furthermore, from this fact, an ingot with a high α ratio, a dendrite arm spacing of less than 25 μm, and a suspended crystal volume fraction of less than 20% obtained by the production method of the present invention cannot be produced by the conventional production method. It is also well understood that the homogenization processability is far superior to that of the obtained ingot. [Effects of the Invention] As described above, the Al-Mg-Si alloy ingot for extrusion obtained by the production method of the present invention has excellent homogenization processing properties, so it cannot be processed under normal homogenization processing conditions. Of course, it is possible to sufficiently homogenize the ingot structure even if the heating holding time during homogenization treatment is significantly shortened; This not only makes it possible to significantly contribute to energy savings and productivity improvement, but also improves the mechanical properties of extruded products obtained by extruding the obtained ingot. properties and surface conditions,
It can be said to be an industrially effective invention, as it has excellent anodic oxidation properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は押出工程における熱履歴を示す概念図
であり、aは通常の方法、bは本発明の鋳塊を使
用して短縮熱処理を行なつた場合のものを示す。 第2図は本発明のAl−Mg−Si系合金における
FeおよびSiの適正な含有範囲を示す図面である。
FIG. 1 is a conceptual diagram showing the thermal history in the extrusion process, in which a shows the conventional method and b shows the shortened heat treatment using the ingot of the present invention. Figure 2 shows the Al-Mg-Si alloy of the present invention.
It is a drawing showing the appropriate content range of Fe and Si.

Claims (1)

【特許請求の範囲】 1 マグネシウム0.2〜1.5重量%、珪素0.1〜0.8
重量%および鉄0.05〜1.0重量%を含み、さらに
各0.5重量%までの銅、マンガンおよびクロムを
不純物として含み、且つ珪素含有量(X)重量%
と鉄含有量(Y)重量%とがX−Y線図上で下記
に示す座標ア,イ,ウ,エを結ぶ領域内にあり、
残部アルミニウムおよびその他の不可避的不純物
からなるアルミニウム合金溶湯を連続または半連
続鋳造法を使用して28℃/秒以上の冷却速度で冷
却しながら鋳造することによつて、鋳造組織中に
含まれる鉄系晶出物のうちの70%を超える量をα
−AlFeSi晶とし、且つ浮遊晶体積率を20%未満、
デンドライト・アーム・スペーシングを25μm未
満とした鋳塊を得ることを特徴とする押出用Al
−Mg−Si系アルミニウム合金鋳塊の製造法。 各座標は、 ア…(0.1、0.05) イ…(0.1、1.0) ウ…(0.8、1.0) エ…(0.4、0.05) 2 マグネシウム0.2〜1.5重量%、珪素0.1〜0.8
重量%、鉄0.05〜1.0重量%、チタン0.001〜0.20
重量%および硼素0.001〜0.04重量%を含み、さ
らに各0.5重量%までの銅、マンガンおよびクロ
ムを不純物として含み、且つ珪素含有量(X)重
量%と鉄含有量(Y)重量%とがX−Y線図上で
下記に示す座標ア,イ,ウ,エを結ぶ領域内にあ
り、残部アルミニウムおよびその他の不可避的不
純物からなるアルミニウム合金溶湯を連続または
半連続鋳造法を使用して28℃/秒以上の冷却速度
で冷却しながら鋳造することによつて、鋳造組織
中に含まれる鉄系晶出物のうちの70%を超える量
をα−AlFeSi晶とし、且つ浮遊晶体積率を20%
未満、デンドライト・アーム・スペーシングを
25μm未満とした鋳塊を得ることを特徴とする押
出用Al−Mg−Si系アルミニウム合金鋳塊の製造
法。 各座標は、 ア…(0.1、0.05) イ…(0.1、1.0) ウ…(0.8、1.0) エ…(0.4、0.05)
[Claims] 1. Magnesium 0.2-1.5% by weight, silicon 0.1-0.8%
% by weight and 0.05-1.0% by weight of iron, further containing up to 0.5% by weight each of copper, manganese and chromium as impurities, and silicon content (X) % by weight
and the iron content (Y) weight% are within the area connecting the coordinates A, I, U, and E shown below on the X-Y diagram,
By casting a molten aluminum alloy containing the balance aluminum and other unavoidable impurities using a continuous or semi-continuous casting method while cooling at a cooling rate of 28°C/sec or more, the iron contained in the cast structure is removed. α exceeds 70% of the system crystallized matter.
-AlFeSi crystal, and the floating crystal volume fraction is less than 20%,
Al for extrusion characterized by obtaining an ingot with a dendrite arm spacing of less than 25 μm
-Production method of Mg-Si aluminum alloy ingot. Each coordinate is: A...(0.1, 0.05) B...(0.1, 1.0) C...(0.8, 1.0) E...(0.4, 0.05) 2 Magnesium 0.2-1.5% by weight, Silicon 0.1-0.8
wt%, iron 0.05-1.0 wt%, titanium 0.001-0.20
% by weight and 0.001 to 0.04% by weight of boron, and further contains up to 0.5% by weight of each of copper, manganese and chromium as impurities, and the silicon content (X) by weight and the iron content (Y) by weight are X. - Located within the area connecting coordinates A, A, U, and E shown below on the Y diagram, molten aluminum alloy consisting of the remainder aluminum and other unavoidable impurities is cast at 28℃ using continuous or semi-continuous casting method. By casting while cooling at a cooling rate of 1/sec or more, more than 70% of the iron-based crystallized substances contained in the cast structure are converted to α-AlFeSi crystals, and the suspended crystal volume fraction is reduced to 20%. %
less than the dendrite arm spacing
A method for producing an Al-Mg-Si aluminum alloy ingot for extrusion, characterized by obtaining an ingot with a thickness of less than 25 μm. Each coordinate is A...(0.1, 0.05) B...(0.1, 1.0) U...(0.8, 1.0) E...(0.4, 0.05)
JP1610083A 1983-02-04 1983-02-04 Aluminum alloy cast ingot for extrusion and production of extrudate using said material Granted JPS59143039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1610083A JPS59143039A (en) 1983-02-04 1983-02-04 Aluminum alloy cast ingot for extrusion and production of extrudate using said material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1610083A JPS59143039A (en) 1983-02-04 1983-02-04 Aluminum alloy cast ingot for extrusion and production of extrudate using said material

Publications (2)

Publication Number Publication Date
JPS59143039A JPS59143039A (en) 1984-08-16
JPH0259204B2 true JPH0259204B2 (en) 1990-12-11

Family

ID=11907093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1610083A Granted JPS59143039A (en) 1983-02-04 1983-02-04 Aluminum alloy cast ingot for extrusion and production of extrudate using said material

Country Status (1)

Country Link
JP (1) JPS59143039A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223050A (en) * 1985-09-30 1993-06-29 Alcan International Limited Al-Mg-Si extrusion alloy
JPH04141542A (en) * 1990-09-28 1992-05-15 Tostem Corp Extruding aluminum alloy
DE69802504T2 (en) * 1997-03-21 2002-06-27 Alcan Int Ltd AL-MG-SI ALLOY WITH GOOD EXPRESS PROPERTIES
CA2266193C (en) * 1998-03-20 2005-02-15 Alcan International Limited Extrudable aluminum alloys
ATE332985T1 (en) * 1999-09-10 2006-08-15 Kramer Carl METHOD FOR HEAT TREATMENT OF METAL PRESS BOLTS
JP2005028452A (en) * 2003-06-18 2005-02-03 Showa Denko Kk CONTINUOUS CASTING METHOD OF Al-Mg-Si ALLOY AND Al-Mg-Si ALLOY INGOT, MANUFACTURING METHOD OF Al-Mg-Si ALLOY SHEET AND Al-Mg-Si ALLOY SHEET, AND MANUFACTURING METHOD OF HEAT RADIATION MATERIAL AND HEAT RADIATION MATERIAL
NO20034731D0 (en) * 2003-10-22 2003-10-22 Norsk Hydro As aluminum Alloy
US7732059B2 (en) * 2004-12-03 2010-06-08 Alcoa Inc. Heat exchanger tubing by continuous extrusion
JP4607678B2 (en) 2005-06-15 2011-01-05 東京エレクトロン株式会社 Heat treatment apparatus, heater and heater manufacturing method
CN111168021B (en) * 2019-12-11 2022-01-25 山东创新金属科技有限公司 Casting process of aluminum alloy round ingot for forging hub

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154107A (en) * 1974-06-04 1975-12-11
JPS5547371A (en) * 1978-10-02 1980-04-03 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy having excellent mechanical property in direction of wall thickness
JPS55131152A (en) * 1979-03-30 1980-10-11 Sumitomo Light Metal Ind Ltd Manufacture of a -mg-si type alloy with high extrudability and hardenability, and extruded material thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154107A (en) * 1974-06-04 1975-12-11
JPS5547371A (en) * 1978-10-02 1980-04-03 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy having excellent mechanical property in direction of wall thickness
JPS55131152A (en) * 1979-03-30 1980-10-11 Sumitomo Light Metal Ind Ltd Manufacture of a -mg-si type alloy with high extrudability and hardenability, and extruded material thereof

Also Published As

Publication number Publication date
JPS59143039A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
US3989548A (en) Aluminum alloy products and methods of preparation
JPH09310141A (en) High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
JPH0259204B2 (en)
JPS5810455B2 (en) Aluminum alloy for rolling
CN110408805B (en) Aluminum alloy bar and preparation method thereof
JPH01225756A (en) Manufacture of high-strength al-mg-si alloy member
US5110371A (en) Aluminum alloys for forming colored anodic oxide films thereon and method for producing a sheet material of the alloy
JP2544235B2 (en) High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same
JPH10306336A (en) Aluminum alloy extruded material excellent in surface gloss after anodic oxidation treatment and its production
JP3200523B2 (en) Age-hardened aluminum alloy extruded profile for gray coloring and method for producing the same
JP2000273563A (en) Aluminum alloy rolled sheet whose color tone after anodic oxidation treatment is gray and stable and its production
IE970282A1 (en) Aluminium alloy and extrusion
JPH04353A (en) Heat treatment for al-cu aluminum alloy ingot for working and production of extruded material using same
JPH0971831A (en) Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production
JPS6362836A (en) Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof
JPS6158546B2 (en)
JPH06116667A (en) Far infrared radiator
JP2643632B2 (en) Aluminum alloy wrought material for forming colored oxide film and method for producing the same
US4915798A (en) Corrosion resistant aluminum product with uniformly grey, light-fast surface and process for its manufacture
JPH0256415B2 (en)
KR930007949B1 (en) Process for making milk-white household dishes of al-alloys and its products
KR930007948B1 (en) Process for making grey houshold dishes of al-alloys and it's products
JPS5838502B2 (en) Aluminum alloy for rolling
JPH0441643A (en) Aluminum alloy having bluish gray color tone after anodic oxidation treatment and its manufacture
JPS586774B2 (en) Aluminum alloy for rolling