JPH0258872B2 - - Google Patents

Info

Publication number
JPH0258872B2
JPH0258872B2 JP19450084A JP19450084A JPH0258872B2 JP H0258872 B2 JPH0258872 B2 JP H0258872B2 JP 19450084 A JP19450084 A JP 19450084A JP 19450084 A JP19450084 A JP 19450084A JP H0258872 B2 JPH0258872 B2 JP H0258872B2
Authority
JP
Japan
Prior art keywords
phase
current
power
self
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19450084A
Other languages
Japanese (ja)
Other versions
JPS6173584A (en
Inventor
Hiroki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP19450084A priority Critical patent/JPS6173584A/en
Publication of JPS6173584A publication Critical patent/JPS6173584A/en
Publication of JPH0258872B2 publication Critical patent/JPH0258872B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/20Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by reversal of phase sequence of connections to the motor

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、トランジスタ、GTO(ゲートター
ンオフサイリスタ)などの自己消弧素子を使つた
電力回生回路の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of controlling a power regeneration circuit using a self-extinguishing element such as a transistor or a GTO (gate turn-off thyristor).

〔従来の技術〕[Conventional technology]

第3図は、従来の電圧形インバータ装置の構成
を示すブロツク図である。この図において、1は
3相交流電源、2は限流用リアクトル、3は電流
検出器、4は6個のトランジスタSU〜SZからな
る回生用ブリツジ(以下、逆RFという)、5は6
個のダイオードDU〜DZからなる直流変換用ブリ
ツジ(以下、正RFという)、6は平滑用の電解コ
ンデンサ、7は6個のトランジスタと前記各トラ
ンジスタに逆並列接続された帰還ダイオードとか
らなるインバータ、8は電動機、9は電流検出器
3の出力と電流指令とを比較し、その差電圧を出
力する偏差検出点、10は逆RF4の各トランジ
スタSU〜SZをオン/オフ制御する制御回路であ
る。
FIG. 3 is a block diagram showing the configuration of a conventional voltage source inverter device. In this figure, 1 is a three-phase AC power supply, 2 is a current-limiting reactor, 3 is a current detector, 4 is a regeneration bridge (hereinafter referred to as reverse RF) consisting of six transistors SU to SZ, and 5 is 6
6 is a smoothing electrolytic capacitor, and 7 is an inverter consisting of 6 transistors and a feedback diode connected in antiparallel to each of the transistors. , 8 is a motor, 9 is a deviation detection point that compares the output of the current detector 3 and the current command and outputs the difference voltage, and 10 is a control circuit that controls on/off each transistor SU to SZ of the inverse RF 4. be.

このような構成において、電動機8がその負荷
側から駆動されると発電機として作用し、この発
電電力がインバータ7を介して直流側へ回生さ
れ、電解コンデンサ6が充電されて直流電圧が上
昇する。この電圧上昇を避けるためには、前記電
力を抵抗を介して放電するか、交流電源1に回生
する方法等があるが、本インバータ装置は回生す
る方法をとつている。
In such a configuration, when the motor 8 is driven from its load side, it acts as a generator, and the generated power is regenerated to the DC side via the inverter 7, charging the electrolytic capacitor 6 and increasing the DC voltage. . In order to avoid this voltage increase, there are methods such as discharging the power through a resistor or regenerating it to the AC power supply 1, but this inverter device uses a regeneration method.

すなわち、第4図に示すように、交流電源1の
相電圧U〜Wと同期させて、トランジスタSU〜
SZを電気角で120゜(または180゜)ずつ順次導通し、
インバータ7から供給される直流電力を再び交流
電力に変換し、交流電源1側に回生させている。
That is, as shown in FIG. 4, in synchronization with the phase voltages U to W of the AC power source 1, the transistors
Sequentially conduct the SZ by 120° (or 180°) in electrical angle,
The DC power supplied from the inverter 7 is converted back into AC power and regenerated to the AC power supply 1 side.

しかして、上述した回生回路においては、トラ
ンジスタSU〜SZ導通中に回生電流の大きさを制
限するものは、リアクトル2のみであるため、別
途電流制御装置を設けるか、上記導通期間中トラ
ンジスタSU〜SZをさらに短いサイクルでオン/
オフ制御し、平均電流の大きさを調整していた。
However, in the above-mentioned regenerative circuit, the reactor 2 is the only thing that limits the magnitude of the regenerative current while the transistors SU to SZ are conducting, so either a separate current control device is provided or the transistors SU to SZ are Turn on SZ in shorter cycles/
It was controlled off and the magnitude of the average current was adjusted.

この場合、導通期間を120゜として電流制御する
方法は、180゜導通させる方法に比べて、同一電流
定格の素子を使用しても回生能力が低下するため
180゜導通とし、リアクトル2を流れる回生電流が
電流指令と一致するように、各相独立にオン/オ
フ制御していた。
In this case, the method of controlling the current with a conduction period of 120° has a lower regenerative ability than the method of conducting 180° even if elements with the same current rating are used.
180° conduction was established, and each phase was independently controlled on/off so that the regenerative current flowing through reactor 2 matched the current command.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、180゜導通で各相独立にオン/オフ制
御すると、第5図ハに示すように、線間短絡回路
Lが形成され、回生効率が低下するという問題が
あつた。
By the way, when each phase is independently controlled on/off with 180° conduction, there is a problem in that a line short circuit L is formed as shown in FIG. 5C, and the regeneration efficiency is reduced.

以下、相電圧Uが最高、Wが最低の場合を例に
とつてこの問題について説明する。この場合、第
5図イ,ロに示すように、トランジスタSUまた
はSZが導通していれば、これらのトランジスタ
がダイオードDU,DZの両端電圧をほぼ0に保つ
一方、ダイオードDV,DWまたはDX,DYを逆
バイアスする。従つて、これらのダイオードがカ
ツトオフとなり、正RF5が交流電源1から切り
離された形となり、電源短絡は生じない。
This problem will be explained below, taking as an example the case where the phase voltage U is the highest and the phase voltage W is the lowest. In this case, as shown in Figure 5 A and B, if the transistor SU or SZ is conductive, these transistors will keep the voltage across the diodes DU and DZ almost 0, while the diodes DV, DW or DX, Reverse bias DY. Therefore, these diodes are cut off, the positive RF 5 is disconnected from the AC power supply 1, and no short circuit occurs in the power supply.

しかしながら、180゜導通で各相独立にオン/オ
フ制御する間には、第5図ハに示すように、トラ
ンジスタSUおよびSZがオフ、SVがオンとなる
期間も生じ、このときダイオードDU、トランジ
スタSVが導通状態となつて電源短絡回路Lが形
成されてしまう。この結果、電力回生期間が減少
し、回生回路の利用効率が低下してしまうという
問題があつた。
However, during 180° conduction and independent on/off control of each phase, as shown in Figure 5C, there also occurs a period in which transistors SU and SZ are off and SV is on, and at this time, the diode DU and transistor SV becomes conductive and a power supply short circuit L is formed. As a result, a problem arises in that the power regeneration period is reduced and the utilization efficiency of the regeneration circuit is reduced.

この発明は、上記問題点を解決しようとするも
のである。
This invention attempts to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明は、回
生用の逆RFを自己消弧素子で構成し、各相電圧
の180゜幅のうち0゜〜60゜および120゜〜180゜の間は前
記自己消弧素子をオン/オフ制御して電流制御を
行う一方、60゜〜120゜の間は自己消弧素子を点弧
状態に保持することを特徴とする。
In order to solve the above problems, this invention configures the reverse RF for regeneration with self-extinguishing elements, and the voltage between 0° and 60° and between 120° and 180° out of the 180° width of each phase voltage is The self-extinguishing element is controlled on/off to control the current, and the self-extinguishing element is maintained in the ignited state between 60° and 120°.

〔作用〕[Effect]

上記方法によれば、各相電圧の瞬時値が最高と
なる前後の60゜の間および最低となる前後の60゜の
間(すなわち上記60゜〜120゜の間)、この相に接続
された自己消弧素子がオンとなる。この結果、絶
対値が最大の相電圧に係る自己消弧素子が順次オ
ンとなり、オンとなつた自己消弧素子に、共通接
続端が接続されたダイオード(例えば、第1図の
トランジスタSUがオンの場合、これに接続され
たダイオードDU〜PW)は、いずれもカツトオ
フとなる(上の例ではダイオードDUはゼロバイ
アス、DV,DWは逆バイアスとなつてカツトオ
フとなる)。従つて、ダイオードDU〜DZからな
る正RFは交流電源から切り離された状態となり、
交流電源の線間短絡が生じることはない。また、
電気角0゜〜60゜および120゜〜180゜の期間は、電流波
形が指令通りになるように、前記自己消弧素子を
オン/オフ制御するので、常に2相の電流制御が
なされ、全点弧されている残りの相の電流は上記
2相の電流の和となるから、結局3相の電流制御
が行えることとななる。
According to the above method, between 60 degrees before and after the instantaneous value of each phase voltage is the highest and 60 degrees before and after the lowest instantaneous value (that is, between 60 degrees and 120 degrees above), the The self-extinguishing element turns on. As a result, the self-extinguishing elements associated with the phase voltage with the largest absolute value are turned on one after another, and the self-extinguishing elements that have been turned on are connected to diodes whose common terminals are connected (for example, the transistor SU in Figure 1 is turned on). In this case, the diodes DU to PW connected thereto are all cut off (in the example above, the diode DU is at zero bias, and DV and DW are reverse biased and cut off). Therefore, the positive RF consisting of diodes DU to DZ is disconnected from the AC power supply,
Line-to-line short circuits of AC power supplies do not occur. Also,
During electrical angle periods of 0° to 60° and 120° to 180°, the self-extinguishing element is controlled on/off so that the current waveform conforms to the command, so two-phase current control is always performed, and all Since the current of the remaining ignited phases is the sum of the above-mentioned two-phase currents, three-phase current control can be performed after all.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明を第3図に示す電流形インバ
ータ装置に適用した実施例の要部の構成を示すも
ので、第3図の各部に対応する部分には同一の符
号を付してある。本実施例が、第3図の従来装置
と異なる点は、制御回路10aの構成であり、第
1図にはトランジスタSUの制御回路が示されて
いる。なお、他のトランジスタSV〜SZにも同様
の制御回路が接続されている。
FIG. 1 shows the configuration of main parts of an embodiment in which the present invention is applied to the current source inverter device shown in FIG. 3, and parts corresponding to those in FIG. 3 are given the same reference numerals. be. This embodiment differs from the conventional device shown in FIG. 3 in the configuration of the control circuit 10a, and FIG. 1 shows the control circuit for the transistor SU. Note that similar control circuits are also connected to the other transistors SV to SZ.

この図において、11a〜11cは各相の電流
指令であり、相電圧U,V,Wの反転波形を使用
している。12a〜12cはコンパレータであ
り、各相電圧U〜Wの正側の180゜期間“H”レベ
ルとなる矩形波を出力し、コンパレータ12b,
12cの出力がオアゲート13に供給され、第2
図ロに示す信号S1が形成される。
In this figure, 11a to 11c are current commands for each phase, which use inverted waveforms of phase voltages U, V, and W. Comparators 12a to 12c output a rectangular wave that is at the "H" level for a period of 180° on the positive side of each phase voltage U to W, and the comparators 12b,
12c is supplied to the OR gate 13, and the second
A signal S1 shown in FIG. 4 is generated.

一方、偏差検出点9の出力、すなわち、U相の
電流指令からU相の実際の電流を引いた値は、イ
ンバータ14で反転され、第2図ハに示す信号S
2となる。この信号S2は、実際の電流が電流指
令より大きいときに“H”レベルとなり、信号S
1とともにナンドゲート15に供給される。ナン
ドゲート15は、信号S1,S2の双方または一
方が“L”レベルのとき“H”レベルとなる信号
S4を出力する。そして、コンパレータ12aの
出力信号S3(第2図ニ)と上記信号S4(同図
ホ)とがアンドゲート16に供給れ、同図ヘに示
す信号S5が形成される。
On the other hand, the output of the deviation detection point 9, that is, the value obtained by subtracting the actual U-phase current from the U-phase current command, is inverted by the inverter 14, and the signal S shown in FIG.
It becomes 2. This signal S2 becomes "H" level when the actual current is larger than the current command, and the signal S
1 and is supplied to the NAND gate 15. The NAND gate 15 outputs a signal S4 that becomes "H" level when both or one of the signals S1 and S2 is "L" level. Then, the output signal S3 of the comparator 12a (FIG. 2D) and the signal S4 (FIG. 2E) are supplied to the AND gate 16, and the signal S5 shown in FIG.

この信号S5は、U相の正側180゜のうち0゜〜60゜
および120゜〜180゜の間は、実際の電流が電流指令
より小さいときに“H”レベルとなり(第2図ヘ
の符号18)、60゜〜120゜の間はずつと“H”レベ
ルを維持する(同図符号19)。従つて、信号S
5が増幅器17を介してトランジスタSUのベー
スに供給されると、上記0゜〜60゜および120゜〜180゜
の間、トランジスタSUがオン/オフ制御されて
電流制御が行われ、60゜〜120゜の間トランジスタ
SUがオンに維持される。また、他のトランジス
タSV〜SZも第2図チ〜ヲに示す制御信号によつ
て同様に制御される。
This signal S5 becomes "H" level between 0° and 60° and between 120° and 180° of the positive side of the U phase when the actual current is smaller than the current command (as shown in Figure 2). 18), and maintains the "H" level between 60° and 120° (19 in the figure). Therefore, the signal S
5 is supplied to the base of the transistor SU through the amplifier 17, the transistor SU is controlled on/off to perform current control between 0° and 60° and 120° and 180°, and current control is performed between 60° and 180°. Transistor between 120°
SU remains on. Further, the other transistors SV to SZ are similarly controlled by the control signals shown in FIG.

上記構成によれば、第2図に示すように、U相
電圧の0゜〜60゜の間はトランジスタSYがオン(全
点弧)、SU、SWがオン/オフ制御、60゜〜120゜の
間はトランジスタSUが全点弧、SY,SZがオ
ン/オフ制御、120゜〜180゜の間はトランジスタSZ
が全点弧、SU,SVがオン/オフ制御される。こ
こで、例えば、トランジスタSUが全点弧されて
いる60゜の間は、トランジスタSY,SZのオン/オ
フにより、V相およびW相に流れる電流が電流指
令と一致するように独立に制御される。また、こ
のとき、U相に流れる電流はV相とW相に流れる
電流の和となるから、結局3相の電流制御が行わ
れることとなる。このことは他のトランジスタが
全点弧状態にあるときにも当てはまることであ
る。
According to the above configuration, as shown in Fig. 2, transistor SY is on (all firing) between 0° and 60° of the U-phase voltage, SU and SW are on/off controlled, and between 60° and 120°. Between 120° and 180°, transistor SU is fully turned on, SY and SZ are on/off control, and between 120° and 180°, transistor SZ is on.
is fully fired, and SU and SV are controlled on/off. Here, for example, during the 60° period when the transistor SU is fully turned on, the current flowing to the V phase and W phase is independently controlled by turning on/off the transistors SY and SZ so that it matches the current command. Ru. Moreover, at this time, since the current flowing in the U phase is the sum of the currents flowing in the V phase and the W phase, three-phase current control is performed after all. This also applies when the other transistors are fully fired.

また、上記60゜〜120゜の間は、トランジスタSU
がオンで、かつU相電圧が一番高いため、ダイオ
ードDU〜DWがすべてカツトオフとなり、正RF
5は交流電源1から切り離された形となる。この
結果、第5図ハに示すような電源短絡回路Lが形
成されるのを防ぐことができる。
Also, between 60° and 120° above, the transistor SU
is on and the U-phase voltage is the highest, all diodes DU to DW are cut off, and the positive RF
5 is separated from the AC power source 1. As a result, formation of a power supply short circuit L as shown in FIG. 5C can be prevented.

なお、上記実施例においては、逆RF4をトラ
ンジスタSU〜SZで構成したが、これに限定され
ることなく、GTOなど、自己消弧素子であれば
同様に用いることができる。
In the above embodiment, the inverse RF 4 is composed of transistors SU to SZ, but the present invention is not limited to this, and any self-extinguishing element such as a GTO can be similarly used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、回生用の逆
RFを自己消弧素子で構成し、各相電圧の180゜幅
のうち0゜〜60゜および120゜〜180゜の間は前記自己消
弧素子をオン/オフ制御して電流制御を行う一
方、60゜〜120゜の間は自己消弧素子を点弧状態に
保持するので、以下の効果を奏することができ
る。
As explained above, this invention
The RF is configured with a self-extinguishing element, and current control is performed by controlling the self-extinguishing element on/off between 0° to 60° and 120° to 180° out of the 180° width of each phase voltage. , 60° to 120°, the self-extinguishing element is maintained in the ignited state, so the following effects can be achieved.

(1) 電源短絡が生じないので、電力回生が効率よ
く行える。
(1) Power regeneration can be performed efficiently because power supply short circuits do not occur.

(2) 電流制御は制御回路のみで行え、他の電流制
御回路を追加する必要がない。また、回生電流
は180゜幅となり、120゜幅に比べて回生能力が大
きい。
(2) Current control can be performed using only the control circuit, and there is no need to add another current control circuit. In addition, the regenerative current has a width of 180°, which has a greater regenerative ability than a width of 120°.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を電流形インバータ装置に適
用した実施例の要部の構成を示すブロツク図、第
2図は同実施例の各部の波形を示す波形図、第3
図は従来の電流形インバータ装置の構成を示すブ
ロツク図、第4図は同装置における相電圧U〜W
とトランジスタSU〜SZのオン/オフ制御の関係
を示す図、第5図は電源短絡の生ずる理由を説明
するための図である。 1……3相交流電源、4……逆RF(逆側整流
器)、5……正RF(正側整流器)、DU〜DZ……ダ
イオード、SU〜SZ……トランジスタ(自己消弧
素子)。
FIG. 1 is a block diagram showing the configuration of the main parts of an embodiment in which the present invention is applied to a current source inverter device, FIG. 2 is a waveform diagram showing waveforms of each part of the embodiment, and FIG.
The figure is a block diagram showing the configuration of a conventional current source inverter device, and Figure 4 shows the phase voltages U to W in the same device.
FIG. 5 is a diagram showing the relationship between on/off control of the transistors SU to SZ, and FIG. 5 is a diagram for explaining the reason why a power supply short circuit occurs. 1... Three-phase AC power supply, 4... Reverse RF (reverse rectifier), 5... Positive RF (positive side rectifier), DU~DZ...diode, SU~SZ...transistor (self-extinguishing element).

Claims (1)

【特許請求の範囲】[Claims] 1 ダイオードと自己消弧素子との逆並列回路に
よつて3相ブリツジを構成し、この3相ブリツジ
を3相交流電源の出力端に接続し、力行時には前
記ダイオードからなる正側整流器を運転して負荷
側に直流電力を供給する一方、回生時には前記自
己消弧素子からなる逆側整流器を運転して前記交
流電源に帰還電力を回生する電力回生回路におい
て、前記交流電源の各相電圧の180゜幅のうち、0゜
〜60゜および120゜〜180゜の間は電流制御を行い、
60゜〜120゜の間は全点弧することを特徴とする電
力回生回路の制御方法。
1 A three-phase bridge is constructed by an anti-parallel circuit of a diode and a self-extinguishing element, and this three-phase bridge is connected to the output end of a three-phase AC power supply, and during power running, the positive side rectifier consisting of the diode is operated. In a power regeneration circuit that supplies DC power to the load side, and at the time of regeneration, operates a reverse rectifier consisting of the self-arc-extinguishing element to regenerate feedback power to the AC power supply, the voltage of each phase of the AC power supply is Current control is performed between 0° to 60° and 120° to 180° of the ° width.
A method of controlling a power regeneration circuit characterized by fully firing between 60° and 120°.
JP19450084A 1984-09-17 1984-09-17 Controlling method of power regenerative circuit Granted JPS6173584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19450084A JPS6173584A (en) 1984-09-17 1984-09-17 Controlling method of power regenerative circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19450084A JPS6173584A (en) 1984-09-17 1984-09-17 Controlling method of power regenerative circuit

Publications (2)

Publication Number Publication Date
JPS6173584A JPS6173584A (en) 1986-04-15
JPH0258872B2 true JPH0258872B2 (en) 1990-12-10

Family

ID=16325547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19450084A Granted JPS6173584A (en) 1984-09-17 1984-09-17 Controlling method of power regenerative circuit

Country Status (1)

Country Link
JP (1) JPS6173584A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274384A (en) * 1987-04-30 1988-11-11 Fanuc Ltd Regenerating circuit for power source
JP6386265B2 (en) * 2014-06-27 2018-09-05 東芝シュネデール・インバータ株式会社 Power regeneration device

Also Published As

Publication number Publication date
JPS6173584A (en) 1986-04-15

Similar Documents

Publication Publication Date Title
US6072707A (en) High voltage modular inverter
US4489371A (en) Synthesized sine-wave static generator
JPH0357117Y2 (en)
JP3237719B2 (en) Power regeneration controller
JPS62104481A (en) Driving system for dc power source
JPH0258872B2 (en)
US4740881A (en) Simultaneous recovery commutation current source inverter for AC motors drives
US4486824A (en) PWM Converter with control circuit responsive to minimum holding current
US4264952A (en) Inverter apparatus
JPS6035892B2 (en) power converter
JP4037284B2 (en) Static reactive power compensator
JP2595593B2 (en) Rectifier
JPS5943914B2 (en) Protection method of controlled rectifier
JPH0669316B2 (en) Power regeneration control circuit for power converter
JPH0156636B2 (en)
JP2728682B2 (en) Uninterruptible power supply for computer
JP2925439B2 (en) Three-phase control rectification
JPS58123378A (en) Recovering circuit
JP2549101B2 (en) Power converter
JPS586391B2 (en) Inverter touch
SU1234936A1 (en) Reversible converter with artificial commutation
JP2922269B2 (en) Thyristor converter
JPS6116794Y2 (en)
JPS626826Y2 (en)
JP3024708B2 (en) Current type inverter